[go: up one dir, main page]

CN101997513B - Multi-coupling filter - Google Patents

Multi-coupling filter Download PDF

Info

Publication number
CN101997513B
CN101997513B CN200910194463.5A CN200910194463A CN101997513B CN 101997513 B CN101997513 B CN 101997513B CN 200910194463 A CN200910194463 A CN 200910194463A CN 101997513 B CN101997513 B CN 101997513B
Authority
CN
China
Prior art keywords
layer
acoustic
coupling
bragg
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910194463.5A
Other languages
Chinese (zh)
Other versions
CN101997513A (en
Inventor
董树荣
张慧金
赵士恒
程维维
韩雁
王伟
田洪波
王健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huawei Technologies Co Ltd
Original Assignee
Shanghai Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huawei Technologies Co Ltd filed Critical Shanghai Huawei Technologies Co Ltd
Priority to CN200910194463.5A priority Critical patent/CN101997513B/en
Publication of CN101997513A publication Critical patent/CN101997513A/en
Application granted granted Critical
Publication of CN101997513B publication Critical patent/CN101997513B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The embodiment of the invention discloses a multi-coupling filter which comprises at least two adjacently stacked coupling filters and a filter isolation layer located between the two adjacent coupling filters. The filter isolation layer comprises two adjacently stacked Bragg layers, wherein the reflection directions of the two Bragg layers are opposite so as to realize signal isolation between the adjacently stacked coupling filters and avoid mutual influence among multiple stacked coupling filters.

Description

多耦合型滤波器Multi-Coupling Filter

技术领域technical field

本发明涉及通信技术领域,具体涉及一种多耦合型滤波器。The invention relates to the technical field of communication, in particular to a multi-coupling filter.

背景技术Background technique

随着无线通信技术的发展,产品的电路复杂性越来越高,促使滤波器趋于小型化、集成化设计。目前射频滤波器主要包括介质滤波器、声表面滤波器和基于薄膜体声波谐振器(FBAR,Thin Film Bulk Acoustic Resonator)的滤波器。介质滤波器有着体积大的缺点,而声表面滤波器由于制作受光刻工艺的限制,且插损较大,因此这两种滤波器在应用上受到一定的限制。而基于FBAR的滤波器,由于具有低插入损耗、高工作频率、体积小和易于集成的优点,被广泛应用于无线通信技术领域。With the development of wireless communication technology, the circuit complexity of products is getting higher and higher, which makes the filter tend to be miniaturized and integrated. At present, radio frequency filters mainly include dielectric filters, surface acoustic filters and filters based on thin film bulk acoustic resonators (FBAR, Thin Film Bulk Acoustic Resonator). The dielectric filter has the disadvantage of large volume, and the surface acoustic filter is limited by the photolithography process, and the insertion loss is large, so the application of these two filters is limited. The filter based on FBAR is widely used in the field of wireless communication technology due to its advantages of low insertion loss, high operating frequency, small size and easy integration.

目前基于FBAR的滤波器主要有以下两种:At present, there are mainly two types of filters based on FBAR:

(1)堆叠型滤波器,包括两个相邻堆叠的FBAR,以及两个FBAR之间的接地的电极。(1) Stacked filter, including two adjacent stacked FBARs, and a grounded electrode between the two FBARs.

(2)耦合型滤波器(CRF,Coupled Resonator Filters),CRF包括两个相邻堆叠的FBAR、以及位于两个FBAR之间的声学耦合层,通过调节声学耦合层的声学层的层数和各声学层的厚度可以调节CRF的带宽。(2) Coupled Resonator Filters (CRF, Coupled Resonator Filters), CRF includes two adjacent stacked FBARs, and an acoustic coupling layer between the two FBARs, by adjusting the number of acoustic layers of the acoustic coupling layer and each The thickness of the acoustic layer can tune the bandwidth of the CRF.

在对现有技术的研究和实践过程中,本发明的发明人发现,虽然基于FBAR的滤波器具有体积小和易于集成的优点,但是,若将多个基于FBAR的滤波器直接堆叠在一起,各个滤波器的声场和电场会相互耦合,影响FBAR的性能,并造成阻抗失配。因此,当通信终端需要同时使用多个滤波器时,各个滤波器不能堆叠在一起,需放置在芯片的不同位置,导致整个芯片面积较大,难以实现通信终端的滤波器模块的小型化、集成化设计。During the research and practice of the prior art, the inventors of the present invention found that although the FBAR-based filter has the advantages of small size and easy integration, if a plurality of FBAR-based filters are directly stacked together, The acoustic and electric fields of each filter will couple with each other, affecting the performance of the FBAR and causing impedance mismatch. Therefore, when a communication terminal needs to use multiple filters at the same time, each filter cannot be stacked together, but needs to be placed in different positions on the chip, resulting in a large chip area, and it is difficult to realize the miniaturization and integration of the filter module of the communication terminal. design.

发明内容Contents of the invention

本发明实施例提供一种多耦合型滤波器,能够使多个滤波器堆叠在一起而不相互影响,以实现滤波器模块的小型化、集成化设计。An embodiment of the present invention provides a multi-coupling filter, which enables multiple filters to be stacked together without affecting each other, so as to realize miniaturization and integrated design of filter modules.

本发明实施例提供的一种多耦合型滤波器,包括:至少两个相邻堆叠的耦合型滤波器,以及位于两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离;A multi-coupling filter provided by an embodiment of the present invention includes: at least two adjacent stacked coupling filters, and a filter isolation layer between two adjacent stacked coupling filters; The isolation layer includes two Bragg layers stacked adjacently, and the reflection direction of the two Bragg layers faces away, so as to realize signal isolation between adjacently stacked coupled filters;

其中,所述耦合型滤波器包括两个相邻堆叠的薄膜体声波谐振器,以及位于所述两个相邻堆叠的薄膜体声波谐振器之间的声学耦合层。Wherein, the coupled filter includes two adjacent stacked thin film bulk acoustic resonators, and an acoustic coupling layer located between the two adjacent stacked thin film bulk acoustic resonators.

本发明实施例提供的一种串并联结合的多耦合型滤波器,包括:至少两个上述的多耦合型滤波器,且多耦合型滤波器并联。A series-parallel combined multi-coupling filter provided by an embodiment of the present invention includes: at least two of the above-mentioned multi-coupling filters, and the multi-coupling filters are connected in parallel.

本发明实施例中的多耦合型滤波器包括至少两个相邻堆叠的耦合型滤波器,以及位于相邻两个耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离,从而使得多个滤波器堆叠在一起而不相互影响,实现了通信终端的滤波器模块的小型化、集成化设计。The multi-coupled filter in the embodiment of the present invention includes at least two adjacently stacked coupled filters, and a filter isolation layer between adjacent two coupled filters; the filter isolation layer includes adjacently stacked Two Bragg layers, and the reflection directions of the two Bragg layers are facing away, so as to realize the isolation of signals between adjacent stacked coupling filters, so that multiple filters are stacked together without affecting each other, realizing The miniaturization and integration design of the filter module of the communication terminal.

附图说明Description of drawings

图1是本发明实施例中的多耦合型滤波器的一个实施例的示意图;Fig. 1 is a schematic diagram of an embodiment of a multi-coupling filter in an embodiment of the present invention;

图2是图1中圆a位置的放大示意图;Fig. 2 is an enlarged schematic diagram of the position of circle a in Fig. 1;

图3是本发明实施例中多耦合型滤波器的另一实施例的示意图;FIG. 3 is a schematic diagram of another embodiment of a multi-coupling filter in an embodiment of the present invention;

图4是本发明实施例中多耦合型滤波器的另一实施例的示意图;FIG. 4 is a schematic diagram of another embodiment of a multi-coupling filter in an embodiment of the present invention;

图5是图4所示实施例中多耦合型滤波器仿真得到的频率响应图;Fig. 5 is the frequency response diagram obtained by multi-coupling filter simulation in the embodiment shown in Fig. 4;

图6是图5中蜂窝式无线通讯系统(Cellular)频段接收带的频率响应图;Fig. 6 is a frequency response diagram of the cellular wireless communication system (Cellular) frequency band receiving band in Fig. 5;

图7是图5中个人通讯服务(PCS,Personal Communications Service)频段接收带的频率响应图。Fig. 7 is a frequency response diagram of the receiving band of the Personal Communications Service (PCS, Personal Communications Service) frequency band in Fig. 5 .

具体实施方式Detailed ways

本发明实施例提供一种多耦合型滤波器,能够使多个滤波器堆叠在一起而不相互影响,从而实现通信终端的滤波器模块的小型化、集成化设计。以下进行详细说明。An embodiment of the present invention provides a multi-coupling filter, which enables multiple filters to be stacked together without affecting each other, thereby realizing miniaturization and integrated design of a filter module of a communication terminal. The details will be described below.

本发明实施例中的一种多耦合型滤波器包括至少两个相邻堆叠的耦合型滤波器,以及位于两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离。A multi-coupled filter in an embodiment of the present invention includes at least two adjacently stacked coupled filters, and a filter isolation layer between two adjacently stacked coupled filters; the filter isolation layer It includes two Bragg layers stacked adjacently, and the reflection directions of the two Bragg layers are opposite to each other, so as to realize signal isolation between adjacently stacked coupling filters.

请参阅图1,图1为本发明实施例中的多耦合型滤波器的一个实施例的示意图。本实施例中的多耦合型滤波器1包括相邻堆叠的CRF200和CRF300,以及位于CRF200与CRF300之间的滤波器隔离层400。CRF200设置于CRF300的下方,CRF200设置于衬底102上。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of an embodiment of a multi-coupling filter in an embodiment of the present invention. The multi-coupled filter 1 in this embodiment includes adjacently stacked CRF200 and CRF300, and a filter isolation layer 400 between the CRF200 and CRF300. The CRF200 is disposed below the CRF300 , and the CRF200 is disposed on the substrate 102 .

CRF200包括相邻堆叠的FBAR210和FBAR220,以及位于FBAR210和FBAR220之间的声学耦合层230。CRF 200 includes FBAR 210 and FBAR 220 stacked adjacently, and acoustic coupling layer 230 between FBAR 210 and FBAR 220 .

FBAR210包括电极214、电极212、以及电极214与电极212之间的压电薄膜216,FBAR220包括电极224、电极222、以及电极224与电极222之间的压电薄膜226。电极214和电极212作为CRF200的信号输入端,电极224与电极222作为CRF200的信号输出端。FBAR 210 includes electrode 214 , electrode 212 , and piezoelectric film 216 between electrode 214 and electrode 212 . FBAR 220 includes electrode 224 , electrode 222 , and piezoelectric film 226 between electrode 224 and electrode 222 . The electrode 214 and the electrode 212 serve as the signal input end of the CRF200 , and the electrode 224 and the electrode 222 serve as the signal output end of the CRF200 .

声学耦合层230位于FBAR210的电极214与FBAR220的电极222之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层230的声学层的层数和各声学层的厚度,可以调节FBAR210和FBAR220之间的耦合强度,可以调节CRF200的带宽。The acoustic coupling layer 230 is located between the electrode 214 of the FBAR 210 and the electrode 222 of the FBAR 220, and includes at least two acoustic layers (not shown) made of acoustic materials with different characteristic acoustic impedances. By adjusting the acoustic layers of the acoustic coupling layer 230 The number and the thickness of each acoustic layer can adjust the coupling strength between FBAR210 and FBAR220, and can adjust the bandwidth of CRF200.

CRF300包括相邻堆叠的FBAR310和FBAR320,以及位于FBAR310和FBAR320之间的声学耦合层330。CRF 300 includes adjacently stacked FBAR 310 and FBAR 320 , and an acoustic coupling layer 330 between FBAR 310 and FBAR 320 .

FBAR310包括电极314、电极312、以及电极314与电极312之间的压电薄膜316,FBAR320包括电极324、电极322、以及电极324与电极322之间的压电薄膜326。电极314和电极312作为CRF300的信号输入端,电极324与电极322作为CRF300的信号输出端。The FBAR 310 includes an electrode 314 , an electrode 312 , and a piezoelectric film 316 between the electrode 314 and the electrode 312 . The FBAR 320 includes an electrode 324 , an electrode 322 , and a piezoelectric film 326 between the electrode 324 and the electrode 322 . Electrode 314 and electrode 312 serve as signal input terminals of CRF300 , and electrode 324 and electrode 322 serve as signal output terminals of CRF300 .

声学耦合层330位于FBAR310的电极314与FBAR320的电极322之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层330的声学层的层数和各声学层的厚度,可以调节FBAR310和FBAR320之间的耦合强度,可以调节CRF300的带宽。The acoustic coupling layer 330 is located between the electrode 314 of the FBAR310 and the electrode 322 of the FBAR320, and includes at least two acoustic layers (not shown) made of acoustic materials with different characteristic acoustic impedances. By adjusting the acoustic layers of the acoustic coupling layer 330 The number and the thickness of each acoustic layer can adjust the coupling strength between FBAR310 and FBAR320, and the bandwidth of CRF300 can be adjusted.

请结合图2,图2为图1中圆a位置的放大示意图。从图2可见,滤波器隔离层400包括相邻堆叠的布拉格层410和布拉格层420。布拉格层410和布拉格层420的反射方向背向,从而使得布拉格层410构成CRF200的声波限制上边界,布拉格层420构成CRF300的声波限制下边界,以实现相邻堆叠的CRF200与CRF300之间信号的隔离。Please refer to FIG. 2 , which is an enlarged schematic diagram of the position of circle a in FIG. 1 . It can be seen from FIG. 2 that the filter isolation layer 400 includes a Bragg layer 410 and a Bragg layer 420 stacked adjacently. The reflection directions of the Bragg layer 410 and the Bragg layer 420 are opposite, so that the Bragg layer 410 constitutes the upper boundary of the acoustic wave confinement of the CRF200, and the Bragg layer 420 constitutes the lower boundary of the acoustic wave confinement of the CRF300, so as to realize signal communication between adjacently stacked CRF200s and CRF300s. isolation.

布拉格层包括至少两层特征声阻抗不同的声学材料制成的反射层。例如,布拉格层可以包括第一声波阻抗层和第二声波阻抗层,第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值大于等于3。布拉格层的各反射层可以采用Al、Au、Ti、Mo、W、Fe、Cr、Ni、Co、Cu、SiO2、Si3N4、ZnO、TiO2、TiN、Al2O3、AlN或PZT制成。The Bragg layer includes at least two reflective layers made of acoustic materials with different characteristic acoustic impedances. For example, the Bragg layer may include a first acoustic wave impedance layer and a second acoustic wave impedance layer, and the difference between the characteristic acoustic impedances of the second acoustic wave impedance layer and the first acoustic wave impedance layer is greater than or equal to 3. Each reflective layer of the Bragg layer can be made of Al, Au, Ti, Mo, W, Fe, Cr, Ni, Co, Cu, SiO2, Si3N4, ZnO, TiO2, TiN, Al2O3, AlN or PZT.

本实施例中,布拉格层410包括如下4层反射层:与FBAR220的电极224邻接的第一声波阻抗层412、与第一声波阻抗层412邻接的第二声波阻抗层414、与第二声波阻抗层414邻接的第一声波阻抗层416、以及与第一声波阻抗层416邻接的第二声波阻抗层418;布拉格层420可以包括如下4层反射层:与FBAR310的电极312邻接的第一声波阻抗层428、与第一声波阻抗层428邻接的第二声波阻抗层426、与第二声波阻抗层426邻接的第一声波阻抗层424、以及与第一声波阻抗层424邻接的第二声波阻抗层422。In this embodiment, the Bragg layer 410 includes the following four reflective layers: a first acoustic wave impedance layer 412 adjacent to the electrode 224 of the FBAR 220, a second acoustic wave impedance layer 414 adjacent to the first acoustic wave impedance layer 412, and a second acoustic wave impedance layer 414 adjacent to the first acoustic wave impedance layer 412. The first acoustic impedance layer 416 adjacent to the acoustic impedance layer 414, and the second acoustic impedance layer 418 adjacent to the first acoustic impedance layer 416; the Bragg layer 420 may include the following four reflective layers: The first acoustic wave impedance layer 428, the second acoustic wave impedance layer 426 adjacent to the first acoustic wave impedance layer 428, the first acoustic wave impedance layer 424 adjacent to the second acoustic wave impedance layer 426, and the first acoustic wave impedance layer 424 adjacent to the first acoustic wave impedance layer. 424 is adjacent to the second acoustic impedance layer 422 .

本实施例中,第二声波阻抗层的特征声阻抗比第一声波阻抗层的高,且第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值等于15。In this embodiment, the characteristic acoustic impedance of the second acoustic wave impedance layer is higher than that of the first acoustic wave impedance layer, and the difference between the characteristic acoustic impedance of the second acoustic wave impedance layer and the first acoustic wave impedance layer is equal to 15.

可以理解的是,布拉格层410也可以包括从下往上设置的第一声波阻抗层和第二声波阻抗层这两层反射层,或者,从下往上设置的第一声波阻抗层、第一声波阻抗层和第二声波阻抗层这三层反射层,或者,从下往上设置的两组第一声波阻抗层和第一声波阻抗层这四层反射层。本文中,定义从CRF200往CRF300为从下往上的方向。It can be understood that the Bragg layer 410 may also include two reflective layers, the first acoustic wave impedance layer and the second acoustic wave impedance layer arranged from bottom to top, or the first acoustic wave impedance layer, Three reflective layers of the first acoustic wave impedance layer and the second acoustic wave impedance layer, or two sets of first acoustic wave impedance layers and four reflective layers of the first acoustic wave impedance layer arranged from bottom to top. In this article, the direction from CRF200 to CRF300 is defined as the direction from bottom to top.

同理,布拉格层420也可以包括从上往下设置的第一声波阻抗层和第二声波阻抗层这两层反射层,或者,从上往下设置的第一声波阻抗层、第一声波阻抗层和第二声波阻抗层这三层反射层,或者,从上往下设置的两组第一声波阻抗层和第一声波阻抗层这四层反射层。Similarly, the Bragg layer 420 may also include two reflective layers, the first acoustic impedance layer and the second acoustic impedance layer arranged from top to bottom, or the first acoustic impedance layer, the first acoustic impedance layer and the first acoustic impedance layer arranged from top to bottom. Three reflective layers of the acoustic wave impedance layer and the second acoustic wave impedance layer, or two sets of first acoustic wave impedance layers and four reflective layers of the first acoustic wave impedance layer arranged from top to bottom.

布拉格层410和布拉格层420的各反射层的厚度的取值范围可以为[n*85%,n*115%],n为频率等于第一频率的声信号在反射层对应的声学材料中波长的四分之一的奇数倍,第一频率为与布拉格层邻接的耦合型滤波器的中心频率,即对应于布拉格层410,第一频率为与布拉格层410邻接的CRF200的中心频率,对应于布拉格层420,第一频率为与布拉格层420邻接的CRF300的中心频率。The value range of the thickness of each reflective layer of the Bragg layer 410 and the Bragg layer 420 can be [n*85%, n*115%], n is the wavelength of the acoustic signal whose frequency is equal to the first frequency in the acoustic material corresponding to the reflective layer an odd multiple of a quarter of , the first frequency is the center frequency of the coupled filter adjacent to the Bragg layer, that is, corresponding to the Bragg layer 410, and the first frequency is the center frequency of the CRF200 adjacent to the Bragg layer 410, corresponding to For the Bragg layer 420 , the first frequency is the center frequency of the CRF 300 adjacent to the Bragg layer 420 .

本实施例中,布拉格层410的各反射层的厚度为频率等于CRF200的中心频率的声信号在反射层对应的声学材料中波长的四分之一,布拉格层420的各反射层的厚度为频率等于CRF300的中心频率的声信号在反射层对应的声学材料中波长的四分之一。In this embodiment, the thickness of each reflective layer of the Bragg layer 410 is a quarter of the wavelength of the acoustic signal in the acoustic material corresponding to the reflective layer with a frequency equal to the center frequency of the CRF200, and the thickness of each reflective layer of the Bragg layer 420 is the frequency An acoustic signal equal to the center frequency of the CRF300 has a quarter of the wavelength in the acoustic material corresponding to the reflective layer.

例如,布拉格层410的第一声波阻抗层412的厚度的取值范围可以为[m*85%,m*115%],其中,m=(2a+1)λ1/4,λ1是频率等于CRF200的中心频率的声信号在第一声波阻抗层412对应的声学材料中的波长,a是大于或等于零的整数。本实施例中,第一声波阻抗层412的厚度等于λ1/4。For example, the value range of the thickness of the first acoustic wave impedance layer 412 of the Bragg layer 410 may be [m*85%, m*115%], wherein, m=(2a+1)λ 1 /4, λ 1 is The wavelength of an acoustic signal with a frequency equal to the center frequency of the CRF 200 in the acoustic material corresponding to the first acoustic wave impedance layer 412 , a is an integer greater than or equal to zero. In this embodiment, the thickness of the first acoustic wave impedance layer 412 is equal to λ 1 /4.

例如,布拉格层420的第一声波阻抗层428的厚度的取值范围可以为[q*85%,q*115%],其中,q=(2a+1)λ2/4,λ2是频率等于CRF300的中心频率的声信号在第一声波阻抗层428对应的声学材料中的波长,a是大于或等于零的整数。本实施例中,第一声波阻抗层428的厚度等于λ1/4。For example, the value range of the thickness of the first acoustic wave impedance layer 428 of the Bragg layer 420 may be [q*85%, q*115%], wherein, q=(2a+1)λ 2 /4, λ 2 is The wavelength of an acoustic signal with a frequency equal to the central frequency of the CRF 300 in the acoustic material corresponding to the first acoustic wave impedance layer 428 , a is an integer greater than or equal to zero. In this embodiment, the thickness of the first acoustic wave impedance layer 428 is equal to λ 1 /4.

本实施例中的多耦合型滤波器包括相邻堆叠的CRF200和CRF300,以及位于CRF200和CRF300之间的滤波器隔离层400。滤波器隔离层400包括反射方向背向的相邻堆叠的布拉格层410和布拉格层420,布拉格层的各反射层的厚度的取值范围为[n*85%,n*115%],即大于等于n*85%且小于等于n*115%,n为频率等于第一频率的声信号在反射层对应的声学材料中波长的四分之一的奇数倍,对应于布拉格层410和布拉格层420,第一频率分别为与布拉格层410邻接的CRF200的中心频率,和与布拉格层420邻接的CRF300的中心频率,使得布拉格层410构成与滤波器隔离层400的下表面邻接的CRF200的声波限制上边界,布拉格层420构成与滤波器隔离层400的上表面邻接的CRF300的声波限制下边界,从而使得CRF200和CRF300堆叠在一起而不相互影响,实现了通信终端的滤波器模块的小型化、集成化设计。The multi-coupled filter in this embodiment includes adjacently stacked CRF200 and CRF300, and a filter isolation layer 400 between CRF200 and CRF300. The filter isolation layer 400 includes adjacently stacked Bragg layers 410 and 420 whose reflection directions are facing away from each other. The thickness range of each reflective layer of the Bragg layer is [n*85%, n*115%], that is, greater than Equal to n*85% and less than or equal to n*115%, n is an odd multiple of a quarter of the wavelength of an acoustic signal with a frequency equal to the first frequency in the acoustic material corresponding to the reflective layer, corresponding to the Bragg layer 410 and the Bragg layer 420 , the first frequencies are respectively the center frequency of the CRF200 adjacent to the Bragg layer 410 and the center frequency of the CRF300 adjacent to the Bragg layer 420, so that the Bragg layer 410 constitutes the upper acoustic confinement of the CRF200 adjacent to the lower surface of the filter isolation layer 400 Boundary, the Bragg layer 420 constitutes the acoustic wave confinement lower boundary of the CRF300 adjacent to the upper surface of the filter isolation layer 400, so that the CRF200 and the CRF300 are stacked together without mutual influence, and the miniaturization and integration of the filter module of the communication terminal are realized design.

可以理解的是,在本发明另一实施例中,该多耦合型滤波器可以包括至少两个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层。为便于理解,下面则以多耦合型滤波器包括三个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层,且每个布拉格层包括两层声阻抗不同的声学材料制成的反射层为例,对本发明实施例中的多耦合型滤波器进行说明。It can be understood that, in another embodiment of the present invention, the multi-coupling filter may include at least two adjacent stacked CRFs, and a filter isolation layer located between the two adjacent CRFs. For ease of understanding, the following multi-coupling filter includes three adjacent stacked CRFs, and a filter isolation layer between two adjacent CRFs, and each Bragg layer includes two layers of acoustic materials with different acoustic impedances The manufactured reflective layer is taken as an example to describe the multi-coupling filter in the embodiment of the present invention.

请参阅图3,图3为本发明实施例中多耦合型滤波器的另一实施例的示意图。本实施例中的多耦合型滤波器3包括相邻堆叠的CRF500、CRF700和CRF900,以及位于CRF500和CRF600之间的滤波器隔离层600,位于CRF700和CRF900之间的滤波器隔离层800,CRF500设置于衬底1202上。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of another embodiment of a multi-coupling filter in an embodiment of the present invention. The multi-coupling filter 3 in this embodiment includes adjacently stacked CRF500, CRF700 and CRF900, and a filter isolation layer 600 between CRF500 and CRF600, a filter isolation layer 800 between CRF700 and CRF900, CRF500 set on the substrate 1202.

滤波器隔离层600由相邻堆叠的布拉格层610和布拉格层620构成,且布拉格层610与布拉格层620的反射方向背向,以实现相邻堆叠的CRF500与CRF700之间信号的隔离。滤波器隔离层800由布拉格层810和布拉格层820构成,且布拉格层810与布拉格层820的反射方向背向,以实现相邻堆叠的CRF900与CRF700之间信号的隔离。因此,滤波器隔离层600与滤波器隔离层800实现了CRF500、CRF700与CRF900之间信号的隔离。The filter isolation layer 600 is composed of a Bragg layer 610 and a Bragg layer 620 stacked adjacently, and the reflection direction of the Bragg layer 610 and the Bragg layer 620 are opposite to each other, so as to realize signal isolation between the adjacently stacked CRF500 and CRF700. The filter isolation layer 800 is composed of a Bragg layer 810 and a Bragg layer 820 , and the reflection directions of the Bragg layer 810 and the Bragg layer 820 are opposite to each other, so as to realize signal isolation between adjacently stacked CRF900 and CRF700 . Therefore, the filter isolation layer 600 and the filter isolation layer 800 realize the isolation of signals between the CRF500 , the CRF700 and the CRF900 .

具体地,布拉格层610包括如下2层反射层:与CRF500的上表面邻接的第一声波阻抗层612,与第一声波阻抗层612邻接的第二声波阻抗层614;布拉格层620包括如下2层反射层:与CRF700的下表面邻接的第一声波阻抗层624,与第一声波阻抗层624邻接的第二声波阻抗层622。Specifically, the Bragg layer 610 includes the following two reflective layers: a first acoustic wave impedance layer 612 adjacent to the upper surface of the CRF500, and a second acoustic wave impedance layer 614 adjacent to the first acoustic wave impedance layer 612; the Bragg layer 620 includes the following Two reflective layers: the first acoustic impedance layer 624 adjacent to the lower surface of the CRF 700 , and the second acoustic impedance layer 622 adjacent to the first acoustic impedance layer 624 .

布拉格层810包括如下2层反射层:与CRF700的上表面邻接的第一声波阻抗层812,与第一声波阻抗层812邻接的第二声波阻抗层814。布拉格层820包括如下2层反射层:与CRF900的下表面邻接的第一声波阻抗层824,与第一声波阻抗层824邻接的第二声波阻抗层822。The Bragg layer 810 includes two reflective layers: a first acoustic impedance layer 812 adjacent to the upper surface of the CRF 700 , and a second acoustic impedance layer 814 adjacent to the first acoustic impedance layer 812 . The Bragg layer 820 includes two reflective layers: a first acoustic impedance layer 824 adjacent to the lower surface of the CRF 900 , and a second acoustic impedance layer 822 adjacent to the first acoustic impedance layer 824 .

本实施例中,第二声波阻抗层的特征声阻抗比第一声波阻抗层的高,且第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值大于等于3。In this embodiment, the characteristic acoustic impedance of the second acoustic wave impedance layer is higher than that of the first acoustic wave impedance layer, and the difference between the characteristic acoustic impedance of the second acoustic wave impedance layer and the first acoustic wave impedance layer is greater than or equal to 3.

并且,布拉格层610的各反射层的厚度的取值为频率等于CRF500的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层610构成CRF500的声波限制上边界。布拉格层620的各反射层的厚度的取值为频率等于CRF700的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层620构成CRF700的声波限制下边界。Moreover, the value of the thickness of each reflective layer of the Bragg layer 610 is a quarter of the wavelength of the acoustic signal whose frequency is equal to the central frequency of the CRF500 in the acoustic material corresponding to the reflective layer, so that the Bragg layer 610 constitutes the acoustic wave confinement upper boundary of the CRF500 . The thickness of each reflective layer of the Bragg layer 620 is set to be a quarter of the wavelength of an acoustic signal with a frequency equal to the central frequency of the CRF700 in the acoustic material corresponding to the reflective layer, so that the Bragg layer 620 constitutes the lower boundary of acoustic confinement of the CRF700.

并且,布拉格层810的各反射层的厚度的取值为频率等于CRF700的中心频率的声信号在反射层对应的声学材料中波长的四分之一,布拉格层820的各反射层的厚度的取值为频率等于CRF900的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层810和布拉格层820分别构成CRF700的声波限制上边界和CRF900的声波限制下边界。In addition, the value of the thickness of each reflective layer of the Bragg layer 810 is a quarter of the wavelength of the acoustic signal whose frequency is equal to the center frequency of the CRF700 in the acoustic material corresponding to the reflective layer, and the value of the thickness of each reflective layer of the Bragg layer 820 is The value is a quarter of the wavelength of the acoustic signal whose frequency is equal to the center frequency of CRF900 in the acoustic material corresponding to the reflective layer, so that the Bragg layer 810 and the Bragg layer 820 respectively constitute the upper boundary of the acoustic wave confinement of the CRF700 and the lower boundary of the acoustic wave confinement of the CRF900.

本实施例中的多耦合型滤波器包括相邻堆叠的CRF500、CRF700和CRF900,以及位于CRF500和CRF700之间的滤波器隔离层600。滤波器隔离层600包括反射方向背向的布拉格层610和布拉格层620,布拉格层的各反射层的厚度的取值为:频率等于与布拉格层邻接的CRF的中心频率的声信号在反射层对应的声学材料中波长的四分之一,使得布拉格层610和布拉格层620分别构成CRF500的声波限制上边界和CRF700的声波限制下边界,布拉格层810和布拉格层820分别构成CRF700的声波限制上边界和CRF900的声波限制下边界,从而使得CRF500、CRF700和CRF900的声波不相互干扰,CRF500、CRF700和CRF900堆叠在一起而不相互影响,实现了通信终端的滤波器模块的小型化、集成化设计。The multi-coupling filter in this embodiment includes CRF500 , CRF700 and CRF900 stacked adjacently, and a filter isolation layer 600 between CRF500 and CRF700 . The filter isolation layer 600 includes a Bragg layer 610 and a Bragg layer 620 whose reflection directions are facing away from each other. The value of the thickness of each reflection layer of the Bragg layer is: an acoustic signal with a frequency equal to the center frequency of the CRF adjacent to the Bragg layer corresponds to A quarter of the wavelength in the acoustic material, so that the Bragg layer 610 and the Bragg layer 620 respectively constitute the upper boundary of the acoustic confinement of the CRF500 and the lower boundary of the acoustic confinement of the CRF700, and the Bragg layer 810 and the Bragg layer 820 respectively constitute the upper boundary of the acoustic confinement of the CRF700 The sound waves of CRF900 and CRF900 limit the lower boundary, so that the sound waves of CRF500, CRF700 and CRF900 do not interfere with each other, and CRF500, CRF700 and CRF900 are stacked together without mutual influence, realizing the miniaturization and integration design of the filter module of the communication terminal.

上述实施例中提供的多耦合型滤波器包括至少两个相邻堆叠的耦合型滤波器,以及位于两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且该两个布拉格层的反射方向背向,以实现相邻堆叠的耦合型滤波器之间信号的隔离。The multi-coupling filter provided in the above embodiments includes at least two adjacent stacked coupling filters, and a filter isolation layer between the two adjacent stacked coupling filters; the filter isolation layer includes phase Two Bragg layers stacked adjacent to each other, and the reflection directions of the two Bragg layers are opposite to each other, so as to realize signal isolation between adjacent stacked coupling filters.

上述实施例中的CRF相串联,在实际应用中,需要串并联结合的多耦合型滤波器,因此,本发明另一个实施例还提供串并联结合的多耦合型滤波器,包括至少两个上述实施例中提供的多耦合型滤波器,且该至少两个上述实施例中提供的多耦合型滤波器之间并联。The CRFs in the above embodiments are connected in series. In practical applications, a series-parallel combination multi-coupling filter is required. Therefore, another embodiment of the present invention also provides a series-parallel combination multi-coupling filter, including at least two of the above-mentioned The multi-coupling filter provided in the embodiment, and the at least two multi-coupling filters provided in the above-mentioned embodiments are connected in parallel.

为便于理解,下面以一具体实施例说明上述串并联结合的多耦合型滤波器,请参阅图4,图4为本发明实施例中多耦合型滤波器的另一实施例的示意图。本实施例中的多耦合型滤波器4包括:For ease of understanding, the above-mentioned series-parallel combination multi-coupling filter is described below with a specific embodiment, please refer to FIG. 4 , which is a schematic diagram of another embodiment of the multi-coupling filter in the embodiment of the present invention. The multi-coupling filter 4 in this embodiment includes:

相同的两组两个相邻堆叠的耦合型滤波器,以及位于相邻两个耦合型滤波器之间的滤波器隔离层,具体地,这两组分别为:The same two groups of adjacently stacked coupled filters, and the filter isolation layer between the adjacent two coupled filters, specifically, these two groups are:

一组为:相邻堆叠的CRF204和CRF304,以及位于CRF204与CRF304之间的滤波器隔离层404。CRF204设置于CRF304的下方,CRF204设置于衬底1102上;One group is: adjacently stacked CRF204 and CRF304, and a filter isolation layer 404 between CRF204 and CRF304. The CRF204 is disposed below the CRF304, and the CRF204 is disposed on the substrate 1102;

另一组为:相邻堆叠的CRF202和CRF302,以及位于CRF202与CRF302之间的滤波器隔离层402。CRF202设置于CRF302的下方,CRF202设置于衬底1102上。The other group is: adjacently stacked CRF202 and CRF302, and a filter isolation layer 402 between CRF202 and CRF302. The CRF202 is disposed below the CRF302, and the CRF202 is disposed on the substrate 1102.

其中,CRF204与CRF202用于美国Cellular频段的接收端,工作频率是869MHz-894MHz,中心频率为881.5MHz;CRF304与302用于美国PCS频段的接收端,工作频率是1930.5MHz-1989.5MHz,中心频率为1990MHz。Among them, CRF204 and CRF202 are used for the receiving end of the US Cellular frequency band, the working frequency is 869MHz-894MHz, and the center frequency is 881.5MHz; CRF304 and 302 are used for the receiving end of the US PCS frequency band, the working frequency is 1930.5MHz-1989.5MHz, the center frequency 1990MHz.

CRF204包括相邻堆叠的FBAR270和FBAR290,以及位于FBAR270和FBAR290之间的声学耦合层280。CRF 204 includes FBAR 270 and FBAR 290 stacked adjacently, and acoustic coupling layer 280 between FBAR 270 and FBAR 290 .

FBAR270包括电极274、电极272、以及电极274与电极272之间的压电薄膜276,FBAR290包括电极294、电极292、以及电极294与电极292之间的压电薄膜296。电极274和电极272作为CRF204的信号输入端,电极294与电极292作为CRF204的信号输出端。FBAR 270 includes electrode 274 , electrode 272 , and piezoelectric film 276 between electrode 274 and electrode 272 . FBAR 290 includes electrode 294 , electrode 292 , and piezoelectric film 296 between electrode 294 and electrode 292 . Electrode 274 and electrode 272 serve as signal input terminals of CRF204 , and electrode 294 and electrode 292 serve as signal output terminals of CRF204 .

声学耦合层280位于FBAR270的电极274与FBAR290的电极292之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层280的声学层的层数和各声学层的厚度,可以调节FBAR270和FBAR290之间的耦合强度。The acoustic coupling layer 280 is located between the electrode 274 of the FBAR 270 and the electrode 292 of the FBAR 290, and includes at least two acoustic layers (not shown) made of acoustic materials with different characteristic acoustic impedances. By adjusting the acoustic layers of the acoustic coupling layer 280 The number and the thickness of each acoustic layer can adjust the coupling strength between FBAR270 and FBAR290.

CRF304包括相邻堆叠的FBAR370和FBAR390,以及位于FBAR370和FBAR390之间的声学耦合层380。CRF 304 includes adjacently stacked FBAR 370 and FBAR 390 , and acoustic coupling layer 380 between FBAR 370 and FBAR 390 .

FBAR370包括电极374、电极372、以及电极374与电极372之间的压电薄膜376,FBAR390包括电极394、电极392、以及电极394与电极392之间的压电薄膜396。电极374和电极372作为CRF304的信号输入端,电极394与电极392作为CRF304的信号输出端。FBAR 370 includes electrode 374 , electrode 372 , and piezoelectric film 376 between electrode 374 and electrode 372 , and FBAR 390 includes electrode 394 , electrode 392 , and piezoelectric film 396 between electrode 394 and electrode 392 . Electrode 374 and electrode 372 serve as signal input terminals of CRF304 , and electrode 394 and electrode 392 serve as signal output terminals of CRF304 .

声学耦合层380位于FBAR370的电极374与FBAR390的电极392之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层380的声学层的层数和各声学层的厚度,可以调节FBAR370和FBAR390之间的耦合强度。The acoustic coupling layer 380 is located between the electrode 374 of the FBAR370 and the electrode 392 of the FBAR390, and includes at least two acoustic layers (not shown) made of acoustic materials with different characteristic acoustic impedances. By adjusting the acoustic layers of the acoustic coupling layer 380 The number and thickness of each acoustic layer can adjust the coupling strength between FBAR370 and FBAR390.

CRF202包括相邻堆叠的FBAR240和FBAR250,以及位于FBAR240和FBAR250之间的声学耦合层260。CRF 202 includes FBAR 240 and FBAR 250 stacked adjacently, and acoustic coupling layer 260 between FBAR 240 and FBAR 250 .

FBAR240包括电极244、电极242、以及电极244与电极242之间的压电薄膜246,FBAR250包括电极254、电极252、以及电极254与电极252之间的压电薄膜256。电极244和电极242作为CRF202的信号输入端,电极254与电极252作为CRF202的信号输出端。FBAR 240 includes electrode 244 , electrode 242 , and piezoelectric film 246 between electrode 244 and electrode 242 . FBAR 250 includes electrode 254 , electrode 252 , and piezoelectric film 256 between electrode 254 and electrode 252 . Electrode 244 and electrode 242 serve as signal input terminals of CRF202 , and electrode 254 and electrode 252 serve as signal output terminals of CRF202 .

声学耦合层260位于FBAR240的电极244与FBAR250的电极252之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层260的声学层的层数和各声学层的厚度,可以调节FBAR240和FBAR250之间的耦合强度。The acoustic coupling layer 260 is located between the electrode 244 of the FBAR240 and the electrode 252 of the FBAR250, and includes at least two acoustic layers (not shown) made of acoustic materials with different characteristic acoustic impedances. By adjusting the acoustic layers of the acoustic coupling layer 260 The number and the thickness of each acoustic layer can adjust the coupling strength between FBAR240 and FBAR250.

CRF302包括相邻堆叠的FBAR340和FBAR350,以及位于FBAR340和FBAR350之间的声学耦合层360。CRF 302 includes adjacently stacked FBAR 340 and FBAR 350 , and acoustic coupling layer 360 between FBAR 340 and FBAR 350 .

FBAR340包括电极344、电极342、以及电极344与电极342之间的压电薄膜346,FBAR350包括电极354、电极352、以及电极354与电极352之间的压电薄膜356。电极344和电极342作为CRF302的信号输入端,电极354与电极352作为CRF302的信号输出端。The FBAR 340 includes an electrode 344 , an electrode 342 , and a piezoelectric film 346 between the electrode 344 and the electrode 342 . The FBAR 350 includes an electrode 354 , an electrode 352 , and a piezoelectric film 356 between the electrode 354 and the electrode 352 . Electrode 344 and electrode 342 serve as signal input terminals of CRF302 , and electrode 354 and electrode 352 serve as signal output terminals of CRF302 .

声学耦合层360位于FBAR340的电极344与FBAR350的电极352之间,包括至少两层特征声阻抗不同的声学材料制成的声学层(图未示),通过调节声学耦合层360的声学层的层数和各声学层的厚度,可以调节FBAR340和FBAR350之间的耦合强度。The acoustic coupling layer 360 is located between the electrode 344 of the FBAR340 and the electrode 352 of the FBAR350, and includes at least two acoustic layers (not shown) made of acoustic materials with different characteristic acoustic impedances. By adjusting the acoustic layers of the acoustic coupling layer 360 The number and thickness of each acoustic layer can adjust the coupling strength between FBAR340 and FBAR350.

并且,FBAR370的电极372与FBAR340的电极342通过导电金属107连接,FBAR370的电极374与FBAR340的电极344通过导电金属108连接,使所处位置相对应的CRF304与CRF302相并联。FBAR270的电极272与FBAR240的电极242通过导电金属105连接,FBAR270的电极274与FBAR240的电极244通过导电金属106连接,使所处位置相对应的CRF204与CRF202相并联。可以理解的是,也可以采用其他现有公知技术使CRF304与CRF302相并联,CRF204与CRF202相并联,以便于提高多耦合型滤波器4的带外抑制能力。Moreover, the electrode 372 of the FBAR370 is connected to the electrode 342 of the FBAR340 through the conductive metal 107, and the electrode 374 of the FBAR370 is connected to the electrode 344 of the FBAR340 through the conductive metal 108, so that the corresponding CRF304 and CRF302 are connected in parallel. The electrode 272 of the FBAR270 is connected to the electrode 242 of the FBAR240 through the conductive metal 105, and the electrode 274 of the FBAR270 is connected to the electrode 244 of the FBAR240 through the conductive metal 106, so that the corresponding CRF204 and CRF202 are connected in parallel. It can be understood that other existing known technologies can also be used to connect CRF304 and CRF302 in parallel, and CRF204 and CRF202 in parallel, so as to improve the out-of-band rejection capability of the multi-coupling filter 4 .

CRF204、202的各FBAR中,各电极采用金制成,各电极厚度为0.25微米,面积为385*385平方微米;各压电薄膜采用氮化铝制成,各压电薄膜的厚度为3.94微米。CRF304、302的各FBAR中,各电极采用铝制成,各电极厚度为0.1微米,面积为213*213平方微米;各压电薄膜采用氮化铝制成,各压电薄膜的厚度为2.691微米。In each FBAR of CRF204 and 202, each electrode is made of gold, the thickness of each electrode is 0.25 microns, and the area is 385*385 square microns; each piezoelectric film is made of aluminum nitride, and the thickness of each piezoelectric film is 3.94 microns . In each FBAR of CRF304 and 302, each electrode is made of aluminum, the thickness of each electrode is 0.1 microns, and the area is 213*213 square microns; each piezoelectric film is made of aluminum nitride, and the thickness of each piezoelectric film is 2.691 microns .

通过调节声学耦合层280与声学耦合层260的声学层的层数和各声学层的厚度,可以使得下CRF204、202的带宽满足Cellular频段的要求;通过调节声学耦合层380与声学耦合层360的声学层的层数和各声学层的厚度,可以使得下CRF304、302的带宽满足PCS频段的要求。By adjusting the number of layers of the acoustic coupling layer 280 and the acoustic coupling layer 260 and the thickness of each acoustic layer, the bandwidth of the lower CRF204, 202 can meet the requirements of the Cellular frequency band; The number of acoustic layers and the thickness of each acoustic layer can make the bandwidth of the lower CRFs 304 and 302 meet the requirements of the PCS frequency band.

滤波器隔离层404包括相邻堆叠的布拉格层450和布拉格层460。布拉格层450和布拉格层460的反射方向背向,具体地,布拉格层450包括如下4层反射层:与FBAR290的电极294邻接的第一声波阻抗层452、与第一声波阻抗层452邻接的第二声波阻抗层454、与第二声波阻抗层454邻接的第一声波阻抗层456、以及与第一声波阻抗层456邻接的第二声波阻抗层458;布拉格层460包括如下4层反射层:与FBAR370的电极372邻接的第一声波阻抗层468、与第一声波阻抗层468邻接的第二声波阻抗层466、与第二声波阻抗层466邻接的第一声波阻抗层464、以及与第一声波阻抗层464邻接的第二声波阻抗层462。The filter isolation layer 404 includes a Bragg layer 450 and a Bragg layer 460 stacked adjacently. The reflection directions of the Bragg layer 450 and the Bragg layer 460 are facing away from each other. Specifically, the Bragg layer 450 includes the following four reflective layers: a first acoustic wave impedance layer 452 adjacent to the electrode 294 of the FBAR 290 , and a first acoustic wave impedance layer 452 adjacent to the first acoustic wave impedance layer 452. The second acoustic impedance layer 454, the first acoustic impedance layer 456 adjacent to the second acoustic impedance layer 454, and the second acoustic impedance layer 458 adjacent to the first acoustic impedance layer 456; the Bragg layer 460 includes the following four layers Reflective layer: first acoustic impedance layer 468 adjacent to electrode 372 of FBAR 370 , second acoustic impedance layer 466 adjacent to first acoustic impedance layer 468 , first acoustic impedance layer adjacent to second acoustic impedance layer 466 464, and the second acoustic wave impedance layer 462 adjacent to the first acoustic wave impedance layer 464.

滤波器隔离层402包括相邻堆叠的布拉格层430和布拉格层440。布拉格层430和布拉格层440的反射方向背向,具体地,布拉格层430包括如下4层反射层:与FBAR250的电极254邻接的第一声波阻抗层432、与第一声波阻抗层432邻接的第二声波阻抗层434、与第二声波阻抗层434邻接的第一声波阻抗层436、以及与第一声波阻抗层436邻接的第二声波阻抗层438;布拉格层440包括如下4层反射层:与FBAR340的电极342邻接的第一声波阻抗层448、与第一声波阻抗层448邻接的第二声波阻抗层446、与第二声波阻抗层446邻接的第一声波阻抗层444、以及与第一声波阻抗层444邻接的第二声波阻抗层442。The filter isolation layer 402 includes a Bragg layer 430 and a Bragg layer 440 stacked adjacently. The reflection directions of the Bragg layer 430 and the Bragg layer 440 are facing away. Specifically, the Bragg layer 430 includes the following four reflection layers: the first acoustic wave impedance layer 432 adjacent to the electrode 254 of the FBAR250, the first acoustic wave impedance layer 432 adjacent to the first acoustic wave impedance layer 432 The second acoustic impedance layer 434, the first acoustic impedance layer 436 adjacent to the second acoustic impedance layer 434, and the second acoustic impedance layer 438 adjacent to the first acoustic impedance layer 436; the Bragg layer 440 includes the following four layers Reflective layer: first acoustic impedance layer 448 adjacent to electrode 342 of FBAR 340 , second acoustic impedance layer 446 adjacent to first acoustic impedance layer 448 , first acoustic impedance layer adjacent to second acoustic impedance layer 446 444, and the second acoustic wave impedance layer 442 adjacent to the first acoustic wave impedance layer 444.

本实施例中,滤波器隔离层404和滤波器隔离层402的布拉格层中的第一声波阻抗层采用二氧化硅制成,特征声阻抗为12.5Mray1,纵波声速为6253m/s;第二声波阻抗层采用钨制成,特征声阻抗为105.6Mray1,纵波声速为5501m/s。In this embodiment, the first acoustic wave impedance layer in the Bragg layer of the filter isolation layer 404 and the filter isolation layer 402 is made of silicon dioxide, the characteristic acoustic impedance is 12.5 Mray1, and the sound velocity of longitudinal waves is 6253 m/s; The acoustic wave impedance layer is made of tungsten, the characteristic acoustic impedance is 105.6Mray1, and the longitudinal sound velocity is 5501m/s.

滤波器隔离层404的布拉格层450和滤波器隔离层402的布拉格层430的,各反射层的厚度为频率等于CRF204、CRF202的中心频率881.5MHz的声信号在反射层对应的声学材料中波长的四分之一。具体地,布拉格层450与布拉格层430的第一声波阻抗层的厚度为频率等于881.5MHz的声信号在二氧化硅中波长的四分之一,为1.774微米;布拉格层450与布拉格层430的第二声波阻抗层的厚度为频率等于881.5MHz的声信号在钨中波长的四分之一,为1.561微米。For the Bragg layer 450 of the filter isolation layer 404 and the Bragg layer 430 of the filter isolation layer 402, the thickness of each reflective layer is equal to the wavelength of the acoustic signal of the center frequency 881.5 MHz of the CRF204 and CRF202 in the acoustic material corresponding to the reflective layer. a quarter. Specifically, the thickness of the first acoustic impedance layer of the Bragg layer 450 and the Bragg layer 430 is 1.774 microns, which is 1.774 micrometers of the wavelength of the acoustic signal with a frequency equal to 881.5 MHz in silicon dioxide; the Bragg layer 450 and the Bragg layer 430 The thickness of the second acoustic impedance layer is 1.561 μm, which is a quarter of the wavelength of the acoustic signal in tungsten with a frequency equal to 881.5 MHz.

滤波器隔离层404的布拉格层460和滤波器隔离层402的布拉格层440的,各反射层的厚度为频率等于CRF304、CRF302的中心频率1990MHz的声信号在反射层对应的声学材料中波长的四分之一。具体地,布拉格层460与布拉格层440的第一声波阻抗层的厚度为频率等于1990MHz的声信号在二氧化硅中波长的四分之一,为0.797微米;布拉格层460与布拉格层440的第二声波阻抗层的厚度为频率等于1990MHz的声信号在钨中波长的四分之一,为0.701微米。For the Bragg layer 460 of the filter isolation layer 404 and the Bragg layer 440 of the filter isolation layer 402, the thickness of each reflective layer is four times the wavelength of an acoustic signal with a frequency equal to the center frequency 1990 MHz of CRF304 and CRF302 in the acoustic material corresponding to the reflective layer. one-third. Specifically, the thickness of the first acoustic wave impedance layer of the Bragg layer 460 and the Bragg layer 440 is 0.797 microns, which is a quarter of the wavelength of the acoustic signal in silicon dioxide with a frequency equal to 1990 MHz; The thickness of the second acoustic wave impedance layer is 0.701 μm, which is a quarter of the wavelength of an acoustic signal with a frequency equal to 1990 MHz in tungsten.

请结合图5至图7,图5、图6和图7分别示出了图4所示实施例中多耦合型滤波器仿真得到的频率响应图、图5中Cellular频段接收带的频率响应图110和图5中PCS频段接收带的频率响应图112。Please combine Fig. 5 to Fig. 7, Fig. 5, Fig. 6 and Fig. 7 respectively show the frequency response diagram obtained by the simulation of the multi-coupling filter in the embodiment shown in Fig. 4, and the frequency response diagram of the receiving band of the Cellular frequency band in Fig. 5 110 and the frequency response diagram 112 of the PCS band receive band in FIG. 5 .

请参阅图5,图5中的横坐标为频率,单位为吉赫兹,纵坐标为插入损耗,单位为分贝。从图5中可以知道,并联的CRF204与CRF202和并联的CRF304与CRF302的滤波性能相互之间不受影响。Please refer to Fig. 5, the abscissa in Fig. 5 is the frequency, the unit is gigahertz, and the ordinate is the insertion loss, the unit is decibel. It can be known from FIG. 5 that the filtering performance of the parallel connection of CRF204 and CRF202 and the parallel connection of CRF304 and CRF302 is not affected by each other.

请参阅图6,图6中的横坐标为频率,单位为吉赫兹,纵坐标为插入损耗,单位为分贝。从图6中可以得到,并联的CRF204与CRF202的最大的插入损耗为1.505dB,3dB带宽为34MHz,并且,并联的CRF204与CRF202对Cellular发射频段824MHz-849MHz的最小的抑制为30.451dB。Please refer to Fig. 6, the abscissa in Fig. 6 is the frequency, the unit is gigahertz, and the ordinate is the insertion loss, the unit is decibel. It can be obtained from Figure 6 that the maximum insertion loss of the parallel connection CRF204 and CRF202 is 1.505dB, and the 3dB bandwidth is 34MHz, and the minimum suppression of the parallel connection CRF204 and CRF202 on the cellular transmission frequency band 824MHz-849MHz is 30.451dB.

请参阅图7,图7中的横坐标为频率,单位为吉赫兹,纵坐标为插入损耗,单位为分贝。从图7中可以得到,并联的CRF304与CRF302的最大的插入损耗为1.073dB,3dB带宽为66MHz,并且,并联的CRF304与CRF302对PCS发射频段1850MHz-1910MHz的最小的抑制为21.892dB。Please refer to Fig. 7, the abscissa in Fig. 7 is the frequency, the unit is gigahertz, and the ordinate is the insertion loss, the unit is decibel. It can be obtained from Figure 7 that the maximum insertion loss of the parallel CRF304 and CRF302 is 1.073dB, and the 3dB bandwidth is 66MHz, and the minimum suppression of the parallel connection of CRF304 and CRF302 to the PCS transmission frequency band 1850MHz-1910MHz is 21.892dB.

本实施例的多耦合型滤波器4相同的两组两个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层;并且,该两组中所处位置相对应的两个CRF相并联。可以理解的是,多耦合型滤波器也可以包括相同的至少两组两个相邻堆叠的CRF,以及位于相邻两个CRF之间的滤波器隔离层,并且,各组中所处位置相对应的CRF相并联。The multi-coupling filter 4 of the present embodiment has the same two groups of two adjacent stacked CRFs, and a filter isolation layer between two adjacent CRFs; and, the two groups corresponding to the positions CRFs are connected in parallel. It can be understood that the multi-coupling filter may also include the same at least two groups of two adjacent stacked CRFs, and a filter isolation layer between two adjacent CRFs, and the positions of each group are the same. The corresponding CRFs are connected in parallel.

本实施例中,由于滤波器隔离层402中上下两个布拉格层分别构成与滤波器隔离层402上表面邻接的CRF302的声波限制下边界,和与滤波器隔离层402下表面邻接的CRF202的声波限制上边界,从而使得CRF202与CRF302堆叠在一起而不相互影响;又由于滤波器隔离层404中上下两个布拉格层分别构成与滤波器隔离层404上表面邻接的CRF304的声波限制下边界,和与滤波器隔离层404下表面邻接的CRF204的声波限制上边界,使得CRF202与CRF302堆叠在一起而不相互影响,从而使得并联的CRF204与CRF202和并联的CRF304与CRF302的滤波性能相互之间不受影响,实现了通信终端的滤波器模块的小型化、集成化设计。In this embodiment, since the upper and lower Bragg layers in the filter isolation layer 402 respectively constitute the acoustic wave limit lower boundary of the CRF302 adjacent to the upper surface of the filter isolation layer 402, and the acoustic wave of the CRF202 adjacent to the filter isolation layer 402 lower surface limit the upper boundary, so that CRF202 and CRF302 are stacked together and do not affect each other; and because the upper and lower Bragg layers in the filter isolation layer 404 respectively constitute the acoustic wave limit lower boundary of the CRF304 adjacent to the filter isolation layer 404 upper surface, and The acoustic wave confinement upper boundary of the CRF204 adjacent to the lower surface of the filter isolation layer 404 makes the CRF202 and the CRF302 stack together without affecting each other, so that the filtering performance of the parallel connection of the CRF204 and CRF202 and the parallel connection of the CRF304 and CRF302 is not affected by each other. Influence, the miniaturization and integrated design of the filter module of the communication terminal are realized.

以上对本发明实施例所提供的多耦合型滤波器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The multi-coupling filter provided by the embodiment of the present invention has been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The description of the above embodiment is only used to help understand the core of the present invention. At the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. In summary, the content of this specification should not be construed as limiting the present invention.

Claims (6)

1.一种多耦合型滤波器,其特征在于,包括:至少两个相邻堆叠的耦合型滤波器,以及位于所述两个相邻堆叠的耦合型滤波器之间的滤波器隔离层;滤波器隔离层包括相邻堆叠的两个布拉格层,且所述两个布拉格层的反射方向背向,以实现所述相邻堆叠的耦合型滤波器之间信号的隔离;1. A multi-coupling filter, comprising: at least two adjacent stacked coupling filters, and a filter isolation layer between the two adjacent stacked coupling filters; The filter isolation layer includes two Bragg layers stacked adjacently, and the reflection directions of the two Bragg layers are facing away, so as to realize the isolation of signals between the adjacently stacked coupled filters; 其中,所述耦合型滤波器包括两个相邻堆叠的薄膜体声波谐振器,以及位于所述两个相邻堆叠的薄膜体声波谐振器之间的声学耦合层。Wherein, the coupled filter includes two adjacent stacked thin film bulk acoustic resonators, and an acoustic coupling layer located between the two adjacent stacked thin film bulk acoustic resonators. 2.根据权利要求1所述的多耦合型滤波器,其特征在于:所述布拉格层包括至少两层由声阻抗不同的声学材料制成的反射层。2. The multi-coupling filter according to claim 1, wherein the Bragg layer comprises at least two reflective layers made of acoustic materials with different acoustic impedances. 3.根据权利要求2所述的多耦合型滤波器,其特征在于:3. The multi-coupling filter according to claim 2, characterized in that: 所述反射层的厚度的取值范围为[n*85%,n*115%],n为频率等于第一频率的声信号在所述反射层对应的声学材料中波长的四分之一的奇数倍,所述第一频率为与布拉格层邻接的耦合型滤波器的中心频率。The value range of the thickness of the reflective layer is [n*85%, n*115%], n is a frequency equal to a quarter of the wavelength of the acoustic signal of the first frequency in the acoustic material corresponding to the reflective layer an odd multiple, the first frequency is the center frequency of the coupled filter adjacent to the Bragg layer. 4.根据权利要求2所述的多耦合型滤波器,其特征在于:所述布拉格层的各反射层的厚度的取值为频率等于第一频率的声信号在所述反射层对应的声学材料中波长的四分之一。4. The multi-coupling filter according to claim 2, characterized in that: the value of the thickness of each reflective layer of the Bragg layer is equal to the acoustic signal of the first frequency in the acoustic material corresponding to the reflective layer a quarter of the wavelength. 5.根据权利要求2所述的多耦合型滤波器,其特征在于:5. The multi-coupling filter according to claim 2, characterized in that: 所述布拉格层包括第一声波阻抗层和第二声波阻抗层,且第二声波阻抗层与第一声波阻抗层的特征声阻抗的差值大于等于3。The Bragg layer includes a first acoustic impedance layer and a second acoustic impedance layer, and the difference between the characteristic acoustic impedances of the second acoustic impedance layer and the first acoustic impedance layer is greater than or equal to 3. 6.一种串并联结合的多耦合型滤波器,其特征在于,包括至少两个如权利要求1至5任一项所述的多耦合型滤波器,所述多耦合型滤波器并联。6. A series-parallel combined multi-coupling filter, characterized in that it comprises at least two multi-coupling filters according to any one of claims 1 to 5, and the multi-coupling filters are connected in parallel.
CN200910194463.5A 2009-08-20 2009-08-20 Multi-coupling filter Active CN101997513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910194463.5A CN101997513B (en) 2009-08-20 2009-08-20 Multi-coupling filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910194463.5A CN101997513B (en) 2009-08-20 2009-08-20 Multi-coupling filter

Publications (2)

Publication Number Publication Date
CN101997513A CN101997513A (en) 2011-03-30
CN101997513B true CN101997513B (en) 2014-04-02

Family

ID=43787222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910194463.5A Active CN101997513B (en) 2009-08-20 2009-08-20 Multi-coupling filter

Country Status (1)

Country Link
CN (1) CN101997513B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124732B (en) * 2011-11-11 2014-12-31 Teknologian Tutkimuskeskus Vtt Laterally connected bulk wave filter with improved passband characteristics
CN102571027A (en) * 2012-02-27 2012-07-11 浙江瑞能通信科技有限公司 Film bulk acoustic resonator structure based on all metal Bragg reflection layer
CN109639251A (en) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 Bulk acoustic wave resonator and preparation method thereof, filter
DE102019102694B4 (en) * 2019-02-04 2020-10-08 RF360 Europe GmbH Electroacoustic component, RF filter and manufacturing process
CN110828441A (en) * 2019-10-18 2020-02-21 天津大学 Multiplexer
CN112383286B (en) * 2020-08-04 2021-09-21 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator assembly, method of manufacturing the same, filter, and electronic apparatus
CN114389561A (en) * 2021-12-21 2022-04-22 无锡市好达电子股份有限公司 Mixed structure acoustic wave device
CN119154833A (en) * 2024-09-11 2024-12-17 云际芯光(珠海)微电子有限公司 Solid-state assembly type bulk acoustic wave resonator and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852026A (en) * 2005-04-21 2006-10-25 富士通媒体部品株式会社 Filter and duplexer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852026A (en) * 2005-04-21 2006-10-25 富士通媒体部品株式会社 Filter and duplexer

Also Published As

Publication number Publication date
CN101997513A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US12191843B2 (en) Wide-band acoustically coupled thin-film BAW filter
CN101997513B (en) Multi-coupling filter
EP1998444B1 (en) Bulk acoustic wave device with coupled resonators
JP4523637B2 (en) A duplexer based on coupled BAW resonators
JP5229969B2 (en) Duplexer, communication module, and communication device
Yang et al. Advanced RF filters for wireless communications
JP5519326B2 (en) Filter, duplexer, communication module, communication device
US8902020B2 (en) Resonator filter with multiple cross-couplings
US20080297279A1 (en) Coupled Resonator Filter with a Filter Section
CN101297482A (en) Duplexer and communication equipment using the duplexer
CN108449068A (en) Duplexer
CN207853858U (en) Duplexer
CN102282764A (en) Filtering circuit with coupled baw resonators and having impedance matching adaptation
US7075214B2 (en) Piezoelectric resonator and electronic component provided therewith
JP2011217420A (en) Surface acoustic wave filter, antenna duplexer, high-frequency module using them, and communication apparatus
Shirakawa et al. A high isolation and high selectivity ladder-lattice BAW-SMR filter
CN108233891B (en) Duplexer
US20060087386A1 (en) Arrangement of lattice filter
Zuo et al. Single-ended-to-differential and differential-to-differential channel-select filters based on piezoelectric AlN contour-mode MEMS resonators
JP2006129131A (en) Balanced high-frequency filter, common utility antenna, and balanced high-frequency circuit
CN117375555A (en) Acoustic wave filter structure, filter and electronic equipment
CN117040467A (en) Bulk acoustic wave filter based on micro-support structure and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant