CN101997513B - Multi-coupling filter - Google Patents
Multi-coupling filter Download PDFInfo
- Publication number
- CN101997513B CN101997513B CN200910194463.5A CN200910194463A CN101997513B CN 101997513 B CN101997513 B CN 101997513B CN 200910194463 A CN200910194463 A CN 200910194463A CN 101997513 B CN101997513 B CN 101997513B
- Authority
- CN
- China
- Prior art keywords
- layer
- acoustic
- coupling
- bragg
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010168 coupling process Methods 0.000 title claims abstract description 84
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 84
- 238000002955 isolation Methods 0.000 claims abstract description 57
- 230000008878 coupling Effects 0.000 claims abstract description 43
- 239000012814 acoustic material Substances 0.000 claims description 24
- 239000010409 thin film Substances 0.000 claims description 6
- 239000010408 film Substances 0.000 description 16
- 238000004891 communication Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信技术领域,具体涉及一种多耦合型滤波器。The invention relates to the technical field of communication, in particular to a multi-coupling filter.
背景技术Background technique
随着无线通信技术的发展,产品的电路复杂性越来越高,促使滤波器趋于小型化、集成化设计。目前射频滤波器主要包括介质滤波器、声表面滤波器和基于薄膜体声波谐振器(FBAR,Thin Film Bulk Acoustic Resonator)的滤波器。介质滤波器有着体积大的缺点,而声表面滤波器由于制作受光刻工艺的限制,且插损较大,因此这两种滤波器在应用上受到一定的限制。而基于FBAR的滤波器,由于具有低插入损耗、高工作频率、体积小和易于集成的优点,被广泛应用于无线通信技术领域。With the development of wireless communication technology, the circuit complexity of products is getting higher and higher, which makes the filter tend to be miniaturized and integrated. At present, radio frequency filters mainly include dielectric filters, surface acoustic filters and filters based on thin film bulk acoustic resonators (FBAR, Thin Film Bulk Acoustic Resonator). The dielectric filter has the disadvantage of large volume, and the surface acoustic filter is limited by the photolithography process, and the insertion loss is large, so the application of these two filters is limited. The filter based on FBAR is widely used in the field of wireless communication technology due to its advantages of low insertion loss, high operating frequency, small size and easy integration.
目前基于FBAR的滤波器主要有以下两种:At present, there are mainly two types of filters based on FBAR:
(1)堆叠型滤波器,包括两个相邻堆叠的FBAR,以及两个FBAR之间的接地的电极。(1) Stacked filter, including two adjacent stacked FBARs, and a grounded electrode between the two FBARs.
(2)耦合型滤波器(CRF,Coupled Resonator Filters),CRF包括两个相邻堆叠的FBAR、以及位于两个FBAR之间的声学耦合层,通过调节声学耦合层的声学层的层数和各声学层的厚度可以调节CRF的带宽。(2) Coupled Resonator Filters (CRF, Coupled Resonator Filters), CRF includes two adjacent stacked FBARs, and an acoustic coupling layer between the two FBARs, by adjusting the number of acoustic layers of the acoustic coupling layer and each The thickness of the acoustic layer can tune the bandwidth of the CRF.
在对现有技术的研究和实践过程中,本发明的发明人发现,虽然基于FBAR的滤波器具有体积小和易于集成的优点,但是,若将多个基于FBAR的滤波器直接堆叠在一起,各个滤波器的声场和电场会相互耦合,影响FBAR的性能,并造成阻抗失配。因此,当通信终端需要同时使用多个滤波器时,各个滤波器不能堆叠在一起,需放置在芯片的不同位置,导致整个芯片面积较大,难以实现通信终端的滤波器模块的小型化、集成化设计。During the research and practice of the prior art, the inventors of the present invention found that although the FBAR-based filter has the advantages of small size and easy integration, if a plurality of FBAR-based filters are directly stacked together, The acoustic and electric fields of each filter will couple with each other, affecting the performance of the FBAR and causing impedance mismatch. Therefore, when a communication terminal needs to use multiple filters at the same time, each filter cannot be stacked together, but needs to be placed in different positions on the chip, resulting in a large chip area, and it is difficult to realize the miniaturization and integration of the filter module of the communication terminal. design.
发明内容Contents of the invention
本发明实施例提供一种多耦合型滤波器,能够使多个滤波器堆叠在一起而不相互影响,以实现滤波器模块的小型化、集成化设计。An embodiment of the present invention provides a multi-coupling filter, which enables multiple filters to be stacked together without affecting each other, so as to realize miniaturization and integrated design of filter modules.
本发明实施例提供的一种多耦合型滤波器,包括:至少两个相邻堆叠的耦合型滤波器,以及位于两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离;A multi-coupling filter provided by an embodiment of the present invention includes: at least two adjacent stacked coupling filters, and a filter isolation layer between two adjacent stacked coupling filters; The isolation layer includes two Bragg layers stacked adjacently, and the reflection direction of the two Bragg layers faces away, so as to realize signal isolation between adjacently stacked coupled filters;
其中,所述耦合型滤波器包括两个相邻堆叠的薄膜体声波谐振器,以及位于所述两个相邻堆叠的薄膜体声波谐振器之间的声学耦合层。Wherein, the coupled filter includes two adjacent stacked thin film bulk acoustic resonators, and an acoustic coupling layer located between the two adjacent stacked thin film bulk acoustic resonators.
本发明实施例提供的一种串并联结合的多耦合型滤波器,包括:至少两个上述的多耦合型滤波器,且多耦合型滤波器并联。A series-parallel combined multi-coupling filter provided by an embodiment of the present invention includes: at least two of the above-mentioned multi-coupling filters, and the multi-coupling filters are connected in parallel.
本发明实施例中的多耦合型滤波器包括至少两个相邻堆叠的耦合型滤波器,以及位于相邻两个耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离,从而使得多个滤波器堆叠在一起而不相互影响,实现了通信终端的滤波器模块的小型化、集成化设计。The multi-coupled filter in the embodiment of the present invention includes at least two adjacently stacked coupled filters, and a filter isolation layer between adjacent two coupled filters; the filter isolation layer includes adjacently stacked Two Bragg layers, and the reflection directions of the two Bragg layers are facing away, so as to realize the isolation of signals between adjacent stacked coupling filters, so that multiple filters are stacked together without affecting each other, realizing The miniaturization and integration design of the filter module of the communication terminal.
附图说明Description of drawings
图1是本发明实施例中的多耦合型滤波器的一个实施例的示意图;Fig. 1 is a schematic diagram of an embodiment of a multi-coupling filter in an embodiment of the present invention;
图2是图1中圆a位置的放大示意图;Fig. 2 is an enlarged schematic diagram of the position of circle a in Fig. 1;
图3是本发明实施例中多耦合型滤波器的另一实施例的示意图;FIG. 3 is a schematic diagram of another embodiment of a multi-coupling filter in an embodiment of the present invention;
图4是本发明实施例中多耦合型滤波器的另一实施例的示意图;FIG. 4 is a schematic diagram of another embodiment of a multi-coupling filter in an embodiment of the present invention;
图5是图4所示实施例中多耦合型滤波器仿真得到的频率响应图;Fig. 5 is the frequency response diagram obtained by multi-coupling filter simulation in the embodiment shown in Fig. 4;
图6是图5中蜂窝式无线通讯系统(Cellular)频段接收带的频率响应图;Fig. 6 is a frequency response diagram of the cellular wireless communication system (Cellular) frequency band receiving band in Fig. 5;
图7是图5中个人通讯服务(PCS,Personal Communications Service)频段接收带的频率响应图。Fig. 7 is a frequency response diagram of the receiving band of the Personal Communications Service (PCS, Personal Communications Service) frequency band in Fig. 5 .
具体实施方式Detailed ways
本发明实施例提供一种多耦合型滤波器,能够使多个滤波器堆叠在一起而不相互影响,从而实现通信终端的滤波器模块的小型化、集成化设计。以下进行详细说明。An embodiment of the present invention provides a multi-coupling filter, which enables multiple filters to be stacked together without affecting each other, thereby realizing miniaturization and integrated design of a filter module of a communication terminal. The details will be described below.
本发明实施例中的一种多耦合型滤波器包括至少两个相邻堆叠的耦合型滤波器,以及位于两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离。A multi-coupled filter in an embodiment of the present invention includes at least two adjacently stacked coupled filters, and a filter isolation layer between two adjacently stacked coupled filters; the filter isolation layer It includes two Bragg layers stacked adjacently, and the reflection directions of the two Bragg layers are opposite to each other, so as to realize signal isolation between adjacently stacked coupling filters.
请参阅图1,图1为本发明实施例中的多耦合型滤波器的一个实施例的示意图。本实施例中的多耦合型滤波器1包括相邻堆叠的CRF200和CRF300,以及位于CRF200与CRF300之间的滤波器隔离层400。CRF200设置于CRF300的下方,CRF200设置于衬底102上。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of an embodiment of a multi-coupling filter in an embodiment of the present invention. The multi-coupled filter 1 in this embodiment includes adjacently stacked CRF200 and CRF300, and a
CRF200包括相邻堆叠的FBAR210和FBAR220,以及位于FBAR210和FBAR220之间的声学耦合层230。CRF 200 includes FBAR 210 and FBAR 220 stacked adjacently, and
FBAR210包括电极214、电极212、以及电极214与电极212之间的压电薄膜216,FBAR220包括电极224、电极222、以及电极224与电极222之间的压电薄膜226。电极214和电极212作为CRF200的信号输入端,电极224与电极222作为CRF200的信号输出端。FBAR 210 includes
声学耦合层230位于FBAR210的电极214与FBAR220的电极222之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层230的声学层的层数和各声学层的厚度,可以调节FBAR210和FBAR220之间的耦合强度,可以调节CRF200的带宽。The
CRF300包括相邻堆叠的FBAR310和FBAR320,以及位于FBAR310和FBAR320之间的声学耦合层330。CRF 300 includes adjacently stacked FBAR 310 and FBAR 320 , and an acoustic coupling layer 330 between FBAR 310 and FBAR 320 .
FBAR310包括电极314、电极312、以及电极314与电极312之间的压电薄膜316,FBAR320包括电极324、电极322、以及电极324与电极322之间的压电薄膜326。电极314和电极312作为CRF300的信号输入端,电极324与电极322作为CRF300的信号输出端。The FBAR 310 includes an
声学耦合层330位于FBAR310的电极314与FBAR320的电极322之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层330的声学层的层数和各声学层的厚度,可以调节FBAR310和FBAR320之间的耦合强度,可以调节CRF300的带宽。The acoustic coupling layer 330 is located between the
请结合图2,图2为图1中圆a位置的放大示意图。从图2可见,滤波器隔离层400包括相邻堆叠的布拉格层410和布拉格层420。布拉格层410和布拉格层420的反射方向背向,从而使得布拉格层410构成CRF200的声波限制上边界,布拉格层420构成CRF300的声波限制下边界,以实现相邻堆叠的CRF200与CRF300之间信号的隔离。Please refer to FIG. 2 , which is an enlarged schematic diagram of the position of circle a in FIG. 1 . It can be seen from FIG. 2 that the
布拉格层包括至少两层特征声阻抗不同的声学材料制成的反射层。例如,布拉格层可以包括第一声波阻抗层和第二声波阻抗层,第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值大于等于3。布拉格层的各反射层可以采用Al、Au、Ti、Mo、W、Fe、Cr、Ni、Co、Cu、SiO2、Si3N4、ZnO、TiO2、TiN、Al2O3、AlN或PZT制成。The Bragg layer includes at least two reflective layers made of acoustic materials with different characteristic acoustic impedances. For example, the Bragg layer may include a first acoustic wave impedance layer and a second acoustic wave impedance layer, and the difference between the characteristic acoustic impedances of the second acoustic wave impedance layer and the first acoustic wave impedance layer is greater than or equal to 3. Each reflective layer of the Bragg layer can be made of Al, Au, Ti, Mo, W, Fe, Cr, Ni, Co, Cu, SiO2, Si3N4, ZnO, TiO2, TiN, Al2O3, AlN or PZT.
本实施例中,布拉格层410包括如下4层反射层:与FBAR220的电极224邻接的第一声波阻抗层412、与第一声波阻抗层412邻接的第二声波阻抗层414、与第二声波阻抗层414邻接的第一声波阻抗层416、以及与第一声波阻抗层416邻接的第二声波阻抗层418;布拉格层420可以包括如下4层反射层:与FBAR310的电极312邻接的第一声波阻抗层428、与第一声波阻抗层428邻接的第二声波阻抗层426、与第二声波阻抗层426邻接的第一声波阻抗层424、以及与第一声波阻抗层424邻接的第二声波阻抗层422。In this embodiment, the Bragg
本实施例中,第二声波阻抗层的特征声阻抗比第一声波阻抗层的高,且第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值等于15。In this embodiment, the characteristic acoustic impedance of the second acoustic wave impedance layer is higher than that of the first acoustic wave impedance layer, and the difference between the characteristic acoustic impedance of the second acoustic wave impedance layer and the first acoustic wave impedance layer is equal to 15.
可以理解的是,布拉格层410也可以包括从下往上设置的第一声波阻抗层和第二声波阻抗层这两层反射层,或者,从下往上设置的第一声波阻抗层、第一声波阻抗层和第二声波阻抗层这三层反射层,或者,从下往上设置的两组第一声波阻抗层和第一声波阻抗层这四层反射层。本文中,定义从CRF200往CRF300为从下往上的方向。It can be understood that the Bragg
同理,布拉格层420也可以包括从上往下设置的第一声波阻抗层和第二声波阻抗层这两层反射层,或者,从上往下设置的第一声波阻抗层、第一声波阻抗层和第二声波阻抗层这三层反射层,或者,从上往下设置的两组第一声波阻抗层和第一声波阻抗层这四层反射层。Similarly, the Bragg
布拉格层410和布拉格层420的各反射层的厚度的取值范围可以为[n*85%,n*115%],n为频率等于第一频率的声信号在反射层对应的声学材料中波长的四分之一的奇数倍,第一频率为与布拉格层邻接的耦合型滤波器的中心频率,即对应于布拉格层410,第一频率为与布拉格层410邻接的CRF200的中心频率,对应于布拉格层420,第一频率为与布拉格层420邻接的CRF300的中心频率。The value range of the thickness of each reflective layer of the Bragg
本实施例中,布拉格层410的各反射层的厚度为频率等于CRF200的中心频率的声信号在反射层对应的声学材料中波长的四分之一,布拉格层420的各反射层的厚度为频率等于CRF300的中心频率的声信号在反射层对应的声学材料中波长的四分之一。In this embodiment, the thickness of each reflective layer of the Bragg
例如,布拉格层410的第一声波阻抗层412的厚度的取值范围可以为[m*85%,m*115%],其中,m=(2a+1)λ1/4,λ1是频率等于CRF200的中心频率的声信号在第一声波阻抗层412对应的声学材料中的波长,a是大于或等于零的整数。本实施例中,第一声波阻抗层412的厚度等于λ1/4。For example, the value range of the thickness of the first acoustic
例如,布拉格层420的第一声波阻抗层428的厚度的取值范围可以为[q*85%,q*115%],其中,q=(2a+1)λ2/4,λ2是频率等于CRF300的中心频率的声信号在第一声波阻抗层428对应的声学材料中的波长,a是大于或等于零的整数。本实施例中,第一声波阻抗层428的厚度等于λ1/4。For example, the value range of the thickness of the first acoustic
本实施例中的多耦合型滤波器包括相邻堆叠的CRF200和CRF300,以及位于CRF200和CRF300之间的滤波器隔离层400。滤波器隔离层400包括反射方向背向的相邻堆叠的布拉格层410和布拉格层420,布拉格层的各反射层的厚度的取值范围为[n*85%,n*115%],即大于等于n*85%且小于等于n*115%,n为频率等于第一频率的声信号在反射层对应的声学材料中波长的四分之一的奇数倍,对应于布拉格层410和布拉格层420,第一频率分别为与布拉格层410邻接的CRF200的中心频率,和与布拉格层420邻接的CRF300的中心频率,使得布拉格层410构成与滤波器隔离层400的下表面邻接的CRF200的声波限制上边界,布拉格层420构成与滤波器隔离层400的上表面邻接的CRF300的声波限制下边界,从而使得CRF200和CRF300堆叠在一起而不相互影响,实现了通信终端的滤波器模块的小型化、集成化设计。The multi-coupled filter in this embodiment includes adjacently stacked CRF200 and CRF300, and a
可以理解的是,在本发明另一实施例中,该多耦合型滤波器可以包括至少两个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层。为便于理解,下面则以多耦合型滤波器包括三个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层,且每个布拉格层包括两层声阻抗不同的声学材料制成的反射层为例,对本发明实施例中的多耦合型滤波器进行说明。It can be understood that, in another embodiment of the present invention, the multi-coupling filter may include at least two adjacent stacked CRFs, and a filter isolation layer located between the two adjacent CRFs. For ease of understanding, the following multi-coupling filter includes three adjacent stacked CRFs, and a filter isolation layer between two adjacent CRFs, and each Bragg layer includes two layers of acoustic materials with different acoustic impedances The manufactured reflective layer is taken as an example to describe the multi-coupling filter in the embodiment of the present invention.
请参阅图3,图3为本发明实施例中多耦合型滤波器的另一实施例的示意图。本实施例中的多耦合型滤波器3包括相邻堆叠的CRF500、CRF700和CRF900,以及位于CRF500和CRF600之间的滤波器隔离层600,位于CRF700和CRF900之间的滤波器隔离层800,CRF500设置于衬底1202上。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of another embodiment of a multi-coupling filter in an embodiment of the present invention. The
滤波器隔离层600由相邻堆叠的布拉格层610和布拉格层620构成,且布拉格层610与布拉格层620的反射方向背向,以实现相邻堆叠的CRF500与CRF700之间信号的隔离。滤波器隔离层800由布拉格层810和布拉格层820构成,且布拉格层810与布拉格层820的反射方向背向,以实现相邻堆叠的CRF900与CRF700之间信号的隔离。因此,滤波器隔离层600与滤波器隔离层800实现了CRF500、CRF700与CRF900之间信号的隔离。The
具体地,布拉格层610包括如下2层反射层:与CRF500的上表面邻接的第一声波阻抗层612,与第一声波阻抗层612邻接的第二声波阻抗层614;布拉格层620包括如下2层反射层:与CRF700的下表面邻接的第一声波阻抗层624,与第一声波阻抗层624邻接的第二声波阻抗层622。Specifically, the
布拉格层810包括如下2层反射层:与CRF700的上表面邻接的第一声波阻抗层812,与第一声波阻抗层812邻接的第二声波阻抗层814。布拉格层820包括如下2层反射层:与CRF900的下表面邻接的第一声波阻抗层824,与第一声波阻抗层824邻接的第二声波阻抗层822。The
本实施例中,第二声波阻抗层的特征声阻抗比第一声波阻抗层的高,且第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值大于等于3。In this embodiment, the characteristic acoustic impedance of the second acoustic wave impedance layer is higher than that of the first acoustic wave impedance layer, and the difference between the characteristic acoustic impedance of the second acoustic wave impedance layer and the first acoustic wave impedance layer is greater than or equal to 3.
并且,布拉格层610的各反射层的厚度的取值为频率等于CRF500的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层610构成CRF500的声波限制上边界。布拉格层620的各反射层的厚度的取值为频率等于CRF700的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层620构成CRF700的声波限制下边界。Moreover, the value of the thickness of each reflective layer of the
并且,布拉格层810的各反射层的厚度的取值为频率等于CRF700的中心频率的声信号在反射层对应的声学材料中波长的四分之一,布拉格层820的各反射层的厚度的取值为频率等于CRF900的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层810和布拉格层820分别构成CRF700的声波限制上边界和CRF900的声波限制下边界。In addition, the value of the thickness of each reflective layer of the
本实施例中的多耦合型滤波器包括相邻堆叠的CRF500、CRF700和CRF900,以及位于CRF500和CRF700之间的滤波器隔离层600。滤波器隔离层600包括反射方向背向的布拉格层610和布拉格层620,布拉格层的各反射层的厚度的取值为:频率等于与布拉格层邻接的CRF的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层610和布拉格层620分别构成CRF500的声波限制上边界和CRF700的声波限制下边界,布拉格层810和布拉格层820分别构成CRF700的声波限制上边界和CRF900的声波限制下边界,从而使得CRF500、CRF700和CRF900的声波不相互干扰,CRF500、CRF700和CRF900堆叠在一起而不相互影响,实现了通信终端的滤波器模块的小型化、集成化设计。The multi-coupling filter in this embodiment includes CRF500 , CRF700 and CRF900 stacked adjacently, and a
上述实施例中提供的多耦合型滤波器包括至少两个相邻堆叠的耦合型滤波器,以及位于两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离。The multi-coupling filter provided in the above embodiments includes at least two adjacent stacked coupling filters, and a filter isolation layer between the two adjacent stacked coupling filters; the filter isolation layer includes phase Two Bragg layers stacked adjacent to each other, and the reflection directions of the two Bragg layers are opposite to each other, so as to realize signal isolation between adjacent stacked coupling filters.
上述实施例中的CRF相串联,在实际应用中,需要串并联结合的多耦合型滤波器,因此,本发明另一个实施例还提供串并联结合的多耦合型滤波器,包括至少两个上述实施例中提供的多耦合型滤波器,且该至少两个上述实施例中提供的多耦合型滤波器之间并联。The CRFs in the above embodiments are connected in series. In practical applications, a series-parallel combination multi-coupling filter is required. Therefore, another embodiment of the present invention also provides a series-parallel combination multi-coupling filter, including at least two of the above-mentioned The multi-coupling filter provided in the embodiment, and the at least two multi-coupling filters provided in the above-mentioned embodiments are connected in parallel.
为便于理解,下面以一具体实施例说明上述串并联结合的多耦合型滤波器,请参阅图4,图4为本发明实施例中多耦合型滤波器的另一实施例的示意图。本实施例中的多耦合型滤波器4包括:For ease of understanding, the above-mentioned series-parallel combination multi-coupling filter is described below with a specific embodiment, please refer to FIG. 4 , which is a schematic diagram of another embodiment of the multi-coupling filter in the embodiment of the present invention. The multi-coupling filter 4 in this embodiment includes:
相同的两组两个相邻堆叠的耦合型滤波器,以及位于相邻两个耦合型滤波器之间的滤波器隔离层,具体地,这两组分别为:The same two groups of adjacently stacked coupled filters, and the filter isolation layer between the adjacent two coupled filters, specifically, these two groups are:
一组为:相邻堆叠的CRF204和CRF304,以及位于CRF204与CRF304之间的滤波器隔离层404。CRF204设置于CRF304的下方,CRF204设置于衬底1102上;One group is: adjacently stacked CRF204 and CRF304, and a
另一组为:相邻堆叠的CRF202和CRF302,以及位于CRF202与CRF302之间的滤波器隔离层402。CRF202设置于CRF302的下方,CRF202设置于衬底1102上。The other group is: adjacently stacked CRF202 and CRF302, and a
其中,CRF204与CRF202用于美国Cellular频段的接收端,工作频率是869MHz-894MHz,中心频率为881.5MHz;CRF304与302用于美国PCS频段的接收端,工作频率是1930.5MHz-1989.5MHz,中心频率为1990MHz。Among them, CRF204 and CRF202 are used for the receiving end of the US Cellular frequency band, the working frequency is 869MHz-894MHz, and the center frequency is 881.5MHz; CRF304 and 302 are used for the receiving end of the US PCS frequency band, the working frequency is 1930.5MHz-1989.5MHz, the center frequency 1990MHz.
CRF204包括相邻堆叠的FBAR270和FBAR290,以及位于FBAR270和FBAR290之间的声学耦合层280。CRF 204 includes
FBAR270包括电极274、电极272、以及电极274与电极272之间的压电薄膜276,FBAR290包括电极294、电极292、以及电极294与电极292之间的压电薄膜296。电极274和电极272作为CRF204的信号输入端,电极294与电极292作为CRF204的信号输出端。
声学耦合层280位于FBAR270的电极274与FBAR290的电极292之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层280的声学层的层数和各声学层的厚度,可以调节FBAR270和FBAR290之间的耦合强度。The
CRF304包括相邻堆叠的FBAR370和FBAR390,以及位于FBAR370和FBAR390之间的声学耦合层380。
FBAR370包括电极374、电极372、以及电极374与电极372之间的压电薄膜376,FBAR390包括电极394、电极392、以及电极394与电极392之间的压电薄膜396。电极374和电极372作为CRF304的信号输入端,电极394与电极392作为CRF304的信号输出端。
声学耦合层380位于FBAR370的电极374与FBAR390的电极392之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层380的声学层的层数和各声学层的厚度,可以调节FBAR370和FBAR390之间的耦合强度。The
CRF202包括相邻堆叠的FBAR240和FBAR250,以及位于FBAR240和FBAR250之间的声学耦合层260。
FBAR240包括电极244、电极242、以及电极244与电极242之间的压电薄膜246,FBAR250包括电极254、电极252、以及电极254与电极252之间的压电薄膜256。电极244和电极242作为CRF202的信号输入端,电极254与电极252作为CRF202的信号输出端。
声学耦合层260位于FBAR240的电极244与FBAR250的电极252之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层260的声学层的层数和各声学层的厚度,可以调节FBAR240和FBAR250之间的耦合强度。The
CRF302包括相邻堆叠的FBAR340和FBAR350,以及位于FBAR340和FBAR350之间的声学耦合层360。
FBAR340包括电极344、电极342、以及电极344与电极342之间的压电薄膜346,FBAR350包括电极354、电极352、以及电极354与电极352之间的压电薄膜356。电极344和电极342作为CRF302的信号输入端,电极354与电极352作为CRF302的信号输出端。The
声学耦合层360位于FBAR340的电极344与FBAR350的电极352之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层360的声学层的层数和各声学层的厚度,可以调节FBAR340和FBAR350之间的耦合强度。The
并且,FBAR370的电极372与FBAR340的电极342通过导电金属107连接,FBAR370的电极374与FBAR340的电极344通过导电金属108连接,使所处位置相对应的CRF304与CRF302相并联。FBAR270的电极272与FBAR240的电极242通过导电金属105连接,FBAR270的电极274与FBAR240的电极244通过导电金属106连接,使所处位置相对应的CRF204与CRF202相并联。可以理解的是,也可以采用其他现有公知技术使CRF304与CRF302相并联,CRF204与CRF202相并联,以便于提高多耦合型滤波器4的带外抑制能力。Moreover, the
CRF204、202的各FBAR中,各电极采用金制成,各电极厚度为0.25微米,面积为385*385平方微米;各压电薄膜采用氮化铝制成,各压电薄膜的厚度为3.94微米。CRF304、302的各FBAR中,各电极采用铝制成,各电极厚度为0.1微米,面积为213*213平方微米;各压电薄膜采用氮化铝制成,各压电薄膜的厚度为2.691微米。In each FBAR of CRF204 and 202, each electrode is made of gold, the thickness of each electrode is 0.25 microns, and the area is 385*385 square microns; each piezoelectric film is made of aluminum nitride, and the thickness of each piezoelectric film is 3.94 microns . In each FBAR of CRF304 and 302, each electrode is made of aluminum, the thickness of each electrode is 0.1 microns, and the area is 213*213 square microns; each piezoelectric film is made of aluminum nitride, and the thickness of each piezoelectric film is 2.691 microns .
通过调节声学耦合层280与声学耦合层260的声学层的层数和各声学层的厚度,可以使得下CRF204、202的带宽满足Cellular频段的要求;通过调节声学耦合层380与声学耦合层360的声学层的层数和各声学层的厚度,可以使得下CRF304、302的带宽满足PCS频段的要求。By adjusting the number of layers of the
滤波器隔离层404包括相邻堆叠的布拉格层450和布拉格层460。布拉格层450和布拉格层460的反射方向背向,具体地,布拉格层450包括如下4层反射层:与FBAR290的电极294邻接的第一声波阻抗层452、与第一声波阻抗层452邻接的第二声波阻抗层454、与第二声波阻抗层454邻接的第一声波阻抗层456、以及与第一声波阻抗层456邻接的第二声波阻抗层458;布拉格层460包括如下4层反射层:与FBAR370的电极372邻接的第一声波阻抗层468、与第一声波阻抗层468邻接的第二声波阻抗层466、与第二声波阻抗层466邻接的第一声波阻抗层464、以及与第一声波阻抗层464邻接的第二声波阻抗层462。The
滤波器隔离层402包括相邻堆叠的布拉格层430和布拉格层440。布拉格层430和布拉格层440的反射方向背向,具体地,布拉格层430包括如下4层反射层:与FBAR250的电极254邻接的第一声波阻抗层432、与第一声波阻抗层432邻接的第二声波阻抗层434、与第二声波阻抗层434邻接的第一声波阻抗层436、以及与第一声波阻抗层436邻接的第二声波阻抗层438;布拉格层440包括如下4层反射层:与FBAR340的电极342邻接的第一声波阻抗层448、与第一声波阻抗层448邻接的第二声波阻抗层446、与第二声波阻抗层446邻接的第一声波阻抗层444、以及与第一声波阻抗层444邻接的第二声波阻抗层442。The
本实施例中,滤波器隔离层404和滤波器隔离层402的布拉格层中的第一声波阻抗层采用二氧化硅制成,特征声阻抗为12.5Mray1,纵波声速为6253m/s;第二声波阻抗层采用钨制成,特征声阻抗为105.6Mray1,纵波声速为5501m/s。In this embodiment, the first acoustic wave impedance layer in the Bragg layer of the
滤波器隔离层404的布拉格层450和滤波器隔离层402的布拉格层430的,各反射层的厚度为频率等于CRF204、CRF202的中心频率881.5MHz的声信号在反射层对应的声学材料中波长的四分之一。具体地,布拉格层450与布拉格层430的第一声波阻抗层的厚度为频率等于881.5MHz的声信号在二氧化硅中波长的四分之一,为1.774微米;布拉格层450与布拉格层430的第二声波阻抗层的厚度为频率等于881.5MHz的声信号在钨中波长的四分之一,为1.561微米。For the
滤波器隔离层404的布拉格层460和滤波器隔离层402的布拉格层440的,各反射层的厚度为频率等于CRF304、CRF302的中心频率1990MHz的声信号在反射层对应的声学材料中波长的四分之一。具体地,布拉格层460与布拉格层440的第一声波阻抗层的厚度为频率等于1990MHz的声信号在二氧化硅中波长的四分之一,为0.797微米;布拉格层460与布拉格层440的第二声波阻抗层的厚度为频率等于1990MHz的声信号在钨中波长的四分之一,为0.701微米。For the
请结合图5至图7,图5、图6和图7分别示出了图4所示实施例中多耦合型滤波器仿真得到的频率响应图、图5中Cellular频段接收带的频率响应图110和图5中PCS频段接收带的频率响应图112。Please combine Fig. 5 to Fig. 7, Fig. 5, Fig. 6 and Fig. 7 respectively show the frequency response diagram obtained by the simulation of the multi-coupling filter in the embodiment shown in Fig. 4, and the frequency response diagram of the receiving band of the Cellular frequency band in Fig. 5 110 and the frequency response diagram 112 of the PCS band receive band in FIG. 5 .
请参阅图5,图5中的横坐标为频率,单位为吉赫兹,纵坐标为插入损耗,单位为分贝。从图5中可以知道,并联的CRF204与CRF202和并联的CRF304与CRF302的滤波性能相互之间不受影响。Please refer to Fig. 5, the abscissa in Fig. 5 is the frequency, the unit is gigahertz, and the ordinate is the insertion loss, the unit is decibel. It can be known from FIG. 5 that the filtering performance of the parallel connection of CRF204 and CRF202 and the parallel connection of CRF304 and CRF302 is not affected by each other.
请参阅图6,图6中的横坐标为频率,单位为吉赫兹,纵坐标为插入损耗,单位为分贝。从图6中可以得到,并联的CRF204与CRF202的最大的插入损耗为1.505dB,3dB带宽为34MHz,并且,并联的CRF204与CRF202对Cellular发射频段824MHz-849MHz的最小的抑制为30.451dB。Please refer to Fig. 6, the abscissa in Fig. 6 is the frequency, the unit is gigahertz, and the ordinate is the insertion loss, the unit is decibel. It can be obtained from Figure 6 that the maximum insertion loss of the parallel connection CRF204 and CRF202 is 1.505dB, and the 3dB bandwidth is 34MHz, and the minimum suppression of the parallel connection CRF204 and CRF202 on the cellular transmission frequency band 824MHz-849MHz is 30.451dB.
请参阅图7,图7中的横坐标为频率,单位为吉赫兹,纵坐标为插入损耗,单位为分贝。从图7中可以得到,并联的CRF304与CRF302的最大的插入损耗为1.073dB,3dB带宽为66MHz,并且,并联的CRF304与CRF302对PCS发射频段1850MHz-1910MHz的最小的抑制为21.892dB。Please refer to Fig. 7, the abscissa in Fig. 7 is the frequency, the unit is gigahertz, and the ordinate is the insertion loss, the unit is decibel. It can be obtained from Figure 7 that the maximum insertion loss of the parallel CRF304 and CRF302 is 1.073dB, and the 3dB bandwidth is 66MHz, and the minimum suppression of the parallel connection of CRF304 and CRF302 to the PCS transmission frequency band 1850MHz-1910MHz is 21.892dB.
本实施例的多耦合型滤波器4相同的两组两个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层;并且,该两组中所处位置相对应的两个CRF相并联。可以理解的是,多耦合型滤波器也可以包括相同的至少两组两个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层,并且,各组中所处位置相对应的CRF相并联。The multi-coupling filter 4 of the present embodiment has the same two groups of two adjacent stacked CRFs, and a filter isolation layer between two adjacent CRFs; and, the two groups corresponding to the positions CRFs are connected in parallel. It can be understood that the multi-coupling filter may also include the same at least two groups of two adjacent stacked CRFs, and a filter isolation layer between two adjacent CRFs, and the positions of each group are the same. The corresponding CRFs are connected in parallel.
本实施例中,由于滤波器隔离层402中上下两个布拉格层分别构成与滤波器隔离层402上表面邻接的CRF302的声波限制下边界,和与滤波器隔离层402下表面邻接的CRF202的声波限制上边界,从而使得CRF202与CRF302堆叠在一起而不相互影响;又由于滤波器隔离层404中上下两个布拉格层分别构成与滤波器隔离层404上表面邻接的CRF304的声波限制下边界,和与滤波器隔离层404下表面邻接的CRF204的声波限制上边界,使得CRF202与CRF302堆叠在一起而不相互影响,从而使得并联的CRF204与CRF202和并联的CRF304与CRF302的滤波性能相互之间不受影响,实现了通信终端的滤波器模块的小型化、集成化设计。In this embodiment, since the upper and lower Bragg layers in the
以上对本发明实施例所提供的多耦合型滤波器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The multi-coupling filter provided by the embodiment of the present invention has been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The description of the above embodiment is only used to help understand the core of the present invention. At the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. In summary, the content of this specification should not be construed as limiting the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910194463.5A CN101997513B (en) | 2009-08-20 | 2009-08-20 | Multi-coupling filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910194463.5A CN101997513B (en) | 2009-08-20 | 2009-08-20 | Multi-coupling filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101997513A CN101997513A (en) | 2011-03-30 |
CN101997513B true CN101997513B (en) | 2014-04-02 |
Family
ID=43787222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910194463.5A Active CN101997513B (en) | 2009-08-20 | 2009-08-20 | Multi-coupling filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101997513B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI124732B (en) * | 2011-11-11 | 2014-12-31 | Teknologian Tutkimuskeskus Vtt | Laterally connected bulk wave filter with improved passband characteristics |
CN102571027A (en) * | 2012-02-27 | 2012-07-11 | 浙江瑞能通信科技有限公司 | Film bulk acoustic resonator structure based on all metal Bragg reflection layer |
CN109639251A (en) * | 2018-12-10 | 2019-04-16 | 开元通信技术(厦门)有限公司 | Bulk acoustic wave resonator and preparation method thereof, filter |
DE102019102694B4 (en) * | 2019-02-04 | 2020-10-08 | RF360 Europe GmbH | Electroacoustic component, RF filter and manufacturing process |
CN110828441A (en) * | 2019-10-18 | 2020-02-21 | 天津大学 | Multiplexer |
CN112383286B (en) * | 2020-08-04 | 2021-09-21 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator assembly, method of manufacturing the same, filter, and electronic apparatus |
CN114389561A (en) * | 2021-12-21 | 2022-04-22 | 无锡市好达电子股份有限公司 | Mixed structure acoustic wave device |
CN119154833A (en) * | 2024-09-11 | 2024-12-17 | 云际芯光(珠海)微电子有限公司 | Solid-state assembly type bulk acoustic wave resonator and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1852026A (en) * | 2005-04-21 | 2006-10-25 | 富士通媒体部品株式会社 | Filter and duplexer |
-
2009
- 2009-08-20 CN CN200910194463.5A patent/CN101997513B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1852026A (en) * | 2005-04-21 | 2006-10-25 | 富士通媒体部品株式会社 | Filter and duplexer |
Also Published As
Publication number | Publication date |
---|---|
CN101997513A (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12191843B2 (en) | Wide-band acoustically coupled thin-film BAW filter | |
CN101997513B (en) | Multi-coupling filter | |
EP1998444B1 (en) | Bulk acoustic wave device with coupled resonators | |
JP4523637B2 (en) | A duplexer based on coupled BAW resonators | |
JP5229969B2 (en) | Duplexer, communication module, and communication device | |
Yang et al. | Advanced RF filters for wireless communications | |
JP5519326B2 (en) | Filter, duplexer, communication module, communication device | |
US8902020B2 (en) | Resonator filter with multiple cross-couplings | |
US20080297279A1 (en) | Coupled Resonator Filter with a Filter Section | |
CN101297482A (en) | Duplexer and communication equipment using the duplexer | |
CN108449068A (en) | Duplexer | |
CN207853858U (en) | Duplexer | |
CN102282764A (en) | Filtering circuit with coupled baw resonators and having impedance matching adaptation | |
US7075214B2 (en) | Piezoelectric resonator and electronic component provided therewith | |
JP2011217420A (en) | Surface acoustic wave filter, antenna duplexer, high-frequency module using them, and communication apparatus | |
Shirakawa et al. | A high isolation and high selectivity ladder-lattice BAW-SMR filter | |
CN108233891B (en) | Duplexer | |
US20060087386A1 (en) | Arrangement of lattice filter | |
Zuo et al. | Single-ended-to-differential and differential-to-differential channel-select filters based on piezoelectric AlN contour-mode MEMS resonators | |
JP2006129131A (en) | Balanced high-frequency filter, common utility antenna, and balanced high-frequency circuit | |
CN117375555A (en) | Acoustic wave filter structure, filter and electronic equipment | |
CN117040467A (en) | Bulk acoustic wave filter based on micro-support structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |