CN102043083B - Giant magnetoresistance array current sensor - Google Patents
Giant magnetoresistance array current sensor Download PDFInfo
- Publication number
- CN102043083B CN102043083B CN2010105609520A CN201010560952A CN102043083B CN 102043083 B CN102043083 B CN 102043083B CN 2010105609520 A CN2010105609520 A CN 2010105609520A CN 201010560952 A CN201010560952 A CN 201010560952A CN 102043083 B CN102043083 B CN 102043083B
- Authority
- CN
- China
- Prior art keywords
- giant magnetoresistance
- ltc6085
- chip
- max155
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012545 processing Methods 0.000 claims abstract description 21
- 238000005516 engineering process Methods 0.000 claims description 3
- 101100156949 Arabidopsis thaliana XRN4 gene Proteins 0.000 claims description 2
- 101100215777 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ain1 gene Proteins 0.000 claims description 2
- 229910017709 Ni Co Inorganic materials 0.000 claims 1
- 229910003267 Ni-Co Inorganic materials 0.000 claims 1
- 229910003262 Ni‐Co Inorganic materials 0.000 claims 1
- 238000000691 measurement method Methods 0.000 claims 1
- 238000004088 simulation Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- 238000005070 sampling Methods 0.000 abstract description 11
- 230000005415 magnetization Effects 0.000 abstract description 5
- 229910000828 alnico Inorganic materials 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000003491 array Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 239000013307 optical fiber Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
一种巨磁阻阵列智能电流传感器,由巨磁阻芯片子板阵列(1)、环形PCB母板(2)、8通道放大器电路(3)、8通道采样保持及A/D转换电路(4)、FPGA信号处理电路(5)构成;巨磁阻芯片子板阵列(1)由巨磁阻芯片AA005-02和两个条形的铝镍钴永磁体构成,所述的永磁体置于巨磁阻芯片AA005-02的两端,永磁体的充磁方向与巨磁阻芯片AA005-02的磁敏感方向一致;8个巨磁阻芯片子板阵列安装在环形PCB母板(2)上,所述的巨磁阻芯片输出的电压信号输入到8通道电压放大器电路(3)中,经放大后,进入8通道采样保持及A/D转换电路(4),将模拟的电压信号转变成数字信号,再经过FPGA处理电路(5)对8路数字信号进行处理。
A giant magnetoresistive array intelligent current sensor, comprising a giant magnetoresistance chip sub-board array (1), a circular PCB motherboard (2), an 8-channel amplifier circuit (3), an 8-channel sample-and-hold and A/D conversion circuit (4 ), FPGA signal processing circuit (5); giant magnetoresistance chip sub-board array (1) is made of giant magnetoresistance chip AA005-02 and two bar-shaped alnico permanent magnets, and described permanent magnet is placed in giant At both ends of the magnetoresistance chip AA005-02, the magnetization direction of the permanent magnet is consistent with the magnetic sensitivity direction of the giant magnetoresistance chip AA005-02; 8 giant magnetoresistance chip sub-board arrays are installed on the annular PCB motherboard (2), The voltage signal output by the giant magnetoresistive chip is input into the 8-channel voltage amplifier circuit (3), after being amplified, it enters the 8-channel sampling and holding and A/D conversion circuit (4), and the analog voltage signal is converted into a digital signal, and then process the 8-way digital signal through the FPGA processing circuit (5).
Description
技术领域 technical field
本发明涉及一种智能传感器,特别涉及巨磁阻阵列测电流传感器。The invention relates to an intelligent sensor, in particular to a giant magnetoresistance array current measuring sensor.
背景技术 Background technique
为提高能源的利用效率适用可再生能源的接入,目前的电网正逐渐向以智能控制、管理和分析为特征的灵活应变的智能电网方向发展,这就需要各种传感器对电网线路的电流、电压、温度及电力设备的运行情况等参数进行实时的监控。In order to improve energy utilization efficiency and apply renewable energy access, the current power grid is gradually developing towards a flexible smart grid characterized by intelligent control, management and analysis, which requires various sensors to monitor the current of grid lines, Real-time monitoring of parameters such as voltage, temperature and power equipment operation.
其中,电流的实时精确检测是众多电气参数测量中的重要任务之一。在电力系统发展的100多年里,传统的电流互感器在电流检测和继电保护方面起到了举足轻重的作用,但是随着电网规模的不断扩大、电压等级的不断升高和可再生新能源电网的接入以及数字化变电站的建设,传统的电流互感器越来越暴露出众多的不足,比如:1.体积越来越大,浪费过多的电工材料,增加了成本且不易安装;2.存在二次绕组开路高电压的危险;3.缺乏数字化接口和智能化分析功能,难以适应智能电网的发展需要。Among them, the real-time accurate detection of current is one of the important tasks in the measurement of many electrical parameters. In the more than 100 years of power system development, traditional current transformers have played a pivotal role in current detection and relay protection. In connection with the construction of digital substations, traditional current transformers are increasingly exposed to many shortcomings, such as: 1. The volume is getting larger and larger, which wastes too much electrical material, which increases the cost and is not easy to install; 2. There are two 3. Lack of digital interface and intelligent analysis function, it is difficult to adapt to the development needs of smart grid.
为了弥补传统电流互感器的不足,近十年来,国内外的科研人员对各种新型的电子式电流互感器进行了研究。研究的热点主要集中在罗氏线圈电流互感器和块状光学电流互感器以及纯光纤电流互感器。罗氏线圈测量电流的方法目前是比较成熟的技术,精度可以达到0.2级以上,而且已经开始大规模的生产和应用。但是由于罗氏线圈测量电流是根据法拉第电磁感应定律,因此只能用于交流和脉冲电流的测量,对于直流电流的测量是无能为力的。纯光学电流互感器是最有吸引力的一种电流互感器,其原理是根据法拉第旋光效应。从结构上分,光学电流互感器可分为块状和纯光纤电流互感器两种。纯光纤电流互感器优点是结构简单,一根光纤同时实现传感和通信两种功能,但是由于受温度和机械形变的影响极大,其稳定性和精度还难以保证;块状光学电流互感器是为了弥补纯光纤电流互感器的不足而提出的,相对光纤,块状玻璃的温度系数小,机械性能强,测量效果较好,但是块状玻璃不易工。其实,无论是块状还是纯光纤电流互感器,成本高是共同的缺点。因为需要稳定的光源,需要光信号处理设备,这些装置的成本是大部分企业难以接受的。In order to make up for the shortcomings of traditional current transformers, researchers at home and abroad have studied various new electronic current transformers in the past ten years. The research hotspots mainly focus on Rogowski coil current transformers, bulk optical current transformers and pure optical fiber current transformers. The method of measuring current with Rogowski coil is a relatively mature technology at present, the accuracy can reach above 0.2 level, and large-scale production and application have already begun. However, because the Rogowski coil measures current according to Faraday's law of electromagnetic induction, it can only be used for the measurement of alternating current and pulse current, and it is helpless for the measurement of direct current. The pure optical current transformer is the most attractive type of current transformer, and its principle is based on the Faraday rotation optical effect. In terms of structure, optical current transformers can be divided into block and pure optical current transformers. The advantage of pure optical fiber current transformer is that it is simple in structure, and one optical fiber can realize two functions of sensing and communication at the same time, but due to the great influence of temperature and mechanical deformation, its stability and accuracy are still difficult to guarantee; block optical current transformer It is proposed to make up for the shortcomings of pure optical fiber current transformers. Compared with optical fibers, block glass has a small temperature coefficient, strong mechanical properties, and better measurement results, but block glass is not easy to work. In fact, whether it is a block or a pure fiber optic current transformer, high cost is a common shortcoming. Because of the need for a stable light source and optical signal processing equipment, the cost of these devices is unacceptable for most companies.
磁敏器件是对磁场强度比较敏感的元件,目前主要分为霍尔、各向异性磁电阻、巨磁阻效应等几种类型。利用磁阻器件对磁场的测量实现电流的间接测量弥补了足罗氏线圈不能测量直流的缺陷;同时磁敏器件的大批量生产使得其成本低廉,相对稳定的性能也使其得到广泛的应用。Magneto-sensitive devices are components that are sensitive to magnetic field strength. At present, they are mainly divided into several types such as Hall, anisotropic magnetoresistance, and giant magnetoresistance effect. The use of magnetoresistive devices to measure the magnetic field to achieve indirect current measurement makes up for the defect that Rogowski coils cannot measure DC; at the same time, the mass production of magneto-sensitive devices makes their cost low and their relatively stable performance makes them widely used.
在磁敏器件阵列测电流的传感器中,大都采用磁阻和霍尔元件。由于一般的磁阻和霍尔元件的线性区间小,适合中小电流的测量。巨磁阻是近几年来材料领域的研究热点,和其他的磁敏器件相比,巨磁阻的灵敏度更高,温度稳定性好,线性区间宽。目前商用的模拟巨磁阻磁力芯片只有美国NVE公司生产的AA系列比较稳定,但是无论磁场的方向是正是负,巨磁阻的输出都是单极的。Magneto-resistance and Hall elements are mostly used in the current-measuring sensors of the magneto-sensitive device array. Due to the small linear range of general magnetoresistance and Hall elements, it is suitable for the measurement of small and medium currents. Giant magnetoresistance is a research hotspot in the field of materials in recent years. Compared with other magnetic sensitive devices, giant magnetoresistance has higher sensitivity, better temperature stability, and wider linear range. At present, only the AA series produced by the NVE company in the United States is relatively stable in the commercial analog giant magnetoresistance magnetic chips, but the output of the giant magnetoresistance is unipolar regardless of whether the direction of the magnetic field is positive or negative.
发明内容 Contents of the invention
本发明的目的是克服现有罗氏线圈电子式电流互感器的缺点,提出一种利用巨磁阻阵列测量电流的传感器,以实现交直流同测功能,并能完成信息的数字化传输、存储。The purpose of the present invention is to overcome the shortcomings of the existing Rogowski coil electronic current transformer, and propose a sensor that uses a giant magnetoresistive array to measure current, so as to realize the function of AC and DC simultaneous measurement, and can complete the digital transmission and storage of information.
为了实现上述目的,本发明采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
本发明通过在巨磁阻芯片的两端安装永磁体的方法,提供一个偏置磁场,当巨磁阻芯片上电的时候偏置磁场输出偏置电压,当被测电流产生的磁场叠加在偏置磁场上的时候,巨磁阻芯片的输出电压是在原偏置电压的基础上又叠加了一个由被测电流产生的磁场而产生的电压,经后续的信号处理电路将偏置电压减除,便得到一个双极输出的电压,也即输出有正有负的电压。因为巨磁阻芯片测量的是磁场,无论是直流电流还是交流电流都会产生磁场,所以通过测量磁场就可以既测量直流又可以测量交流了,也就是具备了交直流同测的功能。The present invention provides a bias magnetic field by installing permanent magnets at both ends of the giant magnetoresistance chip. When the giant magnetoresistance chip is powered on, the bias magnetic field outputs a bias voltage. When placed on the magnetic field, the output voltage of the giant magnetoresistive chip is a voltage generated by superimposing a magnetic field generated by the measured current on the basis of the original bias voltage, and the bias voltage is subtracted by the subsequent signal processing circuit. A bipolar output voltage is obtained, that is, the output has positive and negative voltages. Because the giant magnetoresistive chip measures the magnetic field, both DC current and AC current will generate a magnetic field, so by measuring the magnetic field, both DC and AC can be measured, that is, it has the function of AC and DC simultaneous measurement.
本发明包括巨磁阻芯片子板阵列、PCB母板、8通道电压放大器电路、8通道采样保持及A/D转换电路、FPGA处理电路。巨磁阻芯片子板阵列由8个巨磁阻子板构成。每个子板由一片巨磁阻芯片AA005-02和两个条形的铝镍钴永磁体构成,两个所述的永磁体分别置于巨磁阻芯片AA005-02的两端,永磁体的充磁方向与巨磁阻芯片AA005-02的磁敏感方向一致。8个巨磁阻芯片子板阵列以相同的半径和等角度均匀安装在环形的PCB母板上。巨磁阻芯片输出的电压信号输入到8通道电压放大器电路中,经过放大后,进入8通道采样保持及A/D转换电路,模拟的电压信号转变成数字信号,再经过FPGA处理电路对8路数字信号进行并行式处理。The invention comprises a giant magnetoresistive chip sub-board array, a PCB motherboard, an 8-channel voltage amplifier circuit, an 8-channel sampling and holding and A/D conversion circuit, and an FPGA processing circuit. The giant magnetoresistance chip sub-board array is composed of 8 giant magnetoresistance sub-boards. Each sub-board consists of a giant magnetoresistance chip AA005-02 and two strip-shaped AlNiCo permanent magnets. The two permanent magnets are respectively placed at both ends of the giant magnetoresistance chip AA005-02. The magnetic direction is consistent with the magnetic sensitivity direction of the giant magnetoresistive chip AA005-02. Eight giant magnetoresistive chip sub-board arrays are evenly installed on the ring-shaped PCB motherboard with the same radius and equal angle. The voltage signal output by the giant magnetoresistive chip is input into the 8-channel voltage amplifier circuit. After being amplified, it enters the 8-channel sampling and holding and A/D conversion circuit. Digital signals are processed in parallel.
本发明巨磁阻芯片子板由NVE公司的AA005-02和两块条形的铸造铝镍钴LNGT18永磁体构成,充磁方向沿着厚度方向,即充磁方向垂直于长和宽所构成的平面。为了给巨磁阻芯片提供偏置磁场,两块条形永磁体按照相同的磁极方向置于芯片的两端,具体的距离可根据需要提供的偏置场的大小调整。The sub-board of the giant magnetoresistive chip of the present invention is composed of AA005-02 of NVE Company and two strip-shaped cast AlNiCo LNGT18 permanent magnets. The magnetization direction is along the thickness direction, that is, the magnetization direction is perpendicular to the length and width. flat. In order to provide a bias magnetic field for the giant magnetoresistive chip, two bar-shaped permanent magnets are placed at both ends of the chip according to the same magnetic pole direction, and the specific distance can be adjusted according to the size of the bias field provided.
本发明的环形PCB母板用于安装和固定巨磁阻芯片子板,被测电流母线由内圆穿过。The annular PCB mother board of the present invention is used for installing and fixing the giant magnetoresistive chip sub-board, and the measured current bus passes through the inner circle.
本发明的电压放大器电路,由两个四通道轨至轨放大器LTC6085构成。用于接收巨磁阻芯片子板阵列的电压输出信号。The voltage amplifier circuit of the present invention is composed of two four-channel rail-to-rail amplifiers LTC6085. It is used to receive the voltage output signal of the sub-board array of the giant magnetoresistive chip.
本发明的采样保持及A/D转换电路,由一片MAX155构成,用于同步采集前部放大器电路的电压输出信号,并以并行输出方式将转换后的数字信号送给后部的FPGA处理器。The sampling and holding and A/D conversion circuit of the present invention is composed of a MAX155, which is used to synchronously collect the voltage output signal of the front amplifier circuit, and send the converted digital signal to the rear FPGA processor in a parallel output mode.
本发明的FPGA信号处理电路,由一片Cyclone III/EP3C10E144构成。FPGA signal processing circuit of the present invention is made up of a slice of Cyclone III/EP3C10E144.
巨磁阻芯片子板阵列输出的电压信号输入到电压放大器电路中,经过发大后的电压信号进入采样保持及A/D转换电路,由模拟的电压信号转变成数字信号,然后各路数字信号并行地进入FPGA信号处理电路,最终按照基于空间的离散傅立叶变换完成母线电流的测量计算。The voltage signal output by the sub-board array of the giant magnetoresistive chip is input into the voltage amplifier circuit, and the amplified voltage signal enters the sampling and holding and A/D conversion circuit, and the analog voltage signal is converted into a digital signal, and then each digital signal Enter the FPGA signal processing circuit in parallel, and finally complete the measurement and calculation of the bus current according to the space-based discrete Fourier transform.
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明提出的加偏置场的巨磁阻芯片子板实现了输出信号的双极输出,也就是输出信号有正,有负,使得正反磁场的测量得以实现;1) The giant magnetoresistive chip sub-board with bias field added by the present invention realizes the bipolar output of the output signal, that is, the output signal has positive and negative, so that the measurement of positive and negative magnetic fields can be realized;
2)本发明提出的巨磁阻芯片阵列实现了交直流同测的功能,并且配合一定的算法减弱了空间平行通流导线产生的磁场干扰;2) The giant magnetoresistive chip array proposed by the present invention realizes the function of simultaneous measurement of AC and DC, and cooperates with a certain algorithm to weaken the magnetic field interference generated by parallel current-through wires in space;
3)本发明中采用了FPGA作为信号处理单元,对多路传感信号实现了并行的处理方式,完全突破了传统的MCU、DSP等的指令式处理,提高了检测的实时性。3) In the present invention, FPGA is adopted as the signal processing unit, and a parallel processing mode is realized for multi-channel sensor signals, which completely breaks through the instruction processing of traditional MCU, DSP, etc., and improves the real-time performance of detection.
附图说明 Description of drawings
以下结合附图和具体实施方式,对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
图1是巨磁阻阵列电流传感器的结构原理框图;Figure 1 is a block diagram of the structure and principle of the giant magnetoresistive array current sensor;
图2两块条形永磁体之间距离为6mm时候的磁力线分布图;Figure 2 is the distribution diagram of the magnetic lines of force when the distance between two bar-shaped permanent magnets is 6mm;
图3永磁体纵向对称轴线上各点的磁场强度幅度值和各个分量值图;The magnetic field intensity amplitude value and each component value diagram of each point on the longitudinal axis of symmetry of the permanent magnet of Fig. 3;
图4巨磁阻芯片子板结构示意图;Fig. 4 Schematic diagram of the sub-board structure of the giant magnetoresistive chip;
图5是巨磁阻芯片子板阵列在环形PCB母板上的装配图;Fig. 5 is an assembly drawing of the giant magnetoresistive chip sub-board array on the annular PCB motherboard;
图6是8个巨磁阻芯片子板与电压放大器LTC6085的连接图;Figure 6 is a connection diagram of 8 giant magnetoresistive chip sub-boards and voltage amplifier LTC6085;
图7是电压放大器LTC6085与采样保持及A/D转换器MAX155的连接图;Figure 7 is a connection diagram of the voltage amplifier LTC6085 and the sampling and holding and A/D converter MAX155;
图8是采样保持及A/D转换器MAX155与FPGA处理器EP3C10的连接图。Fig. 8 is a connection diagram of sampling and holding and A/D converter MAX155 and FPGA processor EP3C10.
具体实施方式 Detailed ways
图1为本发明的原理结构框图。如图1所示,本发明包括:巨磁阻芯片子板阵列1,环形的PCB母板2,8通道电压放大器电路3,8通道采样保持及A/D转换电路4,FPGA处理电路5。巨磁阻芯片子板阵列1由8个巨磁阻子板构成。每个子板由一片巨磁阻芯片AA005-02和两个条形的铝镍钴永磁体构成,两个条形永磁体分别置于巨磁阻芯片AA005-02的两端,永磁体的充磁方向与巨磁阻芯片AA005-02的磁敏感方向一致。8个巨磁阻子板以以相同的半径和相等角度均匀地分布在环形的PCB母板2上,其输出的电压信号经过8通道电压放大器电路3进行放大后,进入8通道采样保持及A/D转换电路4实现模拟信号和数字信号的转换。转换后的数字信号进入FPGA处理电路5完成母线电流的测量计算。Fig. 1 is a block diagram of the principle structure of the present invention. As shown in FIG. 1 , the present invention includes: giant magnetoresistive chip
所述的巨磁阻芯片子板阵列1是由8个巨磁阻芯片子板构成,8个巨磁阻芯片子板之间以相同的半径和角度焊接在环形的PCB母板2上,组成该巨磁阻阵列智能电流传感器的传感部分,如图5所示。The giant magnetoresistance chip
本实施例的环形母板2由一个内半径为r=9cm,外半径为D=11cm的PCB板构成。The
所述的8通道电压放大器电路3由两个放大器LTC6085构成,两个放大器是并联方式,除了电源和地端相互并联之外,其他的引脚端都不相连。如图6所示,8个巨磁阻芯片的V+端统一接+5V电压,V-端统一接地。第1号巨磁阻芯片的Out+端接第一放大器LTC6085的+INA端,第2号巨磁阻芯片的Out+端接第一放大器LTC6085的+INB端,第3号巨磁阻芯片的Out+端接第一放大器LTC6085的+INC端,第4号巨磁阻芯片的Out+端接第一放大器LTC6085的+IND端。第1号巨磁阻芯片的Out-端接第一放大器LTC6085的-INA端,第2号巨磁阻芯片的Out-端接第一放大器LTC6085的-INB端,第3号巨磁阻芯片的Out-端接第一放大器LTC6085的-INC端,第4号巨磁阻芯片的Out-端接第一放大器LTC6085的-IND端。第5号巨磁阻芯片的Out+端接第二放大器LTC6085的+INA端,第6号巨磁阻芯片的Out+端接第二放大器LTC6085的+INB端,第7号巨磁阻芯片的Out+端接第二放大器LTC6085的+INC端,第8号巨磁阻芯片的Out+端接第二放大器LTC6085的+IND端;第5号巨磁阻芯片的Out-端接第二放大器LTC6085的-INA端,第6号巨磁阻芯片的Out-端接第二放大器LTC6085的-INB端,第7号巨磁阻芯片的Out-端接第二放大器LTC6085的-INC,第8号巨磁阻芯片的Out-端接第二放大器LTC6085的-IND端。The 8-channel
所述的8通道采样保持及A/D转换电路4由芯片MAX155构成。两个LTC6085放大器输出的模拟信号经过芯片MAX155采样和量化变成数字信号。如图7所示,第一、第二两个放大器LTC6085的V+端接+5V电压,V-端接-5V电压。第一放大器LTC6085的OUTA端连接到MAX155的AINO端、第一放大器LTC6085的OUTB端连接到MAX155的AIN1端、第一放大器LTC6085的OUTC端连接到MAX155的AIN2端、第一放大器LTC6085的OUTD端连接到MAX155的AIN3端;第二放大器LTC6085的OUTA端连接到MAX155的AIN4端、第二放大器LTC6085的OUTB端连接到MAX155的AIN5端、第二放大器LTC6085的OUTC端连接到MAX155的AIN6端、第二放大器LTC6085的OUTD端连接到MAX155的AIN7端。The 8-channel sampling and holding and A/
所述的FPGA处理电路5由cyclone III系列的EP3C10E144构成,接收来自采样保持及A/D转换电路4的数字信号。MAX155的D0/A0端连接到FPGA的IO,DIFFIO_B9p端、MAX155的D1/A1端连接到FPGA的IO,DIFFIO_B9n端、MAX155的D2/A2端连接到FPGA的IO,DIFFIO_B10p端、MAX155的D3/PD端连接到FPGA的IO,DIFFIO_B11p端、MAX155的D4/INH端连接到FPGA的IO,DIFFIO_B11n端、MAX155的D5/BIP端连接到FPGA的IO,DIFFIO_B12p端、MAX155的D6/DIFF端连接到FPGA的IO,DIFFIO_B12n端、MAX155的D7/ALL端连接到IO,DIFFIO_B15p端。MAX155的VDD接+5V,Vss接-5V,DGND和AGND接地,REFIN和REFOUT端连接在一起并通过电容C接地。如图8所示。Described
巨磁阻芯片子板阵列采用的是板上传感技术,由8个巨磁阻芯片子板以45度等角度分布在环形的PCB母板。本发明工作时,被测导线从环形PCB母板的内圆几何中心穿过。由于AA005-02是一种单极输出的磁场强度测量芯片(即:在交变磁场的作用下,其输出只朝着一个方向变化),当磁场是交变磁场的时候,AA005-02的输出电压却只能是单极输出的电压。因此本发明在巨磁阻芯片的两端放置了条形永磁体,为其提供一个恒定的偏置磁场,充磁方向与巨磁阻芯片的敏感轴方向平行。当被测电流产生的磁场叠加在巨磁阻芯片AA005-02上的时候,其产生的电压就会叠加在最初的偏置电压上。此时巨磁阻芯片的输出变化电压就是在偏置电压基础上的变化。在后面FPGA处理电路5中将该偏置电压减去,便得到巨磁阻芯片的双极输出特性。本发明中的条形永磁体的几何尺寸为:长:6mm,宽:1.5mm,厚:1mm,冲磁方向沿着厚度方向。两磁体的间距至少大于巨磁阻芯片的长度,具体数值可按照需要的偏置场强度调节。The giant magnetoresistance chip sub-board array adopts on-board sensing technology, and consists of 8 giant magnetoresistance chip sub-boards distributed on the ring-shaped PCB motherboard at an equal angle of 45 degrees. When the invention works, the measured wire passes through the geometric center of the inner circle of the annular PCB mother board. Since the AA005-02 is a unipolar output magnetic field strength measurement chip (that is, under the action of an alternating magnetic field, its output only changes in one direction), when the magnetic field is an alternating magnetic field, the output of the AA005-02 The voltage can only be a unipolar output voltage. Therefore, in the present invention, bar-shaped permanent magnets are placed at both ends of the giant magnetoresistance chip to provide a constant bias magnetic field, and the magnetization direction is parallel to the direction of the sensitive axis of the giant magnetoresistance chip. When the magnetic field generated by the measured current is superimposed on the giant magnetoresistive chip AA005-02, the voltage generated by it will be superimposed on the initial bias voltage. At this time, the output variation voltage of the giant magnetoresistive chip is the variation based on the bias voltage. The bias voltage is subtracted in the subsequent
环形的PCB母板2的内半径为r=9cm,外半径为D=11cm,安装点与母板中心点的距离为L=10cm。环形PCB母板2上共有8个子板安装点,依次等角度分布的母板的环面上。The inner radius of the
8通道电压放大器电路3由两个四通道轨至轨放大器LTC6085构成,巨磁阻芯片子板阵列的8个输出全部以差分方式连接至LTC6085。因为信号在PCB板上从传感部件到信号处理部件的传递中,不可避免地在导线上产生寄生电容和电感,这就会在放大器的输入端产生附加的电压——共模电压。为了最大程度地降低共模电压的干扰,必须全部接成差模输入方式。The 8-channel
放大器的输出直接MAX1554,MAX155是一款集同步采样保持与A/D转换功能于一体的8通道8位模数转换器,其转换位数可以根据测量精度要求自由选择。同步采样保证了8个通道模拟电压的相位同步,是FPGA处理电路进行测量算法优化的基础。MAX155的输出是并行的8位数字信号,因此可以直接与FPGA的任意8个I/O口进行连接,需要注意的是两者的物理电气信号是否匹配,若不匹配则需要电平转换。The output of the amplifier is directly MAX1554. MAX155 is an 8-channel 8-bit analog-to-digital converter integrating synchronous sample-hold and A/D conversion functions. The number of conversion bits can be freely selected according to the measurement accuracy requirements. Synchronous sampling ensures the phase synchronization of the 8-channel analog voltage, which is the basis for the FPGA processing circuit to optimize the measurement algorithm. The output of MAX155 is a parallel 8-bit digital signal, so it can be directly connected to any 8 I/O ports of FPGA. It should be noted that whether the physical electrical signals of the two match. If they do not match, level conversion is required.
FPGA处理电路采用ALTERA公司的Cyclone系列芯片,主要完成信号的处理。按照功能可分为四部分:通道分配,A/D转换数据的预处理(消除偏置,温度和迟滞补偿等),测量算法优化(空间傅立叶变化)以及输出控制模块(数字和模拟输出)。The FPGA processing circuit adopts Cyclone series chips of ALTERA Company, which mainly completes signal processing. According to the function, it can be divided into four parts: channel allocation, preprocessing of A/D conversion data (offset elimination, temperature and hysteresis compensation, etc.), measurement algorithm optimization (spatial Fourier change) and output control module (digital and analog output).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105609520A CN102043083B (en) | 2010-11-23 | 2010-11-23 | Giant magnetoresistance array current sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105609520A CN102043083B (en) | 2010-11-23 | 2010-11-23 | Giant magnetoresistance array current sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102043083A CN102043083A (en) | 2011-05-04 |
CN102043083B true CN102043083B (en) | 2012-07-04 |
Family
ID=43909420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105609520A Expired - Fee Related CN102043083B (en) | 2010-11-23 | 2010-11-23 | Giant magnetoresistance array current sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102043083B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103575960B (en) * | 2013-10-29 | 2016-03-02 | 河北工业大学 | giant magnetoresistance effect current sensor |
US9618588B2 (en) * | 2014-04-25 | 2017-04-11 | Infineon Technologies Ag | Magnetic field current sensors, sensor systems and methods |
CN106093733B (en) * | 2016-07-30 | 2019-01-11 | 清华大学 | The measuring device of corona current and multiple spot corona current localization method is carried out with it |
CN106841659B (en) * | 2016-11-21 | 2020-06-09 | 江苏大学 | Cotton flow channel speed measuring method and device for cotton foreign fiber detecting and removing machine |
CN108008177B (en) * | 2017-11-22 | 2021-04-16 | 南方电网科学研究院有限责任公司 | Multi-axis magnetoresistive current measurement method, device, equipment and system |
CN107993332A (en) * | 2017-12-07 | 2018-05-04 | 威海华菱光电股份有限公司 | Magnetic image sensor |
CN109283380B (en) * | 2018-09-28 | 2020-06-05 | 南方电网科学研究院有限责任公司 | Method, device, equipment and storage medium for measuring line current in power system |
CN109283379B (en) * | 2018-09-28 | 2020-07-03 | 南方电网科学研究院有限责任公司 | Method, device and equipment for measuring current of lead and readable storage medium |
CN109541280A (en) * | 2018-12-26 | 2019-03-29 | 新纳传感系统有限公司 | Integrated current sensors |
CN110568385B (en) * | 2019-08-02 | 2021-03-30 | 潍坊歌尔微电子有限公司 | Manufacturing method of magnetic sensor and magnetic sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101788596A (en) * | 2010-01-29 | 2010-07-28 | 王建国 | Tunnel junction magneto-resistance effect principle (TMR) current sensors |
CN201622299U (en) * | 2009-06-19 | 2010-11-03 | 钱正洪 | Novel giant magneto resistance GMR integrated current sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006034579A1 (en) * | 2006-07-26 | 2008-01-31 | Siemens Ag | Current detection device and method for current detection |
-
2010
- 2010-11-23 CN CN2010105609520A patent/CN102043083B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201622299U (en) * | 2009-06-19 | 2010-11-03 | 钱正洪 | Novel giant magneto resistance GMR integrated current sensor |
CN101788596A (en) * | 2010-01-29 | 2010-07-28 | 王建国 | Tunnel junction magneto-resistance effect principle (TMR) current sensors |
Also Published As
Publication number | Publication date |
---|---|
CN102043083A (en) | 2011-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102043083B (en) | Giant magnetoresistance array current sensor | |
CN102323467A (en) | A Giant Magnetoresistance Effect Current Sensor Using Amorphous Alloy Magnetic Ring Structure | |
CN105372483B (en) | A kind of radio-frequency voltage current sensing means | |
CN101038151A (en) | Magnetostrictive displacement sensor | |
CN110007133A (en) | A digital AC and DC current sensor and current detection method | |
CN112649646A (en) | Giant magnetoresistance effect-based micro current sensor device and application method thereof | |
CN210863870U (en) | Lightning current measuring device of lightning fan based on tunnel magnetoresistance effect | |
CN114778920A (en) | A single-magnetic-ring dual-range high-precision closed-loop current sensor | |
CN110146737A (en) | A Large Range Current Sensor Based on Magnetic Shunt Structure | |
CN115524533B (en) | Electrical quantity integrated measurement device and method | |
CN105572453A (en) | Voltage acquisition electronic sensor apparatus | |
CN106646056A (en) | Signal collection circuit and method for single-lithium-battery power supply | |
CN106197254A (en) | Hall-type angular transducer based on radial magnetizing | |
CN105842511A (en) | Dual-coil anti-magnetic-type current transformer | |
CN201247401Y (en) | Apparatus for collecting and processing signal of subway stray current optical fiber sensing system | |
CN110095643A (en) | A kind of four air gap open loop Hall current sensor of single magnetic core | |
CN114236224A (en) | A system and method for measuring ground current of transformer core | |
CN102436995B (en) | Hall high voltage detection control method applied to traveling wave tube program control high voltage power supply | |
CN105699847A (en) | Non-contact typetype signal acquisition device | |
CN207198344U (en) | A kind of ZigBee vehicle detecting systems based on GMR | |
CN100405084C (en) | Hybrid magnetic track nail positioning navigation magnetic sensor | |
CN117269583A (en) | Multi-core cable phase current non-invasive measurement device, method and medium | |
CN217060331U (en) | High-precision electric leakage detection device with alternating current channeling detection function | |
CN116679113A (en) | Current detection circuit based on TMR | |
CN202486194U (en) | Current sensor based on Rogowski coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120704 Termination date: 20161123 |