CN101972492B - 治疗体通道狭窄和预防危险的再狭窄的医学产品 - Google Patents
治疗体通道狭窄和预防危险的再狭窄的医学产品 Download PDFInfo
- Publication number
- CN101972492B CN101972492B CN201010532053.XA CN201010532053A CN101972492B CN 101972492 B CN101972492 B CN 101972492B CN 201010532053 A CN201010532053 A CN 201010532053A CN 101972492 B CN101972492 B CN 101972492B
- Authority
- CN
- China
- Prior art keywords
- coating
- balloon
- folding
- catheter
- activating agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 C*(**CC(Nc(c(C)c1)c(C)c(C(O)=O)c1I)=O)C(Nc(c(I)c(C(O)=O)c(I)c1)c1I)=O Chemical compound C*(**CC(Nc(c(C)c1)c(C)c(C(O)=O)c1I)=O)C(Nc(c(I)c(C(O)=O)c(I)c1)c1I)=O 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/80—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special chemical form
- A61L2300/802—Additives, excipients, e.g. cyclodextrins, fatty acids, surfactants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/02—Methods for coating medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M2025/0057—Catheters delivering medicament other than through a conventional lumen, e.g. porous walls or hydrogel coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
- A61M2025/1031—Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1088—Balloon catheters with special features or adapted for special applications having special surface characteristics depending on material properties or added substances, e.g. for reducing friction
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Anesthesiology (AREA)
- General Chemical & Material Sciences (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Child & Adolescent Psychology (AREA)
- Molecular Biology (AREA)
- Manufacturing & Machinery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
一种经涂布的导管球囊,其特征在于涂布有消炎活性剂、细胞抑制活性剂、细胞毒性活性剂、抗增殖活性剂、抗微管活性剂、抗血管生成活性剂、抗再狭窄活性剂、抗真菌活性剂、抗赘生活性剂、抗迁移活性剂、非血栓形成活性剂或抗血栓形成活性剂的至少一个与柠檬酸酯。
Description
技术领域
本发明涉及与生物体短期接触的医学装置,例如涂有至少一个含有至少一种抗增殖剂、免疫抑制剂、抗血管生成剂、消炎剂、杀真菌剂和/或抗血栓形成剂的层的球囊导管(balloon catheter),制造这些释放物质的辅助物的方法和这些医学装置用于预防受感染的体腔再狭窄的用途。
背景技术
从上世纪80年代末期以来,已开发出适应体腔的金属管状支架移植物以便更多地用于预防再狭窄,即预防脉管再闭塞,这种移植物从内部向脉管壁施压。当时深入寻求将这些称为支架的移植物进一步发展成为药物涂布的“药物洗脱支架”,因为所述药物洗脱支架与未涂布的支架相比在使再狭窄速率最小化方面具有积极作用。
这些长期植入物取代从60年代以来所进行的连续PCTA(经皮冠状动脉血管成形术)且现今已用于大部分所执行的介入术,这是因为未涂布的支架的再闭塞速率在数种病例中都低于执行PCTA后复发的闭塞。
在成功实现药物洗脱支架后,从早期使用球囊导管中的支架来预防冠状动脉再狭窄以来,已研究混合型机械和化学预防的概念且将其以不同种类用于临床研究中。
然而,负载药物的球囊导管无法胜过支架。原因很明显:
在PCTA中,闭塞部分借助于导管尖端的可充气球囊而在1到3分钟的很短时间内扩展,必要时重复两次以上。于此,必须以去除闭塞的方式过度拉伸脉管。根据这一程序,微小损伤都将导致脉管壁扩展到外膜。在去除导管后,仅留下受损脉管,以致需要相当高效的愈合过程,而这依赖于由持续时间引起的受损伤程度、过度拉伸的重复次数和程度。这反映为PCTA后的较高再闭塞速率。
在支架植入中,使用球囊导管作为运输和植入辅助物,以致于此同样发生脉管壁的过度拉伸,但在这一情况下,仅在支架膨胀时需要过度拉伸。如果支架已不可改变地固定在恰当位置,那么再将球囊放气并可去除球囊。因此,此时过度拉伸的时间减少。再狭窄速率的减小展示尽管向体内引入外源物质,但支架中所述减少的过度拉伸时间和同样减小的过度拉伸程度可使得后处理速率减小。这一具有前景的进展并未给进一步优化PCTA留下很多空间,因为我们有信心相信作为永久植入物的支架有希望将我们带到新的优选不再有再狭窄的时代,时至今日,这些支架已得到优先使用。PTCA仅在不太严重的病例以及尤其严重的病例中优先于支架植入来执行。支架历史的下一个目标是100%保证预防再狭窄。因此,已提出将对理想药物和理想的优选生物可降解的支架的组合进行探索。在最初数天和数周期间,主要借助于优选抗增殖剂、免疫抑制剂和/或消炎剂和其同样活性的衍生物/类似物以及代谢物来实现细胞反应的抑止。活性剂和/或活性剂的组合在本文中以切合实际的方式用于伤口愈合或其维持。
球囊导管近来所经历的改进迄今主要与精确和安全地放置支架的能力相关。PCTA作为独立的方法已广泛被取代。
但当使用PCTA时,也存在优于支架的优点,相当重要的原因是因此在执行治疗后,生物体中决不存在外源物体作为后遗症(如再狭窄)的外加应力因素或引发剂。因此,迄今仍与80年代后期进行的药物释放球囊导管的研究相关。
因此,例如描述球囊导管的不同实施例,其中与环境直接接触的外表面具有开口,在膨胀期间活性剂液体或溶解的活性剂在压力下通过这些开口向脉管壁施压(例如,描述于US 5,087,244、US 4,994,033、US 4,186745中)。
举例来说,EP 0 383 429 A揭示一种具有细小开口的球囊导管,在膨胀期间肝素溶液通过这些细小开口释放到脉管壁上。
数个缺点导致对狭窄的无外源物体治疗的取舍悬而未决,所述缺点如脉管壁中活性剂的吸收较慢,对剂量失去控制,关于球囊材料存在问题等。无论是否具有聚合物基质,类似于支架的具有活性剂的涂布球囊同样引起问题,一方面,接触时间短且因此从导管向其环境的物质释放较少,且另一方面,在膨胀之前和膨胀期间将球囊上的涂层无损伤地送到其目的地相当困难。
就在最近,释放物质的球囊导管已变成支架的替代物(CardioNews Letter,04-21-2006)。其涉及浸渍在太平洋紫杉醇和放射造影剂(radiocontrastmedium)的溶液中的球囊导管,与未涂布的球囊导管相比,其在一年期临床研究中使再狭窄速率从40%降低到9%。举例来说,WO 2004 28582 A1中揭示所述球囊导管。虽然这些最初结果似乎很有前景,但所述治疗的典型问题尚未克服。
虽然通过涂布造影剂来实现光学分辨在任何情况下都是有利的,但执行PTCA后在作用位点处有效释放和溶解的活性剂的量仍视个体而定且不受控制,这是因为将球囊导管引入从腹股沟开始直到心脏的血流中后,有难以估量的部分的涂层脱落。另外,在球囊膨胀期间,也有其它部分的涂层脱落且被血流从表面带走。因此,涂覆在球囊导管上的活性剂的浓度的一部分不能到达感染位点,而可简单地将其视为无效静脉内投药。丢失部分的量无法进行控制且因此不能用于感染位点处的最佳提供。留在球囊导管上的活性剂必须足以实现有前景的疗法,但不确定实际上有多少物质到达其靶点并被脉管壁吸收。
因此,用所述球囊导管来替代无支架再狭窄治疗将产生新颖的有效且可控制的途径。
此外,导管球囊的常规浸涂或喷涂方法具有一个重大缺点,即永远不能确定实际上有多少物质被涂覆到球囊表面上,其基本上导致明显的药物过量。此外,在事务监管中且为获得销售许可,提供可精确确定物质量的明确球囊涂层变得尤为重要。在涂布溶液中浸渍球囊导管数次或将球囊暴露在涂布溶液的喷雾流或喷雾薄雾中的常规方法无法产生可重现的结果,因此不可能涂覆确定的物质量。
发明内容
本发明的目标在于提供一种球囊导管涂布方法,其中可精确地确定所涂覆涂层的量,并因此确定所涂覆物质的量。
本发明的另一个目标在于提供一种释放物质的球囊导管和其它在生物体中短期使用的医学装置,所述装置确保在短期暴露期间物质受控地且最佳地转移到脉管壁上且进入其中以诱导积极治愈过程。
因此,一方面,必须确保活性剂在其到达靶位点的途中不被体液从医学装置上冲掉或在膨胀时最迟破碎,且因此不确定或不充足的物质量到达靶。另一方面,极其有限的暴露时间必须足以将确定剂量的物质从导管转移到脉管壁上或进入其中。
本发明的独立权利要求的教示实现这一目标。本发明的其它有利的实施例由从属权利要求、说明书和实例产生。
根据本发明,通过用确定量的药理学活性剂涂布球囊导管的特定球囊导管涂布方法来实现所述目标,其中所述涂布方法使用具有体积测量系统的涂布装置,所述体积测量系统借助于释放装置将可测量的量的涂布溶液特定释放到球囊导管的表面上。
对于体积测量系统,可使用任何能够提供所测量的量的涂布溶液或能够测量或显示所释放的涂布溶液的量的装置。最简单的体积测量系统是显示器(gamut)、带刻度的移液管、带刻度的滴定管、带刻度的容器、带刻度的空腔以及泵、阀门、注射器或其它能够提供、传送或释放所测量的量的涂布溶或测量和/或显示所释放的涂布溶液的量。因此,体积测量系统用于测定或测量从释放装置转移到球囊导管表面的涂布溶液的量,且因此用于测定或测量物质的量。
涂布溶液含有至少一种药理学活性剂以及至少一种转运剂(transportagent)、柠檬酸酯、造影剂、聚合物、多糖、肽、核苷酸、油、脂肪、蜡、脂肪酸、脂肪酸酯、水凝胶、盐、溶剂、药理学上可接受的佐剂或上述物质的混合物。本文中详细描述涂布溶液的可能的成分。
然而,涂布装置的关键组件是释放装置,所述释放装置可以喷嘴、多个喷嘴、线、线网、纺织品片、皮革条、海绵、球、注射器、针、插管或毛细管形式实现。根据释放装置的实施例,得出一些可修改的涂布方法,这些方法都基于以下原理:将可测量或预定的物质量转移到球囊导管的表面上,从而产生具有确定的物质浓度或量的涂层并以小偏差提供可重现涂层,而常规浸渍法或喷涂法无法做到这一点。为区分各方法,本文中使用某些术语,如喷射法(squirting method)、移液法(pipetting method)、毛细管法、折叠式喷涂法(fold spray method)、拖涂法(drag method)、线拖涂法(thread drag method)或滚涂法(roll method),这些方法是本发明的优选实施例。
根据本发明的方法与根据本发明的装置都是通过使用球作为释放装置而产生。相应的方法在本文中称为滚涂法,且相应的装置具有球,所述球具有向其中引入涂布溶液的引导管(lead)。借助于控制,优选光控制,使球与导管球囊的表面接触。通过阀门或由于球囊表面对球的压力,涂布溶液从空腔或体积测量系统中流出并流到球上。球在导管球囊的表面上滚动,且因此驱动导管球囊的表面,其中添加到球上的涂布溶液被从球转移到导管球囊的表面。
借助于所述装置和使用这种滚涂法,可完全或仅部分地涂布呈放气或充气状态的导管球囊。举例来说,可特定地驱动导管球囊并在其充气或部分充气状态下在加宽的折叠区域中进行涂布,其中涂层在放气后仍位于折叠上(即,折叠起来),因此可获得折叠的特定涂层。为避免球损坏球囊或球囊物质,这一物质优选为类似橡胶的,例如天然橡胶或其它聚合物。
下文中详细地提及其它优选涂布方法。
本发明特定涉及具有物质释放涂层的经涂布的导管球囊。
对于导管球囊,可使用常规导管球囊、分支球囊以及折叠球囊或特殊球囊。
术语导管球囊或常规导管球囊是指所述通常用于借助于膨胀来放置支架的可膨胀导管球囊。此外,其也是指用于支架放置的不可膨胀的导管球囊,所述球囊适合自展开支架且支架上携带可去除的包装纸以避免支架提前展开。
然而,如在用于自展开支架的不可膨胀的导管球囊中,具有包装纸的可展开且可再压缩的导管球囊通常在无支架的情况下使用以保护导管球囊上的涂层免于提前去除。
分叉球囊是指用于治疗脉管、尤其血管分叉的导管球囊。所述球囊可具有两个臂或由两个联合的球囊或两个分开的球囊组成,所述臂或球囊同时或相继地用于治疗脉管分叉,或用于在脉管分叉中或在脉管分叉紧邻处放置一个或两个支架。
折叠球囊是指如在(例如)EP 1189553B1、EP 0519063B1、WO 03/059430A1及WO 94/23787A1中所述的球囊,其在球囊的压缩状态下具有“折叠”,当展开球囊时,所述“折叠”至少部分地张开。
特殊球囊是指具有在展开期间或施压时允许液体和溶液穿过的小孔、尤其微孔的球囊。EP 383 429 A中揭示所述具有微孔的球囊。此外,术语特殊球囊也是指WO 02/043796A2中描述的具有特别设计的具微针表面的球囊,或是指WO 03/026718A1中揭示的具有用于包埋活性剂(含或不含载体物质)的微米级未加工表面或纳米级未加工表面的导管球囊。
术语球囊或导管球囊基本上是指每种可展开且可再压缩以及临时可充气的医学装置,其通常与导管一起使用。
根据本发明的经涂布的球囊可在无支架的情况下使用或与卷曲支架一起使用。其用途不限于狭窄脉管的初始治疗,而且其也尤其适用于成功对抗发生的再狭窄(例如,支架内再狭窄(in-stent-restenosis)和复发性再闭塞。
导管球囊可由当前材料、尤其如下文进一步描述的聚合物且具体来说聚酰胺组成,所述材料例如PA 12、聚酯、聚氨酯、聚丙烯酸酯、聚醚等。
同样,支架也可由当前材料组成,例如医学不锈钢、钛、铬、钒、钨、钼、金、镍钛合金(Nitinol)、镁、铁、上述金属的合金,以及聚合物材料,例如壳聚糖、类肝素(heparane)、聚羟基丁酸酯(PHB)、聚甘油酯、聚交酯和上述材料的共聚物。
根据本发明的经涂布的导管球囊优选在无连接支架的情况下使用,但也有可能与卷曲支架一起使用。如果除经涂布的球囊以外,还使用连接的卷曲支架,那么所述支架可为裸露的或同样经涂布,其中支架可具有不同于导管球囊的涂层的涂层以及不同活性剂。
术语涂层不仅应包括导管球囊表面的涂层,而且应包括在球囊材料上、球囊材料之间或球囊材料内的折叠、空腔、小孔、微针或其它可填充空间的填充物或涂层。
涂层可以一个或一个以上步骤进行涂覆,具有一个或一个以上的层,由一种材料或不同活性剂的组合物组成,且含有优选一种或一种以上活性剂。对于活性剂或活性剂的组合,消炎物质、细胞抑制物质、细胞毒性物质、抗增殖物质、抗微管物质(anti-microtubuli substance)、抗血管生成物质、抗再狭窄物质、抗真菌物质、抗赘生物质、抗迁移物质(antimigrative substance)、非血栓形成物质(athrombogenic substance)或抗血栓形成物质(antithrombogenic substance)都是合适的。
对于其它消炎物质、细胞抑制物质、细胞毒性物质、抗增殖物质、抗微管物质、抗血管生成物质、抗再狭窄物质、抗真菌物质、抗赘生物质、抗迁移物质、非血栓形成物质或抗血栓形成物质,优选可使用:血管扩张剂、西罗莫司(sirolimus)(雷帕霉素(rapamycin))、生长抑素(somatostatin)、他克莫司(tacrolimus)、罗红霉素(roxithromycin)、都奈霉素(dunaimycin)、子囊霉素(ascomycin)、巴佛洛霉素(bafilomycin)、红霉素(erythromycin)、美迪加霉素(midecamycin)、交沙霉素(josamycin)、考卡安霉素(concanamycin)、克拉霉素(clarithromycin)、醋竹桃霉素(troleandomycin)、多叶霉素(folimycin)、西立伐他汀(cerivastatin)、辛伐他汀(simvastatin)、洛伐他汀(lovastatin)、氟伐他汀(fluvastatin)、罗素他汀(rosuvastatin)、阿托伐他汀(atorvastatin)、普伐他汀(pravastatin)、匹伐他汀(pitavastatin)、长春花碱(vinblastine)、长春新碱(vincristine)、长春地辛(vindesine)、长春瑞宾(vinorelbine)、依托泊苷(etoposide)、替尼泊苷(teniposide)、尼莫司汀(nimustine)、卡莫司汀(carmustine)、洛莫司汀(lomustine)、环磷酰胺(cyclophosphamide)、4-羟基环磷酰胺(4-hydroxycyclophosphamide)、雌莫司汀(estramustine)、美法仑(melphalan)、异环磷酰胺(ifosfamide)、曲洛磷胺(trofosfamide)、苯丁酸氮芥(chlorambucil)、苯达莫司汀(bendamustine)、达卡巴嗪(dacarbazine)、白消安(busulfan)、丙卡巴肼(procarbazine)、曲奥舒凡(treosulfan)、替莫唑胺(temozolomide)、塞替派(thiotepa)、柔红霉素(daunorubicin)、多表比星(doxorubicin)、阿柔比星(aclarubicin)、表柔比星(epirubicin)、米托蒽醌(mitoxantrone)、伊达比星(idarubicin)、博莱霉素(bleomycin)、丝裂霉素(mitomycin)、放线菌素D(dactinomycin)、甲氨喋呤(methotrexate)、氟达拉滨(fludarabine)、氟达拉滨-5′-二氢磷酸盐(fludarabine-5′-dihydrogenephosphate)、克拉屈滨(cladribine)、巯基嘌呤(mercaptopurine)、硫鸟嘌呤(thioguanine)、阿糖胞苷(cytarabine)、氟尿嘧啶(fluorouracil)、吉西他滨(gemcitabine)、卡培他滨(capecitabine)、多西他滨(docetaxel)、卡铂(carboplatin)、顺铂(cisplatin)、奥克赛铂(oxaliplatin)、安吖啶(amsacrine)、伊立替康(irinotecan)、拓朴替康(topotecan)、羟基脲(hydroxycarbamide)、米替福新(miltefosine)、喷司他汀(pentostatin)、阿地白介素(aldesleukin)、维A酸(tretinoin)、天冬酰胺酶(asparaginase)、培门冬酶(pegaspargase)、阿那曲唑(anastrozole)、依西美坦(exemestane)、来曲唑(letrozole)、福美司坦(formestane)、氨鲁米特(aminoglutethimide)、阿霉素(adriamycin)、阿奇霉素(azithromycin)、螺旋霉素(spiramycin)、千金藤碱(cepharantin)、8-α-麦角灵(8-α-ergoline)、二甲基麦角灵(dimethylergoline)、田麦角碱(agroclavin)、1-烯丙基麦角乙脲(1-allylisurid)、1-烯丙基特麦角脲(1-allyltergurid)、溴麦角脲(bromergurid)、溴隐亭(bromocriptin)((5′α)-2-溴-12′-羟基-2′-(1-甲基乙基)-5′-(2-甲基丙基)-麦角胺-3′,6′,18-三酮)、野麦角碱(elymoclavin)、麦角克碱(ergocristin)((5′-α)-12′-羟基-2′-(1-甲基乙基)-5′-(苯基甲基)-麦角胺-3′,6′,18-三酮)、麦角异克碱(ergocristinin)、麦角柯宁碱(ergocornin)((5′-α)-12′-羟基-2′,5′-双(1-甲基乙基)-麦角胺-3′,6′,18-三酮)、麦角异柯宁碱(ergocorninin)、麦角隐亭(ergocryptin)((5′α)-12′-羟基-2′-(1-甲基乙基)-5′-(2-甲基丙基)-麦角胺-3′,6′,18-三酮(9CI))、麦角隐宁(ergocryptinin)、麦角新碱(ergometrin)、麦角诺文(ergonovin)(麦角巴辛(ergobasin),INN:麦角新碱、(8β(S))-9,10-二脱氢-N-(2-羟基-1-甲基乙基)-6-甲基-麦角灵-8-甲酰胺)、麦角生碱(ergosin)、麦角异生碱(ergosinin)、麦角异新碱(ergotmetrinin)、麦角胺(ergotamin)((5′-α)-12′-羟基-2′-甲基-5′-(苯基甲基)-麦角胺-3′,6′,18-三酮(9CI))、麦角异胺(ergotaminin)、麦角缬碱(ergovalin)((5′α)-12′-羟基-2′-甲基-5′-(1-甲基乙基)-麦角胺-3′,6′,18-三酮)、麦角腈(lergotril)、麦角乙脲(lisurid)(CAS编号:18016-80-3,3-(9,10-二脱氢-6-甲基麦角灵-8α-基)-1,1-二乙基脲)、麦角醇(lysergol)、麦角酸(lysergic acid)(D-麦角酸)、麦角酰胺(lysergic acid amide)(LSA,D-麦角酰胺)、麦角酰二乙胺(lysergic acid diethylamide)(LSD,D-麦角酰二乙胺,INN:麦角酰胺、(8β)-9,10-二脱氢-N,N-二乙基-6-甲基-麦角灵-8-甲酰胺)、异麦角酸(isolysergic acid)(D-异麦角酸)、异麦角酰胺(isolysergic acid amide)(D-异麦角酰胺)、异麦角酰二乙胺(isolysergic aciddiethylamide)(D-异麦角酰二乙胺)、美舒麦角(mesulergin)、甲麦角林(metergolin)、甲麦角新碱(methergin)(INN:甲基麦角新碱(methylergometrin),(8β(S))-9,10-二脱氢-N-(1-(羟基甲基)丙基)-6-甲基-麦角灵-8-甲酰胺)、甲基麦角新碱、美西麦角(methysergid)(INN:美西麦角,(8β)-9,10-二脱氢-N-(1-(羟基甲基)丙基)-1,6-二甲基-麦角灵-8-甲酰胺)、硫丙麦角林(pergolid)((8β)-8-((甲硫基)甲基)-6-丙基-麦角灵)、丙麦角脲(protergurid)和特麦角脲(tergurid)、塞来昔布(celecoxip)、沙利度胺(thalidomid)、法舒地尔环孢素(ciclosporin)、smc增殖抑制剂-2w、埃坡霉素(epothilone)A和B、米托蒽醌(mitoxantrone)、咪唑硫嘌呤(azathioprine)、霉酚酸酯(mycophenolatmofetil)、c-myc-反义分子、b-myc-反义分子、桦木酸(betulinic acid)、喜树碱(camptothecin)、PI-88(硫酸寡糖)、促黑素细胞激素(α-MSH)、活化蛋白质C、IL1-β-抑制剂、胸腺素α-1、富马酸和其酯、卡泊三醇(calcipotriol)、他卡西醇(tacalcitol)、拉帕醇(lapachol)、β-拉帕酮(β-lapachone)、鬼臼毒素(podophyllotoxin)、桦木醇(betulin)、鬼臼酸2-乙酰肼、莫拉司亭(molgramostim)(rhuGM-CSF)、聚乙二醇化干扰素α-2b、来格司亭(lanograstim)(r-HuG-CSF)、非格司亭(filgrastim)、聚乙二醇(macrogol)、达卡巴嗪(dacarbazin)、巴利昔单抗(basiliximab)、达利珠单抗(daclizumab)、选择蛋白(selectin)(细胞因子拮抗剂)、CETP抑制剂、钙粘附蛋白(cadherine)、细胞分裂素抑制剂、COX-2抑制剂、NFkB、血管抑肽、环丙沙星(ciprofloxacin)、喜树碱、氟巴拉司汀(fluroblastin)、抑制肌细胞增殖的单克隆抗体、bFGF拮抗剂、丙丁酚(probucol)、前列腺素、1,11-二甲氧基卡西-6-酮、1-羟基-11-甲氧基卡西-6-酮、斯考普莱叮(scopolectin)、秋水仙素(colchicine)、NO供体(诸如季戊四醇四硝酸酯和斯得酮亚胺(syndnoeimine))、S-亚硝基衍生物、他莫昔芬(tamoxifen)、星形孢菌素(staurosporine)、β-雌二醇(β-estradiol)、α-雌二醇(α-estradiol)、雌三醇(estriol)、雌酮(estrone)、炔雌醇(ethinylestradiol)、磷雌酚(fosfestrol)、甲羟孕酮(medroxyprogesterone)、环戊丙酸雌二醇(estradiol cypionate)、苯甲酸雌二醇(estradiol benzoate)、曲尼司特(tranilast)、尾叶香茶菜丙素(kamebakaurin)和其它应用于癌症疗法中的类萜(terpenoid)、维拉帕米(verapamil)、酪氨酸激酶抑制剂(替伏汀(tyrphostine))、环孢素(cyclosporine)A和B、太平洋紫杉醇(paclitaxel)和其衍生物(诸如6-α-羟基-太平洋紫杉醇)、浆果赤霉素(baccatin)、克癌易(taxotere)、合成产生的二氧化三碳大环寡聚物(MCS)和其衍生物以及从天然来源获得的这类物质、莫非布宗(mofebutazone)、阿西美辛(acemetacin)、双氯芬酸(diclofenac)、氯那唑酸(lonazolac)、氨苯砜(dapsone)、邻卡巴芬乙酸(o-carbamoylphenoxyacetic acid)、利多卡因(lidocaine)、酮基布洛芬(ketoprofen)、甲芬那酸(mefenamic acid)、吡罗昔康(piroxicam)、美侬西康(meloxicam)、磷酸氯喹(chloroquine phosphate)、青霉胺(penicillamine)、特姆司汀(tumstatin)、阿瓦司汀(avastin)、D-24851、SC-58125、羟氯喹(hydroxychloroquine)、金诺芬(auranofin)、金硫丁二钠(sodium aurothiomalate)、奥沙西罗(oxaceprol)、塞来昔布(celecoxib)、β-谷甾醇(β-sitosterin)、腺苷蛋氨酸(ademetionine)、麦替卡因(myrtecaine)、聚多卡醇(polidocanol)、诺香草胺(nonivamide)、左薄荷脑(levomenthol)、苯佐卡因(benzocaine)、七叶皂苷(aescin)、玫瑰树碱(ellipticine)、D-24851(Calbiochem)、秋水仙酰胺(colcemid)、细胞分裂抑素(cytochalasin)A-E、印达诺因(indanocine)、诺考达唑(nocodazole)、S 100蛋白质、杆菌肽(bacitracin)、玻连蛋白(vitronectin)受体拮抗剂、氮卓司汀(azelastine)、胍基环化酶刺激剂、金属蛋白酶-1和金属蛋白酶-2的组织抑制剂、游离核酸、并入病毒递质中的核酸、DNA和RNA片段、纤溶酶原活化剂抑制剂-1、纤溶酶原活化剂抑制剂-2、反义寡核苷酸、VEGF抑制剂、IGF-1、来自抗生素族群的活性剂(诸如头孢羟胺苄(cefadroxil)、头孢唑林(cefazolin)、头孢克洛(cefaclor)、头孢替辛(cefotixin)、妥布霉素(tobramycin)、庆大霉素(gentamycin))、青霉素(penicillin)(诸如双氯青霉素(dicloxacillin)、苯唑青霉素(oxacillin))、磺酰胺、甲硝唑(metronidazol)、抗血栓形成物质(诸如阿加曲班(argatroban))、阿司匹林(aspirin)、阿昔单抗(abciximab)、合成抗凝血酶、比伐卢定(bivalirudin)、香豆定(coumadin)、依诺肝素(enoxaparin)、脱硫和N-再乙酰化的肝素、组织型纤溶酶原活化剂、GpIIb/IIIa血小板膜受体、因子Xa抑制剂抗体、白细胞介素抑制剂、肝素、水蛭素(hirudin)、r-水蛭素、PPACK、鱼精蛋白(protamine)、2-甲基噻唑烷-2,4-二甲酸钠盐、尿激酶原、链激酶、华法林(warfarin)、尿激酶、血管扩张剂(诸如双嘧达莫(dipyramidole)、曲匹地尔(trapidil)、硝普盐(nitroprusside))、PDGF拮抗剂(诸如三唑并嘧啶和色拉明(seramin))、ACE抑制剂(诸如卡托普利(captopril)、西拉普利(cilazapril)、赖诺普利(lisinopril)、依那普利(enalapril)、洛沙坦(losartan))、硫蛋白酶抑制剂、前列环素(prostacyclin)、伐哌前列素(vapiprost)、干扰素(interferon)α、β和γ、组胺拮抗剂、血清素阻断剂、细胞凋亡抑制剂、细胞凋亡调节剂(诸如p65、NF-kB或Bcl-xL反义寡核苷酸)、常山酮(halofuginone)、硝苯地平(nifedipine)、生育酚(tocopherol)、维生素(vitamin)B1、B2、B6和B12、叶酸、曲尼司特(tranilast)、吗多明(molsidomine)、茶多酚(tea polyphenol)、没食子酸表儿茶素(epicatechingallate)、没食子酸表焙儿茶素(epigallocatechin gallate)、乳香酸(Boswellicacid)和其衍生物、来氟米特(leflunomide)、阿那白滞素(anakinra)、依那西普(etanercept)、柳氮磺吡啶(sulfasalazine)、依托泊苷(etoposide)、双氯青霉素、四环素(tetracycline)、曲安西龙(triamcinolone)、突变霉素(mutamycin)、普鲁卡因胺(procainamid)、D24851、SC-58125、视黄酸(retinoicacid)、奎尼定(quinidine)、丙吡胺(disopyramide)、氟卡尼(flecainide)、普罗帕酮(propafenone)、索他洛尔(sotalol)、胺碘酮(amidorone)、天然类固醇和合成制备的类固醇(诸如落地生根毒素(bryophyllin)A、引托二醇(inotodiol)、马奎罗德(maquirosid)A、格哈诺德(ghalakinosid)、曼索宁(mansonin)、斯屈洛德(streblosid)、氢化可的松(hydrocortisone)、倍他米松(betamethasone)、地塞米松(dexamethasone))、非类固醇物质(NSAIDS)(诸如非诺洛芬(fenoprofen)、布洛芬(ibuprofen)、吲哚美辛(indomethacin)、萘普生(naproxen)、苯基丁氮酮(phenylbutazone))和其它抗病毒剂(诸如阿昔洛韦(acyclovir)、更昔洛韦(ganciclovir)和齐多夫定(zidovudine))、抗霉菌素(诸如克霉唑(clotrimazole)、氟胞嘧啶(flucytosine)、灰黄霉素(griseofulvin)、酮康唑(ketoconazole)、咪康唑(miconazole)、制霉菌素(nystatin)、特比萘芬(terbinafine))、抗原虫药剂(诸如氯喹(chloroquine)、甲氟喹(mefloquine)、奎宁(quinine)),此外天然类萜,诸如七叶树科秦皮甲素(hippocaesculin)、玉蕊精醇-C21-当归酸酯(barringtogenol-C21-angelate)、14-脱氢阿格斯踏秦(14-dehydroagrostistachin)、阿格斯克因(agroskerin)、阿格斯踏秦(agrostistachin)、17-羟基阿格斯踏秦(17-hydroxyagrostistachin)、卵二醇脂(ovatodiolid)、4,7-氧基环防风草酸(4,7-oxycycloanisomelic acid)、类亚马逊巴香草(baccharinoid)B1、B2、B3和B7、土贝母皂甙(tubeimoside)、鸦胆醇(bruceanol)A、B和C、鸦胆亭甙(bruceantinoside)C、鸦胆子甙(yadanzioside)N和P、异脱氧地胆草素(isodeoxyelephantopin)、白花地胆草内酯(tomenphantopin)A和B、姜花素(coronarin)A、B、C和D、熊果酸(ursolic acid)、海普酸(hyptatic acid)A、何帕二醇(zeorin)、异鸢尾醛(iso-iridogermanal)、变叶美登木醇(maytenfoliol)、香茶菜宁(effusantin A)、香茶菜素(excisanin)A和B、长管贝壳杉素(longikaurin)B、黄花香茶菜素(sculponeatin)C、卡美巴宁(kamebaunin)、留卡美宁(leukamenin )A和B、13,18-脱氢-6-α-异戊烯酰基氧基查巴因(13,18-dehydro-6-α-senecioyloxychaparrin)、美丽红豆杉(taxamairin)A和B、莱吉尼醇(regenilol)、雷公藤甲素(triptolide)、此外加拿大麻甙(cymarin)、毒毛旋花甙元(apocymarin)、乌兜铃酸(aristolochic acid)、安诺普因(anopterin)、羟基安诺普因(hydroxyanopterin)、白头翁素(anemonin)、原白头翁素(protoanemonin)、黄连素(berberine)、氯化车利布因(cheliburinchloride)、西西毒素(cictoxin)、青藤碱(sinococuline)、溴布莱司汀(bombrestatin)A和B、柏双黄酮(cudraisoflavone)A、姜黄素(curcumin)、二氢两面针碱(dihydronitidine)、氯化两面针碱(nitidine chloride)、12-β-羟基孕甾二烯-3,20-二酮、银杏酚(bilobol)、白果酚(ginkgol)、白果酸(ginkgolicacid)、土木香灵(helenalin)、大尾摇碱(indicine)、大尾摇碱-N-氧化物(indicine-N-oxide)、毛果天芥菜碱(lasiocarpine)、桦褐孔菌醇(inotodiol)、葡萄糖甙1a(glycoside 1a)、鬼臼毒素(podophyllotoxin)、爵床素(justicidin)A和B、拉莱亭(larreatin)、金属特因(malloterin)、金属托氯曼酚(mallotochromanol)、异丁酰基(isobutyrylmallotochromanol)、马奎罗甙(maquiroside)A、地钱素(marchantin)A、美登素(maytansine)、利科瑞辛(lycoridicin)、石蒜西定(margetine)、水鬼蕉碱(pancratistatin)、鹅掌楸碱(liriodenine)、氧黄心树宁碱(oxoushinsunine)、马兜铃内酰胺-AII(aristolactam-AII)、双小白菊内酯(bisparthenolidine)、北五加皮甙(periplocoside)A、加拉基诺苷(ghalakinoside)、熊果酸(ursolic acid)、脱氧鳞精素(deoxypsorospermin)、心理霉素(psychorubin)、蓖麻毒素(ricin)A、血根碱(sanguinarine)、漫无无小麦酸(manwu wheat acid)、甲基叶含珍珠梅甙(methylsorbifolin)、芸香色烯(sphatheliachromen)、百金菊叶绿素(stizophyllin)、曼索宁(mansonine)、鹊肾树甙(strebloside)、阿卡吉因(akagerine)、二氢乌撒巴辛(dihydrousambarensine)、羟基乌撒巴林(hydroxyusambarine)、石鼠素戊胺(strychnopentamine)、石鼠素叶绿素(strychnophylline)、乌撒巴林(usambarine)、乌撒巴辛(usambarensine)、黄连素(berberine)、鹅掌楸碱(liriodenine)、氧黄心树宁碱(oxoushinsunine)、西瑞香素(daphnoretin)、落叶松脂素(lariciresinol)、甲氧基落叶松脂素(methoxylariciresinol)、丁香脂素(syringaresinol)、伞形花内酯(umbelliferon)、阿夫罗摩辛(afromoson)、乙酰基维明酮(acetylvismione)B、去乙酰基维明酮(desacetylvismione)A、维明酮(vismione)A和B以及诸如半胱氨酸等含硫氨基酸,以及以上所提及的活性剂的盐、水合物、溶剂化物、对映异构体、外消旋体、对映异构混合物、非对映异构混合物、代谢物、前药和混合物。
可使用基本上任何活性剂以及活性剂的组合,然而其中优选太平洋紫杉醇和太平洋紫杉醇衍生物、紫杉烷、多烯紫杉醇(docétaxel)以及雷帕霉(pimecrolimus)、依维莫司(everolimus)、左他莫司(zotarolimus)、他克莫司(tacrolimus)、法舒地尔和埃坡霉素,且尤其优选太平洋紫杉醇和雷帕霉素。
已知太平洋紫杉醇的商标名称是紫杉醇且化学名称为[2aR-[2a,4,4a,6,9(R*,S*),11,12,12a,12b]]-(苯甲酰氨基)-羟基苯甲酰丙酸(hydroxybenzolpropionic acid)-6,12b-双-(乙酰氧基)-12-(苯甲酰氧基)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-十二氢-4,11-二羟基-4a,8,13,13-四甲基-5-氧代-7,11-亚甲基-1H-环癸[3,4]苯并[1,2-b]乙氧-9-基-酯。
雷帕霉素也称为雷帕鸣(Rapamun),或国际非专利名称(INN)西罗莫司,以及IUPAC名称[3S-[3R*[E(1S*,3S*,4S*)],4S*,5R*,8S*,9E,12R*,14R*,15S*,16R*,18S*,19S*,26aR*]]-5,,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-十六-氢-5,19-二羟基-3-[2-(4-羟基-3-甲氧基环已基)-1-甲基乙烯基]-14,16-二甲氧基-4,10,12,18-四甲基-8-(2-丙烯基)-15,19-环氧-3H-吡啶并[2,1-c][1,4]-氧氮杂环-二十三烯-1,7,20,21(4H,23H)-四酮一水化物。
前药是指药理学活性化合物的初期阶段,其在生理条件下变成活性化合物。
活性剂或活性剂的组合优选在短期植入物的有限暴露时间期间借助于转运剂或伴随其自身的转运介体以足够浓度到达其靶位点。
如已提及,现有技术的实施例的主要问题在于在膨胀时间最长1分钟且可能在某个暂停后数次重复膨胀且优选最长45秒且尤其优选最长30秒的情况下,将足够的物质量转移到狭窄或再狭窄或血栓形成的脉管部分上,以致在无支架放置的膨胀中也阻碍脉管部分的再狭窄或再闭塞。因为随着暴露时间(即膨胀时间)增长,心脏病发作的风险也增加,所以仅留出一段较短的时间将物质转移到脉管壁上或转移到脉管壁中。此外,在无支架的“生物支架放置”中,重复展开和再压缩导管球囊以临时确保至少微量血流也很关键,这是因为在导管球囊的首次展开期间大部分活性剂已被释放且其它膨胀无法再促进将大量物质转移到脉管壁上。
因此,需要在相对较短时间内以受控方式将相对较高的量的物质转移到脉管壁上和/或转移到脉管壁中的特殊涂层。
转运介体
为增加物质转移,优选使用所谓的转运介体或转运加速剂,然而,这些转运介体或加速剂可为活性剂本身。
特别关注根据本发明的实施例,其含有低分子化合物作为加速或促进将活性剂吸收到脉管壁中的转运介体,以致本发明活性剂或活性剂的组合可在短暴露时间期间以受控方式和预定剂量通过细胞膜转运到细胞溶质中。
本文中,转运加速剂也可充当载体。可能有以下数种选项:在活性剂与载体之间已存在键联且所述键联在进入细胞后裂解,或在穿过膜时在膜外部形成键联且所述键联此后会再次裂解,或载体与活性剂形成一个实体,这个实体在细胞溶质中也继续存在,但不会负面影响活性剂的效力。
这些性质如下显示:物质直接与细胞膜的脂质双层、与细胞膜上的受体相互作用或经由充当载体或通道(离子泵)的膜转运蛋白进入细胞溶质,在所述膜转运蛋白中其改变膜电位且因此改变细胞膜渗透性。因此,促进或加速将活性剂吸收到细胞中。
基本上,物质通过膜扩散到细胞中的能力直接与物质大小相对应。较小分子比较大分子容易穿过。具有较少数目的氢桥键的分子相应地也比急于形成氢桥的分子更快扩散。分子的极性也很重要。考虑到这些事实,可使用许多合成、半合成和天然物质以使得最佳出现活性剂进入的方式改变细胞膜的渗透性。
例如,所述适用的化合物为血管扩张剂,包含如激肽的内源性物质,所述激肽例如缓激肽、胰激肽、组胺和从L-精氨酸释放血管扩张活性NO的NO合酶。草本起源的物质如可证实的血管扩张银杏(Gingko biloba)提取物、DMSO、氧杂蒽酮、类黄酮、类萜、草本和动物着色剂、食用染料。NO供体例如为季戊四醇四硝酸酯(pentaerythrityl tetranitrate,PETN),造影剂和造影剂类似物同样属于这一类别。
因此,存在两种支持将一种或一种以上活性剂转运到细胞中的可能性,所述可能性也可联合:
1.转运加速剂或介体使得物质即时转移到细胞中受医学装置的暴露时间限制。
2.在去除医学装置后,转运加速剂或介体与活性剂和可能的粘附支撑载体(或储槽)组合粘附于细胞壁上。因此,活性剂扩散到细胞中有所延迟且剂量受控。
转运介体、活性剂或活性剂的组合以及可能的基质可以粘附方式和/或共价方式涂覆在医学装置上,其部分或完全涵盖:
1.转运介体和活性剂以粘附方式和/或以共价方式粘附在医学装置上或粘附在以粘附方式或共价方式涂覆的基质上。
2.转运介体和活性剂共价连接且以粘附方式粘附在医学装置上或粘附在以粘附方式或共价方式涂覆在医学装置上的基质上。
3.转运介体和活性剂共价连接且以共价方式粘附在医学装置上或粘附在以粘附方式或共价方式涂覆在医学装置上的基质上。
在许多情况下,所提及物质的效应不限于转运性质,而且其另外显示积极的有益效应。举例来说,细胞自身产生的NO不仅具有血管扩张性,而且具有抗增殖性质。因此,所有NO供体都同时是抗增殖剂和血管扩张剂。
本文中,消炎物质以及抗血栓形成物质可与其它抗增殖物质、细胞毒性物质和细胞抑制物质组合用于增强或补充辅助效用。
与一氧化氮类似的是一氧化碳。在本发明的一个实施例中,CO或NO或CO和NO的混合物从导管球囊内部通过多个微米或纳米孔释放,并在膨胀期间支持导管球囊上的涂层与球囊表面分开以及支持将位于球囊表面的涂层中的活性剂吸收到脉管壁中作为血管扩张剂。球囊表面上优选存在含有一种或一种以上抵制或阻碍脉管再闭塞或再狭窄的活性剂的聚合物涂层。下文进一步描述所述涂层的合适聚合物。
根据本发明的另一个实施例使用导管球囊上以及(如果可用)视情况在未卷曲支架上的涂层,其含有CO或NO或呈络合或化学结合形式的CO和NO。在所有实施例中,NO以及CO和NO的组合与两种物质如何存在的性质无关。
CO优选以络合形式提供,例如与血红蛋白、血红蛋白衍生物、血红蛋白类似物的络合物或与金属或呈羰基金属化物(carbonyl metallate)形式的金属离子的络合物。举例来说,NO可以以下形式提供:与血红蛋白、血红蛋白衍生物、血红蛋白类似物的络合物,以亚硝胺形式化学键结或以官能团-N2O2 -形式化学键结,与金属和金属离子(例如[Fe(H2O)5NO]2+)的络合物,或呈其它氮氧化物形式。
血红蛋白衍生物是由血红蛋白通过化学修饰而产生的分子。血红蛋白类似物是在氧络合(即充当氧传送系统)或一氧化碳方面显示血红蛋白特征以及显示天然血红蛋白的生理学相容性的物质。这些标记为血红蛋白类似物的物质例如为如可从某些蚯蚓中分离并充当氧传送系统的分子红细胞的细胞以及如全氟化碳乳液的合成氧载体。
尤其优选的实施例包括使用血红蛋白胶体,所述血红蛋白胶体可例如通过从猪中分离血红蛋白且使其与如乙二醛、羟基乙醛、戊二醛等二醛交联而获得。所述血红蛋白衍生物的实例和其合成描述于WO 02/00229A和WO02/00230A中。本文中,尤其提及WO 02/00230A的实施例1和2以及第14-16页和本说明书的实施例1-13以及第7-16页。然后,可使所述血红蛋白衍生物富含CO和/或NO,并将其放置到导管球囊或另外支架的表面上。可对生物稳定或生物可降解的聚合物进行涂覆,或与生物稳定或生物可降解的聚合物一起进行涂覆。
此外,气体CO、NO、N2O、N2O2或N2O3也可溶解于油中,或吸收在脂质体调配物中,或以分散液或乳液形式给药。下文进一步详细描述适于充当涂布物质且适用于吸收NO和/或CO的所述油的实例。
可进一步将这些含有呈络合形式、化学键结形式和/或包埋形式的CO和/或NO的物质整合到位于导管球囊或支架(如果可用)的表面上或涂布导管球囊或支架或填充微观结构或折叠的生物稳定或生物可降解的聚合物基质中,或将其涂覆在所述聚合物基质上。如已解释,术语“涂布导管球囊的表面”还应包括填充球囊表面上或球囊材料中的可能的折叠、微米或纳米结构、微米或纳米针或其它缺口或空腔。
根据本发明的其它实施例使用合成CO或NO的酶或这些酶的活化剂、核苷酸序列(例如编码这些酶且在并入细胞中时增强这些酶的表达的DNA和RNA)和/或分解CO或NO的酶的抑制剂。
另一个优选实施例是具有或不具有支架的导管球囊,其中合成NO的酶位于所述导管球囊的表面上。所述酶可视情况包埋在生物稳定或生物可降解的合成、半合成或生物聚合物的聚合物基质中,和/或涂覆在所述聚合物基质上,和/或涂有所述聚合层。
所述合成NO的酶优选是NO合酶。例如内皮NO合酶(NOS III)的NO合酶(NOS)能够(例如)从氨基酸L-精氨酸中产生一氧化氮。
因此,在另一个优选实施例中,将NO合酶与合适的氨基酸、尤其精氨酸一起提供在植入物上。
另外,优选与植入物一起提供合成NO的酶的相应活化剂。例如,活化剂可为士他汀(statin)或谷氨酸。尤其优选的实施例在植入物上含有至少一种合成NO的酶,尤其NO合酶。这至少一种合成NO的酶有利地包埋在聚合物基质中且尤其固定在聚合物基质上且尤其共价地固定在其上,从而增强酶稳定性且使酶更难以降解。同时,还提供一种底物,例如L-精氨酸,其可位于聚合物基质下方、聚合物基质中以及聚合物基质上。此外,有利地另外提供一种酶的活化剂(例如士他汀或谷氨酸),以致用于一氧化氮产生的完整机构位于植入物表面上。例如,士他汀可为阿托伐他汀、洛伐他汀、辛伐他汀、罗素他汀、普伐他汀、氟伐他汀和西立伐他汀。
抑制NO降解或失活的物质可从临时短期植入物的表面上单独或伴随释放。这些物质尤其是促进过氧化物阴离子(O2 -)降解或失活或抑制过氧化物阴离子形成的物质,例如酶过氧化物歧化酶和谷胱甘肽过氧化物酶以及NADPH氧化酶的抑制剂和过氧化物歧化酶或谷胱甘肽过氧化物酶的活化剂。
优选地,使用过氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶、过氧化物歧化酶活化剂、谷胱甘肽过氧化物酶活化剂和/或NADPH氧化酶抑制剂以及NO、含NO化合物或合成NO的酶。尤其优选具有包括NO合酶、精氨酸、士他汀、谷氨酸和过氧化物歧化酶活化剂或谷胱甘肽过氧化物酶活化剂的涂层的植入物。
本发明的另一个优选实施例包括临时短期植入物,即具有或不具有卷曲支架的导管球囊,其可经由遗传方法影响细胞、尤其内皮细胞和平滑肌细胞(SMC)的NO或CO动态平衡。因此,将编码合成NO的酶或合成CO的酶的核苷酸序列或基因转运到涂布脉管内壁的细胞、优选内皮细胞和平滑肌细胞中,所述合成NO的酶例如NO合酶,如NOS III;所述合成CO的酶例如血红素加氧酶、CO合酶(UPG III S:尿卟啉原III合酶)、例如1H-3-羟基-4-氧代喹那啶-2,4-双加氧酶(QDO和MeQDO)的2,4-双加氧酶或酸还原型氧化酶。
所述基因转移提供以下优点:在发生或担心发生脉管缺陷处原位局部产生CO和/或NO。可将呈DNA或RNA、优选DNA形式的基因物质经由病毒(例如腺病毒或杆状病毒)或以脂质体络合物形式转运到细胞中。举例来说,可将编码NOS III或血红素加氧酶(HO)的基因包埋在pAH 9载体中,并以能够与亲脂性细胞膜融合的脂囊泡形式提供所述基因,且因此将其转运到细胞中。在细胞内部,核内体将脂质体复合物(lipoplexe)转运到核中。诱导性DNA并未被整合到细胞的染色体DNA中,而是在核中作为独立的所谓的游离质粒DNA保留活性。以启动子形式排列的质粒DNA的区段起始酶、例如NOS III或血红素加氧酶的合成,这然后将产生NO或CO。
所述基因物质是提供在临时短期植入物的表面上且在导管球囊膨胀时接触吸收所述基因物质且起始酶产生的相应细胞。因此,所产生的酶的相应底物也位于导管球囊或支架的表面上的情况是更有利的。例如,底物可为胆绿素或L-精氨酸。此外,在导管球囊或支架的表面上也可存在抑制NO或CO降解的其它物质。这些物质是前述过氧化物歧化酶活化剂、谷胱甘肽过氧化物酶活化剂、NADPH氧化酶抑制剂或过氧化物歧化酶和/或谷胱甘肽过氧化物酶本身。
此外,优选CO的形成或活化,或形成和/或释放也可由根据本发明的临时短期植入物控制。如已解释,导管球囊可在其核心中含有单体CO以及NO或在其表面上含有呈络合形式或化学键结形式的CO,其不具有或具有涂层,尤其生物可降解或生物稳定的聚合物涂层。
CO可以气体、液体或固体形式提供。优选液体或固体。尤其以能够连续释放CO的形式使用CO。所述用于连续CO释放的形式尤其包括一种或一种以上聚合物基质、脂质体调配物、CO前体、微米调配物、纳米调配物、碳涂层或CO络合物。
聚合物基质被视为将CO包埋或存储在例如肝素、壳聚糖或其衍生物的生物聚合物中,所述聚合物呈合成或半合成聚合物形式,例如聚砜、聚丙烯酸酯等。
脂质体调配物意指胶束构建系统,其中将CO存储在胶束中且以这种形式涂覆到医学植入物上。
CO前体指示能够释放或产生CO的化合物。CO前体是崩解成CO或在崩解期间释放CO的化合物或作为在底物转化期间产生CO的酶的这些底物的化合物。尤其优选的CO来源是CO络合物,例如由钌和铁制得的能够释放CO的络合物。
具有CO的微米和纳米调配物是指含有CO的微米粒子和纳米粒子。
根据本发明,医学短期植入物(具有或不具有支架的导管球囊)涂有至少一种前述含CO的调配物。
在根据本发明的所述涂布方法中,提供具有或不具有支架的导管球囊且其表面至少部分地涂有CO和/或一种前述含CO的调配物。对于所述涂布,CO可以固体形式使用,其中可采用相应冷却法使气体固化。然而,也有可能使用呈液体或气体形式的CO。举例来说,本文中将呈液体或气体形式的CO并入微米或纳米胶囊中或包埋在脂质体调配物中。这些微米或纳米胶囊可在溶解后释放CO。脂质体调配物逐渐降解,同时释放CO。此外,优选其中并入CO的粉状物形式。
此外,优选根据本发明的临时短期植入物同时释放NO和CO,或增强NO和CO的释放或产生。此外,优选除NO和/或CO以外或代替NO和CO化合物,特别从具有或不具有支架的导管球囊中释放活化或刺激鸟苷酸环化酶(sGC)的神经递质。Fe离子、Zn离子和Ca离子对鸟苷酸环化酶活性来说很重要且同样应通过临时短期植入物来提供。因此,如果医学临时短期植入物释放至少一种鸟苷酸环化酶活化剂,例如铁离子、锌离子、钙离子、CO和/或NO,那么其是优选实施例。
作为实例,应提及在表面上包含血红素加氧酶(HO)或另一种CO构建酶的导管球囊。HO2表示血红素加氧酶的非诱导性形式且HO1表示血红素加氧酶的诱导性形式。
此外,优选连同例如血红素等合适底物一起提供血红素加氧酶(尤其HO1)。血红素加氧酶的活化剂也可代替底物或连同底物一起存在于涂层中、涂层下方和/或涂层上。优选底物是血红素、胆绿素或胆红素,且可提及例如佛波醇酯或雷帕霉素作为活化剂。尤其优选所述具有NO和/或CO以及太平洋紫杉醇或雷帕霉素的实施例。
所有前述物质都优选包含在生物可降解或生物稳定的合成、半合成或生物聚合物的聚合物基质中,涂有所述基质和/或涂覆在所述基质上。下文进一步提及所述基质的合适聚合物。
根据本发明的临时短期植入物在导管球囊中或优选在导管球囊和可能存在的支架的表面上包含聚合物基质(具有或不具有)和至少一种药理学活性剂,尤其消炎剂、细胞抑制剂、细胞毒性剂、抗增殖剂、抗微管剂、抗血管生成剂、抗再狭窄剂、抗真菌剂、抗赘生剂、抗迁移剂、非血栓形成剂、抗血栓形成剂、以下物质中的至少一个:
a)CO、NO、CO与NO的混合物;
b)NO合酶,即合成NO的酶;
c)L-精氨酸;
d)士他汀;
e)谷氨酸;
f)NO合酶的活化剂,即合成NO的酶的活化剂;
g)过氧化物歧化酶和/或过氧化物歧化酶的活化剂;
h)谷胱甘肽过氧化物酶和/或谷胱甘肽过氧化物酶的活化剂;
i)NADPH氧化酶的抑制剂;
j)编码NO合酶的DNA或RNA;
k)血红素加氧酶,即合成CO的酶;
l)编码血红素加氧酶的DNA或RNA;
m)雷帕霉素;
n)太平洋紫杉醇;
o)血红素;
p)胆绿素;
q)佛波醇酯(phorbol ester)。
优选以下组合:
a+g、a+h、a+I、a+d、a+e、a+f、a+m、a+q、a+n,
b+d、b+e、b+d+e、b+f、b+f+g、b+f+h、b+f+i、b+c+d、b+c+e,
d+j、e+j,
k+m、k+n、k+q、k+b、l+m、l+n、l+q、k+o、l+o。
根据本发明的医学临时短期植入物、尤其支架是用于预防或降低再狭窄,尤其支架内再狭窄。
临时短期植入物尤其适于治疗和预防由壁剪应力降低或伴随拉伸诱发的白细胞粘附和迁出增加所引起的脉管疾病。所述过程通常发生在脉管分叉处。根据本发明的脉管植入物可引起壁剪应力增加和平滑肌细胞(SMC)或脉管内皮的强化或活化,从而将血流中所存在的血小板粘附和白细胞渗出减少或降低到生理量度。这预防发炎过程,并避免例如慢性发炎性肠病(如最值得注意的是克罗恩氏病(Crohn′s disease))以及动脉粥样硬化、狭窄或再狭窄。
如先前所提及,这些物质大部分是直接或间接促进跨膜转运的低分子化合物。举例来说,长期以来已知二甲亚砜(DMSO)为局部药物的载体物质。其在软膏、酊剂、凝胶剂等中的作用在于其作为促进活性剂在皮肤或通常细胞膜中的吸收的转运介体的性质。此外,DMSO在低浓度时展示止痛和消炎作用,这是一种额外的积极效应。
内皮细胞通过NO合酶的活化从L-精氨酸中产生一氧化氮(NO),作为对脉管壁具有血管扩张效应的内源性释放的信号转导分子。因此,快速且特定释放NO或增加NO的生物可用性的化合物同样可用作转运介体。因为NO不仅具有血管扩张性,而且展示抗增殖和抗氧化作用,所以其尤其在再狭窄中具有额外抑制效应。此处,可提及含有甚至四个硝基的季戊四醇四硝酸酯(PETN)、硝普盐、硝化甘油、肼苯哒嗪、硝酸异山梨酯(isosorbide dinitrate,ISDN)、4-[5-氨基-3-(4-吡啶基)-1-吡唑基]-1-甲基哌啶、苯并二氧化呋咱、苯并三氧化呋咱、S-亚硝基-N-乙酰基-青霉胺(SNAP)、阿司匹林-NO供体酯、3-吗啉基斯得酮亚胺(SIN-1)、8-溴-cGMP(8-BrcGMP)、8-(4-氯苯基硫基)-cGMP(pCPT-cGMP)、α,β-亚甲基ATP、S-亚硝基谷胱甘肽(GSNO)、单乙醇胺-烟酸酯、苯氧基烷基胺、其衍生物、代谢物和类似物。例如,其它合适化合物为:
(Z)-1-(N,N-二乙基氨基)二氮烯-1-鎓-1,2-二醇钠(DEA-NO):
1-(N,N-二乙基氨基)二氮烯-1-鎓-1,2-二醇钠:
(Z)-1-{N-甲基-N-[6-(N-甲基铵基己基)氨基]}二氮烯-1-鎓-1,2-二醇盐(NOC-9):
1-[(2-羧根基)吡咯烷-1-基]二氮烯-1-鎓-1,2-二醇二钠:
O2-乙烯基1-(吡咯烷酮-1-基)二氮烯-1-鎓-1,2-二醇盐:
1-[4-(5-二甲基氨基-1-萘磺酰基)哌嗪-1-基]二氮烯-1-鎓-1,2-二醇钠:
O2-(1-(异丙基氨基)二氮烯-1-鎓-1,2-二醇钠:
1-[4-(嘧啶-2-基)哌嗪-1-基]二氮烯-1-鎓-1,2-二醇钠:
1-[4-(苯基哌嗪-1-基]二氮烯-1-鎓-1,2-二醇钠:
1-[4-(乙氧基羰基哌嗪-1-基]二氮烯-1-鎓-1,2-二醇钠:
(Z)-1-{N-甲基-N-[6-(N-甲基铵基己基)氨基]}二氮烯-1-鎓-1,2-二醇盐:
1-(吡咯烷-1-基]二氮烯-1-鎓-1,2-二醇钠:
1-羟基-2-氧代-3-(3-氨基丙基)-3-异丙基-1-三氮烯(NOC-5):
1-羟基-2-氧代-3-(N-甲基-3-氨基丙基)-3-甲基-1-三氮烯(NOC-7):
以及作为生物相容性聚合物上的释放NO的化合物的共价结合的实例或多糖族群的代表性实例为二氮烯鎓二醇肝素(diazeniumdiolate heparin):
尤其,释放NO的化合物(如具有甚至四个可释放的硝基的PETN)极其适于与例如活性剂、基质或增加NO的快速可利用性或必要时同样降低NO的快速可利用性的其它低分子化合物共价结合。举例来说,前述二氮烯鎓二醇肝素在生理条件(pH 7.4,37℃)下具有8.4分钟的半衰期。
举例来说,分子设计师目前使NO与非类固醇抗风湿药偶联以改善其耐受性和效用。在耶拿大学(University of Jena),也使用固体NO化合物。其中一些化合物具有极低的半衰期。注射后,其在两秒内释放NO。所述活性剂可适用于脑血管痉挛的解痉,涂布支架以及以理想方式用于诸如球囊导管等短期植入物。
除前述物质外,适于转运调节的物质是卡波孟盐酸盐(Carbocromen-HCl)、桂利嗪(cinnarizine)、硫酸双肼苯哒嗪(dihydralazinesulphate)、双嘧达莫(dipyridamole)、乙羟茶碱(etofylline)、硝酸异山梨酯(Lactosever)、烟酸(nicotinic acid)、普萘洛尔(propanolol)、硝苯吡啶(nifedipine)、己酮可可碱(pentoxyfylline)、心可定(prenylamine lactate)、妥拉唑林盐酸盐(tolazoline-HCl)、乙酰胆碱(acetylcholine)、磷脂酰胆碱(phosphatidylcholine)、甘精胰岛素(insulin glargine)、龙胆山酮(gentiacaulein)和龙胆口山宁(gentiakochianin)、噻吩并[3,2-c]吡啶和衍生物、苯丙噻二嗪(例如氢氯噻嗪)、优咕吨酮(euxanthone)、呫吨酮(garcinone)E、龙胆黄素(gentisin)、优黄酸(euxanthinic acid)、异龙胆黄素(isogentisin)、龙胆赛因(gentisein)、芒果素(mangiferin)和高芒果甙(homomangiferin)、2-吡咯烷酮、柠檬酸酯(如柠檬酸乙酰基三丁酯和柠檬酸乙酰基三乙酯、柠檬酸三丁酯和柠檬酸三乙酯)、苯甲酸苯甲酯、邻苯二甲酸酯(如邻苯二甲酸二丁酯和邻苯二甲酸三乙酯)、脂肪酸酯(如肉豆蔻酸异丙酯和棕榈酸异丙酯、三乙酸甘油酯(triacetine))、花色素(如花葵素(pelargonidine)、花青素(cyanidine)、飞燕草素(delphidine)、芍药花青素(paeonidine)、牵牛花素(petunidine)、锦葵花素(malvidine))、儿茶素(catechine)以及其衍生物和代谢物。
跨膜转运介体和活性剂的组合可以不同实施例实现:
1.转运介体与活性剂相同;
2.转运介体与活性剂不相同,但在作用方面相互支持;
3.转运介体无法对所加入的活性剂的效应产生影响且仅仅用作转运媒介。
尤其,柠檬酸盐和柠檬酸酯是用于涂层或涂层溶解的极佳组分。已展示,柠檬酸盐和柠檬酸酯有助于释放的涂层粘附到组织上且促进将一种或一种以上活性剂吸收到组织和细胞中。
柠檬酸酯具有如下结构:
其中
R、R’和R”彼此独立地为氢或烷基、芳基烷基或环烷基,其可为直链或支链,可为饱和或不饱和的,可经至少一个官能部分取代或未经取代。
对于官能团,以下部分是适当的:
-H、-OH、-OCH3、-OC2H5、-OC3H7、-O-环-C3H5、-OCH(CH3)2、-OC(CH3)3、-OC4H9、-SH、-SCH3、-SC2H5、-NO2、-F、-Cl、-Br、-I、-COCH3、-COC2H5、-COC3H7、-CO-环-C3H5、-COCH(CH3)2、-COOH、-COOCH3、-COOC2H5、-COOC3H7、-COO-环-C3H5、-COOCH(CH3)2、-OOC-CH3、-OOC-C2H5、-OOC-C3H7、-OOC-环-C3H5、-OOC-CH(CH3)2、-CONH2、-CONHCH3、-CONHC2H5、-CONHC3H7、-CONH-环-C3H5、-CONH[CH(CH3)2]、-CON(CH3)2、-CON(C2H5)2、-CON(C3H7)2、-CON(环-C3H5)2、-CON[CH(CH3)2]2、-NHCOCH3、-NHCOC2H5、-NHCOC3H7、-NHCO-环-C3H5、-NHCO-CH(CH3)2、-NHCO-OCH3、-NHCO-OC2H5、-NHCO-OC3H7、-NHCO-O-环-C3H5、-NHCO-OCH(CH3)2、-NHCO-OC(CH3)3、-NH2、-NHCH3、-NHC2H5、-NHC3H7、-NH-环-C3H5、-NHCH(CH3)2、-NHC(CH3)3、-N(CH3)2、-N(C2H5)2、-N(C3H7)2、-N(环-C3H5)2、-N[CH(CH3)2]2、-SO2CH3、-SO2C2H5、-SO3H、-SO3CH3、-SO3C2H5、-OCF3、-OC2F5、-NH-CO-NH2、-NH-C(=NH)-NH2、-O-CO-NH2、-O-CO-NHCH3、-O-CO-N(CH3)2、-O-CO-N(C2H5)2、-CH2F、-CHF2、-CF3、-CH2Cl、-CH2Br、-CH2-CH2F、-CH2-CF3、-CH2-CH2Cl、-CH2-CH2Br、-CH3、-C2H5、-C3H7、-CH(CH3)2、-C(CH3)3、-C4H9、-CH2-CH(CH3)2、-CH(CH3)-C2H5、-C5H11、-C6H13、-C7H15、-C8H17、-环-C3H5、-环-C4H7、-环-C5H9、-环-C6H11、-Ph、-CH2-Ph、-CH=CH2、-CH2-CH=CH2、-C(CH3)=CH2、-CH=CH-CH3、-C2H4-CH=CH2、-CH=C(CH3)2、-C≡CH、-C≡C-CH3、-CH2-C≡CH。
优选前述烷基、经取代烷基以及柠檬酸的二酯和尤其三酯。
造影剂
优选使用的另一组物质是造影剂和/或造影剂类似物。造影剂和造影剂类似物也可部分充当转运介体,其具有以下性质,即其并非聚合化合物。此外,其通常具有临床许可,通常在生理学上不具有重要性且可用于所述应避免聚合物载体系统和物质的病例中。
造影剂和/或造影剂类似物另外含有钡、碘、锰、铁、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱和/或镥,其优选为呈结合和/或络合形式的离子。
原则上,造影剂应根据不同成像方法进行区分。一方面,存在用于x射线检查的造影剂(x射线造影剂)或用于磁共振断层成像检查的造影剂(MR造影剂)。
在x射线造影剂的情况下,涉及使得穿透x射线的吸收相对于周围结构有所增加(所谓的正造影剂)或使得穿透x射线无阻碍地穿过(所谓的反造影剂)的物质。
优选的x射线造影剂是用于使关节成像(关节造影术)和用于CT(计算机断层成像术)中的造影剂。计算机断层成像仪是借助于x射线产生人体断面影像的装置。
虽然根据本发明,在成像方法中也可使用x射线进行检测,但因所述辐射有害而无法优选。穿透辐射优选不是电离辐射。
对于成像方法,使用x射线影像、计算机断层成像术(CT)、核自旋断层成像术、磁共振断层成像术(MRT)和超声波,其中优选核自旋断层成像术和磁共振断层成像术(MRT)。
因此,对于因具有由穿透辐射激发的能力而允许在活体内事件中通过成像方法来检测医学装置的物质,尤其优选计算机断层成像术(CT)、核自旋断层成像术、磁共振断层成像术(MRT)或超声波中使用的造影剂。造影剂在MRT中的作用机理是基于实现待区分的结构的磁学行为的变化。
此外,优选含碘造影剂,其用于脉管成像(血管造影术或静脉造影术)和计算机断层成像术(CT)中。
对于含碘造影剂,可提及以下实例:
泛影酸(amidotrizoic acid);
碘曲仑(iotrolan);
碘帕醇(iopamidol);
碘草氨酸(iodoxaminic acid)。
另一个实例是一种碘化罂粟油,一种罂粟籽油。碘化造影剂的母体物质(泛影酸盐(amidotrizoate))可以钠盐和甲葡胺盐形式在市面上以商标和购得。
含钆或超顺磁氧化铁粒子以及亚铁磁或铁磁铁粒子(诸如纳米粒子)也是优选的。
另一类优选的造影剂以顺磁造影剂为代表,其主要含有镧系元素。
一种具有不成对电子的顺磁物质例如是总计具有七个不成对电子的钆(Gd3+)。此外,铕(Eu2+、Eu3+)、镝(Dy3+)和钬(Ho3+)也属于所述族群。这些镧系元素也可通过使用例如血红蛋白、叶绿素、多元氮酸(polyaza acid)、多元羧酸和尤其EDTA、DTPA、DMSA、DMPS以及DOTA作为螯合剂而以螯合形式使用。
含钆造影剂的实例是二乙三胺五乙酸钆、
钆喷酸(GaDPTA)、
钆双胺(gadodiamide)、
钆特酸葡甲胺(meglumine gadoterate)、
钆特醇(gadoteridol)。
可根据本发明使用的其它顺磁物质是所谓的过渡金属的离子,诸如铜(Cu2+)、镍(Ni2+)、铬(Cr2+、Cr3+)、锰(Mn2+、Mn3+)和铁(Fe2+、Fe3+)。这些离子也可以螯合形式使用。
至少一种因具有由穿透辐射激发的能力而允许在活体内事件中通过成像方法来检测本体的物质是在本体的表面上或在本体内部。
在一个优选实施例中,在呈压缩形式的导管的球囊的内部填充有造影剂和/或造影剂类似物。造影剂优选地以溶液形式存在。除造影剂或造影剂类似物作为活性剂的载体或基质的性质外,所述涂层还具有另一优点:导管球囊在成像方法中更可见,即可检测。通过进一步填充造影剂溶液使球囊展开,从而发生球囊的展开。
所述实施例的优点在于造影剂或造影剂类似物可重复使用任何次数而不进入身体且因此不产生危险的副作用。
造影剂类似物是指具有造影剂的性质,即可使用欲在手术期间使用的成像方法而变得可见的造影剂样化合物。
与这些物质相关的PCTA中的显影可被视为有利的,以致可放弃造影剂的全身性应用。其可以是转运加速剂本身或另一着色剂。
举例来说,所述造影剂或造影剂类似物是用于至少一种活性剂和尤其太平洋紫杉醇或雷帕霉素的吸收。可用所述组合物涂布导管球囊(具有或不具有支架)、优选导管球囊的折叠。此外,所述液体溶液优选可在压力下从导管球囊的内部穿过多个微米和/或纳米孔排出,从而支持位于球囊表面上的涂层分开。优点在于脉管部分在短期膨胀期间具有足量活性剂且导管球囊的涂层以稳定方式分开并被压到脉管壁上,所述涂层停留在脉管壁上且降解或被细胞吸收。
另一方面,造影剂和活性剂(尤其太平洋紫杉醇和雷帕霉素)的系统尤其适合涂覆到裸露微表面上或涂覆到微腔中,其中所述涂层通常必须由障壁层覆盖,所述障壁层在破裂或撕开后接着保护造影剂和活性剂的混合物免于提前侵蚀或提前溶解。
为保护造影剂和活性剂的所述混合物免于提前释放,将所述混合物涂覆到折叠球囊的折叠中或折叠球囊的折叠下方或具有结构模式或微针或其它可填充空腔的导管球囊的表面上,且然后对其涂布障壁层。对于障壁层,可使用聚合物层,如(例如)WO 2004/052420A2或EP 1150622A1中所揭示。
所述障壁层可由以下各物组成:聚交酯、聚乙交酯、聚酸酐、聚磷腈、聚原酸酯、多糖、多核苷酸、多肽、聚烯烃、氯乙烯聚合物、含氟聚合物、特氟隆(teflon)、聚乙酸乙烯酯、聚乙烯醇、聚乙烯醇缩乙醛、聚丙烯酸酯、聚甲基丙烯酸酯、聚苯乙烯、聚酰胺、聚酰亚胺、聚缩醛、聚碳酸酯、聚酯、聚氨酯、聚异氰酸酯、聚硅酮以及这些聚合物的共聚物和混合物。
保护导管球囊上的涂层的另一选项在于使用可展开的导管球囊且在于向其提供如自展开支架的植入中所使用的包装纸。所述包装纸保护球囊涂层免于提前分开且在球囊位于将要展开球囊的脉管狭窄部分处之前不应去除。
聚合物基质
对于将包埋一种或一种以上活性剂的基质,除非聚合物质外,当然也可使用已知的聚合物质。
对于基质,可使用生物相容性物质,作为最低要求,这些物质与未涂布的植入物相比不应负面影响植入物的性质和使用。基质在本文中也称为含有载体、载体系统、聚合物载体或物质的涂层。
对于短期植入物的涂层,优选可使用以下生物相容性的生物可降解和/或生物稳定聚合物:
对于生物学稳定且仅缓慢地生物可降解的聚合物,可提及:聚丙烯酸和聚丙烯酸酯(诸如聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯)、聚丙烯酰胺、聚丙烯腈、聚酰胺、聚醚酰胺、聚乙烯胺、聚酰亚胺、聚碳酸酯、聚甲氨酯(polycarbourethane)、聚乙烯酮、聚乙烯卤化物(polyvinylhalogenide)、聚偏二乙烯卤化物(polyvinylidenhalogenide)、聚乙烯醚、聚乙烯芳香族化合物(polyvinylaromate)、聚乙烯酯、聚乙烯吡咯烷酮、聚甲醛、聚乙烯、聚丙烯、聚四氟乙烯、聚氨酯、聚烯烃弹性体、聚异丁烯、EPDM胶、氟硅酮、羧甲基壳聚糖、聚对苯二甲酸乙二醇酯(polyethylenterephthalate)、聚戊酸酯、羧甲基纤维素、纤维素、人造纤维(rayon)、三乙酸人造纤维、硝酸纤维素、乙酸纤维素、羟乙基纤维素、丁酸纤维素、乙酸丁酸纤维素、乙烯乙酸乙烯酯共聚物、聚砜、聚醚砜、环氧树脂、ABS树脂、EPDM胶、硅预聚物、硅酮(诸如聚硅氧烷)、聚乙烯卤和共聚物、纤维素醚、三乙酸纤维素、壳聚糖、壳聚糖衍生物、可聚合油(诸如亚麻籽油)以及其共聚物和/或混合物。
此外,在涂布步骤之前的上游步骤中,可将血相容性层以粘附方式或优选以共价方式涂覆到医学装置的未涂布表面上,或可通过例如与戊二醛交联而将其固定在医学装置的表面上。所述不活化血液凝固的层很重要,这是因为由此增强医学装置表面的血相容性且降低血栓形成风险。当仅部分地涂布短期植入物时,所述涂布步骤尤其适用。未涂布活性剂的部分因此有利地具有不活化血液凝固的表面且具有非血栓形成性且因此在医学装置暴露于血液期间和之后提供高得多的安全性。
优选地,血相容性层由以下优选物质制成:天然起源肝素以及具有不同硫酸化程度和乙酰化程度的区域选择性产生的衍生物(分子量范围是从负责产生抗血栓形成效应的五糖到市面上可购得的约13千道尔顿肝素的标准分子量)、硫酸乙酰肝素和其衍生物、红细胞多糖-蛋白质复合物(glycocalix)的寡糖和多糖、寡糖、多糖、完全脱硫和N-再乙酰化的肝素、脱硫和N-再乙酰化的肝素、N-羧化和/或部分N-乙酰化的壳聚糖、聚丙烯酸、聚醚酮、聚乙烯吡咯烷酮和/或聚乙二醇以及这些物质的组合物。
对于生物可降解或可吸收性聚合物,可使用例如:聚戊内酯、聚-ε-癸内酯、聚交酯、聚乙交酯、聚交酯和聚乙交酯的共聚物、聚-ε-己内酯、聚羟基丁酸、聚羟基丁酸酯、聚羟基戊酸酯、聚羟基丁酸酯-共-戊酸酯、聚(1,4-二恶烷-2,3-二酮)、聚(1,3-二恶烷-2-酮)、聚对二恶烷酮、聚酸酐(诸如聚马来酸酐)、聚羟基甲基丙烯酸酯、纤维蛋白、聚氰基丙烯酸酸、聚己内酯二甲基丙烯酸酯、聚-β-马来酸、聚己内酯丁基丙烯酸酯、诸如由寡己内酯二醇和寡二恶烷酮二醇形成的多嵌段聚合物、聚醚酯多嵌段聚合物(诸如PEG和聚对苯二甲酸丁二酯)、聚新戊内酯、聚乙醇酸三甲基碳酸酯、聚己内酯-乙交酯、聚(g-乙基谷氨酸酯)、聚(DTH-亚氨基碳酸酯)、聚(DTE-共-DT-碳酸酯)、聚(双酚-A-亚氨基碳酸酯)、聚原酸酯、聚乙醇酸三甲基碳酸酯、聚三甲基碳酸酯、聚亚氨基碳酸酯、聚(N-乙烯基)-吡咯烷酮、聚乙烯醇、聚酯酰胺、乙醇酸化聚酯、聚磷酸酯、聚磷腈、聚[对羧基苯氧基)丙烷]、聚羟基戊酸、聚酸酐、聚氧化乙烯-氧化丙烯、软质聚氨酯、主链中具有氨基酸残基的聚氨酯、聚醚酯(诸如聚氧化乙烯)、聚草酸二烷基酯、聚原酸酯以及其共聚物、角叉菜胶、纤维蛋白原、淀粉、胶原蛋白、基于蛋白质的聚合物、聚氨基酸、合成聚氨基酸、玉米醇溶蛋白(zein)、改性玉米醇溶蛋白、聚羟基烷酸酯、果胶酸、光化性酸(actinic acid)、改性和未改性纤维蛋白和酪蛋白、羧基甲基硫酸酯、白蛋白,此外透明质酸、硫酸乙酰肝素、肝素、硫酸软骨素、葡聚糖、β-环糊精、与PEG和聚丙二醇的共聚物、阿拉伯胶(gummi arabicum)、瓜尔胶(guar)、明胶、胶原蛋白、胶原蛋白-N-羟基琥珀酰亚胺、以上所提及的物质的改性物和共聚物和/或混合物。
另外,具有或不具有支架的球囊的表面也可具有非血栓形成性或惰性或生物相容性表面,或通常具有涂层且尤其具有聚合物或非聚合物涂层。为在导管球囊上产生血相容性或血液适用性表面,优选地可使用前述寡糖、多糖且尤其所描述的根据通式Ia和Ib的肝素和壳聚糖衍生物。
尤其优选的聚合物是聚砜、聚醚砜、硅酮、壳聚糖、聚丙烯酸酯、聚酰胺、聚醚酰胺、聚氨酯、聚交酯、聚乙交酯、聚交酯和聚乙交酯的共聚物、聚羟基丁酸、聚羟基丁酸酯、聚羟基戊酸酯、聚羟基丁酸酯-共-戊酸酯、聚(1,4-二恶烷-2,3-二酮)、聚(1,3-二恶烷-2-酮)、聚对二恶烷酮、聚酸酐、聚酯、PEG、透明质酸、硫酸乙酰肝素、肝素、硫酸软骨素、葡聚糖以及β-环糊精。
具有卷曲支架的球囊
本发明的另一个优选实施例包括具有卷曲支架的导管球囊。
在所述实施例中,存在四种对应于需要治疗的脉管狭窄进行选择和使用的变体。
变体[A]是具有卷曲的不可吸收且未涂布的支架的导管球囊。
在变体[B]中,不可吸收性支架涂有释放物质的载体系统。
变体[C]包括可吸收的未涂布的支架且变体[D]是具有可吸收性物质释放支架的导管球囊。
变体[A]:
对于物质释放系统,通常并不总是期望支架上的物质释放涂层,且在一些可能出现晚期血栓形成问题的情况下,变体[A]提供用无涂层的永久性支架使严重闭塞的体腔(例如胆管、食道、尿道、胰腺、肾管、肺管、气管、小肠和大肠以及尤其血管)保持开放的理想系统,尽管所述支架中无涂层,但涂覆活性剂仍是可选的。
根据变体[A]的导管球囊涂有纯物质层或含活性剂的载体,且在膨胀期间,一方面放置支架,且另一方面至少沿支架的整个长度且优选超出支架的整个长度涂覆活性剂,这使得能够出现受控并入且防止大部分平滑肌细胞在支架上过度生长。对于活性剂或活性剂的组合物,可使用前述活性剂且尤其太平洋紫杉醇和/或雷帕霉素。
导管球囊优选以使得球囊涂层向支架两端延伸,优选延伸超出支架末端为总支架长度的10-20%的方式涂有活性剂(具有或不具有载体系统)。因此,活性剂在膨胀期间也被转移到在支架两端的支架所未到达的脉管部分,且活性剂完全被转移到位于正在展开或已展开的支架支柱之间的脉管壁上。
所述实施例的优点在于,支架表面不具有抑制或杀死直接接触支架表面的细胞(尤其平滑肌细胞)的活性剂。相反,在支架支柱之间的凹槽中涂覆有足量活性剂,以致支架的快速过度生长(从凹槽开始且延伸到支架内部,最终导致支架内再狭窄)受到限制或降低到可容许的程度。
对于经物质涂布的支架,仅从其表面释放活性剂,而不从支架支柱的凹槽或不从支架末端或支架的延伸区域释放活性剂,且此外将活性剂释放到不应受抑制或杀死的相邻组织中,根据变体[A],将活性剂精确涂覆在需要之处。进一步优选,当导管球囊在其远端和近端超出支架末端数毫米经涂布时,用活性剂覆盖脉管壁使得支架末端延伸数毫米,以便提供足量活性剂且另外使得支架的末端部分并入脉管中。
因此,优选使导管球囊涂有活性剂(具有或不具有载体),且接着将未涂布的支架卷曲在球囊上。
当在球囊上卷曲变体[A]中的不可吸收性支架且接着用活性剂涂布支架和球囊时,可实现变体[B]。
术语“不可吸收”意指支架是在生理条件下不会溶解或仅逐渐溶解的永久性植入物。所述支架是由(例如)不锈钢、钛、铬、钒、钨、钼、金、镍钛合金、镁、锌、铁、前述金属的合金以及陶瓷或另外生物稳定的聚合物制成。
如果伴随地涂布具有卷曲支架的导管球囊,那么优选在尽可能小地影响导管球囊,但优选是湿润的且另外具有足够流动性以在压缩时在卷曲支架的支柱之间流动的溶剂中使用纯活性剂的溶液。
所述实施例适合相对较多活性剂的自发释放,这是因为支架支柱的凹槽和支架内表面与导管球囊表面之间的凹槽充当活性剂的池。
与变体[A]的不同之处主要在于可将适量活性剂、如根据前述方法显着较高量的活性剂或活性剂的组合物涂覆到支架和导管球囊上。
对于涂布溶液,疏水性活性剂也是合适的,所述活性剂例如太平洋紫杉醇于(例如)二甲亚砜(DMSO)、氯仿、乙醇、丙酮、乙酸甲酯和己烷以及其混合物中的溶液或例如雷帕霉素于乙酸乙酯、甲醇/乙醇混合物、乙醇/水混合物或乙醇中的溶液。当然,也可使用其它活性剂。
也有可能向具有活性剂的溶液中加入载体,然而当导管球囊与卷曲支架一起经涂布时,很少在溶液中使用聚合物载体。如果将使用载体系统而不是非聚合物载体,那么例如造影剂或造影剂类似物以及生物相容性有机物质是合适的,其改善涂层性质且增强活性剂在脉管中的吸收,例如氨基酸、糖、维生素、糖类、2-吡咯烷酮、柠檬酸乙酰基三丁酯和柠檬酸乙酰基三乙酯、柠檬酸三丁酯和柠檬酸三乙酯、苯甲酸苯甲酯、邻苯二甲酸三乙酯和邻苯二甲酸二甲酯、脂肪酸酯(诸如肉豆蔻酸异丙酯和棕榈酸异丙酯、三乙酸甘油酯等)。这些物质的混合物同样合适。举例来说,多糖角叉菜胶、卵磷脂和甘油的混合物证实极其合适。也可使用生理学上可接受的盐作为包埋活性剂的基质。
同样在所述变体中,优选超出支架所覆盖的表面来涂布球囊。优选地,延伸超出支架的球囊的涂布区域不超过总支架长度的20%、更优选不超过总支架长度的15%且尤其优选不超过总支架长度的10%。
通常,如同在变体[B]中,在变体[A]中完整的涂层是有利的,即,根据变体[A]的导管球囊或根据变体[B]的支架和导管球囊完全地具有涂层。
另外,通过在球囊或球囊和支架上使用活性剂的梯度(即,浓度梯度)来提供不均匀的涂层,从而可修改变体[A]和[B],产生表面。举例来说,可在球囊的中间部分上或在导管球囊的一端或两端上或在导管球囊的中间部分和一端或两端上涂覆较高浓度的活性剂。
此外,可仅在导管球囊的一个位置或部分上而不在表面的其余部分上涂覆较高浓度的活性剂。举例来说,支架末端需要特别注意,尤其是在植入后的初期,这是因为这些过渡部分具有较高风险。此处,可设想任何组合。
可以证明变体[C]和[D]将变成更为重要的实施例,因为这两个实施例并无永久性植入物。
这两个变体使用生物可降解(即,生物可吸收)的支架。所述在生理条件下可降解的支架将在数周到一或两年的时间内在患者体内完全降解。
生物可降解的支架是由金属(例如镁、钙或锌)或另外有机化合物(例如聚羟基丁酸酯、壳聚糖或胶原蛋白)组成。
欧洲专利EP 1 419 793 B1中揭示主要由镁制成的生物可吸收的金属支架。德国揭示案描述由镁合金和锌合金制成的支架。德国专利申请案DE 19856 983 A1中揭示由镁、钙、钛、锆、铌、钽、锌或硅或前述物质的合金或混合物制成的生物可吸收支架。揭示由锌钙合金制成的支架的明确实例。
欧洲专利申请案EP 0 966 979 A2中描述其它生物可吸收的支架,其是由镁、钛、锆、铌、钽、锌和/或硅作为组分A以及锂、钾、钙、锰和/或铁作为组分B制成。揭示由钛重量百分比为0.1到1%的锌钛合金和锌钙合金与锌的重量百分比为21∶1的锌钙合金制成的支架的明确实例。
美国专利US 6,548,569B1、US 5,935,506、US 6,623,749B2、US 6,838,493B2和US 6,867,247B2中揭示由有机化合物聚羟基丁酸酯(PHB)和其它聚羟基烷酸酯制成的生物可降解性支架。
美国专利US 6,245,103B1进一步提及聚二恶烷酮、聚己内酯、聚葡糖酸酯、聚(乳酸)-聚氧化乙烯-共聚物、改性纤维素、胶原蛋白、聚(羟基丁酸酯)、聚酸酐、聚磷酸酯以及聚氨基酸作为其它适用于支架的生物可降解材料。
美国专利US 6,991,647B2进一步列出聚乙醇酸、聚交酯、多磷酸酯以及聚-ε-己内酯作为适当的生物可降解有机聚合物。
基本上所有的生物可降解性支架都可由以下物质或以下物质的混合物制成:
聚戊内酯、聚-ε-癸内酯、聚交酯、聚乙交酯、聚交酯和聚乙交酯的共聚物、聚-ε-己内酯、聚羟基丁酸、聚羟基丁酸酯、聚羟基戊酸酯、聚羟基丁酸酯-共-戊酸酯、聚(1,4-二恶烷-2,3-二酮)、聚(1,3-二恶烷-2-酮)、聚对二恶烷酮、聚酸酐(诸如聚马来酸酐)、聚羟基甲基丙烯酸酯、纤维蛋白、聚氰基丙烯酸酯、聚己内酯二甲基丙烯酸酯、聚-β-马来酸、聚己内酯丁基丙烯酸酯、诸如由寡己内酯二醇和寡二恶烷酮二醇形成的多嵌段聚合物、聚醚酯多嵌段聚合物(诸如PEG和聚对苯二甲酸丁二酯)、聚新戊内酯、聚乙醇酸三甲基碳酸酯、聚己内酯-乙交酯、聚(g-乙基谷氨酸酯)、聚(DTH-亚氨基碳酸酯)、聚(DTE-共-DT-碳酸酯)、聚(双酚-A-亚氨基碳酸酯)、聚原酸酯、聚乙醇酸三甲基碳酸酯、聚三甲基碳酸酯、聚亚氨基碳酸酯、聚(N-乙烯基)-吡咯烷酮、聚乙烯醇、聚酯酰胺、乙醇酸化聚酯、聚磷酸酯、聚磷腈、聚[对羧基苯氧基)丙烷]、聚羟基戊酸、聚氧化乙烯-氧化丙烯、软质聚氨酯、主链中具有氨基酸残基的聚氨酯、聚醚酯(诸如聚氧化乙烯)、聚草酸二烷基酯、聚原酸酯以及其共聚物、角叉菜胶、纤维蛋白原、淀粉、胶原蛋白、基于蛋白质的聚合物、聚氨基酸、合成聚氨基酸、玉米醇溶蛋白、改性玉米醇溶蛋白、聚羟基烷酸酯、果胶酸、光化性酸、改性和未改性纤维蛋白和酪蛋白、羧基甲基硫酸酯、白蛋白、透明质酸、硫酸乙酰肝素、肝素、硫酸软骨素、葡聚糖、β-环糊精以及与PEG和聚丙二醇的共聚物、阿拉伯胶、瓜尔胶、明胶、胶原蛋白、胶原蛋白-N-羟基琥珀酰亚胺、以上所提及的物质的改性物和共聚物。
在变体[C]中,在经涂布的导管球囊上卷曲所述由金属或有机聚合物制成的生物可吸收支架。
类似于变体[A]来进行导管球囊的涂布。变体[C]和[D]的优点在于支架在数周到约18个月的时间后自身完全溶解,且因此无永久性外源物质停留在患者体内,而所述停留可能引起慢性炎症。经由经涂布的支架,在膨胀期间涂覆足量活性剂,以致首先可以受控方式并入支架,且所述支架仅在并入后开始以使得无法通过脉管或血流洗掉片段的方式崩解。
在变体[D]中,可将活性剂或活性剂的组合以纯物质层的形式涂覆在支架的表面上;或可将非聚合物基质中的活性剂或活性剂的组合包埋在支架的表面上,所述非聚合物基质例如造影剂、造影剂的组合物或造影剂类似物;或聚合物载体中的活性剂或活性剂的组合可存在于支架表面上,所述载体例如一种前述生物可降解的聚合物;和/或可将活性剂或活性剂的组合包埋在生物可降解的支架材料本身中。
由此,特别是在变体[D]中,关于将一种或一种以上活性剂涂覆或包埋到生物可降解支架上或生物可降解支架中存在多种选择。当然,也可选择将一种或一种以上活性剂包埋到生物可降解材料中(即,包埋到支架本身中),以及另外用活性剂或含有一种或一种以上活性剂的聚合物或非聚合物载体覆盖支架。此外,含活性剂的支架或涂层可具有生物可降解的障壁层或血相容性层,以致双层系统或另外多层系统也是可能的实施例。
此外,还可设想活性剂的组合,其中将活性剂的组合涂覆在支架中或涂覆在支架上,或当另一种活性剂位于支架中而不是支架上时产生活性剂的组合。
此外,变体[B]和[D]还提供当另一种活性剂位于导管球囊上而不是支架上时涂覆活性剂的组合的选择。
在导管球囊上优选涂覆活性剂,其在膨胀后数小时或数天期间变得有效,其中在支架上或在生物可降解支架中可涂覆或包埋另一种浓度的第二活性剂,所述第二活性剂产生长期效应且在支架的生物降解时间期间释放。
尤其优选的是,在导管球囊上和在支架上存在细胞毒性剂量的活性剂,和/或在生物可降解的支架中存在细胞抑制剂量的相同活性剂或另一活性剂。
尤其优选的优选实施例在导管球囊上含有细胞毒性剂量的太平洋紫杉醇且在金属支架的聚合物涂层或生物可吸收支架的生物可降解涂层中含有细胞抑制浓度的太平洋紫杉醇。
另一个尤其优选的实施例是导管球囊上细胞毒性或细胞抑制剂量的太平洋紫杉醇和生物可降解支架上或生物可降解支架中优选细胞抑制剂量的雷帕霉素的组合。
最后的组合提供使用优选高浓度和/或细胞毒性浓度的快速释放的活性剂和优选较低浓度和/或细胞抑制浓度的逐渐释放的活性剂的组合疗法。
在所使用的生物稳定(不可吸收)支架中以及在生物可降解支架中,优选提供血相容性基底涂层。这在不可吸收的支架中尤其有利,因为这些长期植入物应为永久性血相容的。所述血相容性涂层确保随着活性剂效应的消退和基质的降解,不会发生任何针对所存在的外源表面的反应,而这些反应从长远看来也可导致血管的再闭塞。直接覆盖支架的血相容性涂层优选由以下物质组成:天然起源肝素以及具有不同硫酸化程度和乙酰化程度的合成产生的衍生物(分子量范围从负责产生抗血栓形成效应的五糖到市面上可购得的肝素的标准分子量)、硫酸乙酰肝素和其衍生物、红细胞多糖-蛋白质复合物的寡糖和多糖(完美再生红细胞的非血栓形成表面,因为本文中与磷酸胆碱相反,在血液与红细胞表面之间出现直接接触)、寡糖、多糖、完全脱硫和N-再乙酰化的肝素、脱硫和N-再乙酰化的肝素、N-羧甲基化和/或部分N-乙酰化的壳聚糖、聚丙烯酸、聚乙烯吡咯烷酮和/或聚乙二醇以及这些物质的组合物。这些支架通过以下步骤产生血相容性涂层:提供常规的通常未涂布的支架且优选以共价方式涂覆血相容性层,所述血相容性层在活性剂释放后且因此在活性剂作用消退和基质降解后永久性遮盖植入物的表面。因此,将所述血相容性涂层直接涂覆到支架表面上。
因此,本发明的优选实施例涉及任何材料的支架,所述支架的表面由于涂覆来自血细胞、内皮细胞(esothelial cell)和间皮细胞的多糖-蛋白质复合物组分而被遮盖。多糖-蛋白质复合物是(例如)血细胞、内皮细胞和间皮细胞的最外层,这些细胞因这种物质而具有血液适用性(血相容性)。优选将血细胞、内皮细胞和/或间皮细胞的所述最外层的组分(多糖-蛋白质复合物)与细胞表面酶促分开,与细胞分离且用作支架的涂布材料。这些多糖-蛋白质复合物组分是糖蛋白、糖脂和蛋白聚糖的寡糖、多糖和脂质组分,诸如血型糖蛋白、鞘糖脂、透明质酸、硫酸软骨素、硫酸皮肤素、硫酸乙酰肝素以及硫酸角质素。Hemoteq AG的公司创建者Michael Hoffmann先生(PhD)和RolandHorres先生(MSc)的欧洲专利EP 1 152 778 B1中详细描述这些物质的分离方法和这些物质作为涂布材料的用途。
共价结合与肝素中的情形相同(参见实例9、实例14)。
其它优选的实施例具有直接涂覆在球囊表面上的脱硫和N-再乙酰化的肝素和/或N-羧甲基化和/或部分N-乙酰化的壳聚糖的最下涂层。多个研究中已展示,这些化合物以及多糖-蛋白质复合物组分为极佳血相容性涂层且在已去除或生物降解含优良活性剂和/或载体的层后,其使表面变得具有血液适用性。Hemoteq AG公司的欧洲专利第EP 1 501 565 B1号中揭示用于涂布支架表面的所述尤其优选的材料。在所述次级的血相容性层上,涂覆一个或一个以上含活性剂的层和/或具有或不具有活性剂的载体或聚合物层。
这些肝素或壳聚糖衍生物是根据通式Ia的多糖:
以及通式Ib的结构上相关的多糖:
根据式Ia的多糖具有2千道尔顿到400千道尔顿、优选5千道尔顿到150千道尔顿、更优选10千道尔顿到100千道尔顿且尤其优选30千道尔顿到80千道尔顿的分子量。根据式Ib的多糖具有2千道尔顿到15千道尔顿、优选4千道尔顿到13千道尔顿、更优选6千道尔顿到12千道尔顿且尤其优选8千道尔顿到11千道尔顿的分子量。变量n是4到1050范围内的整数。n优选是9到400的整数,更优选14到260的整数且尤其优选19与210之间的整数。
通式Ia和Ib代表二糖,其被视为根据本发明的多糖的基本单元且通过将所述基本单位连在一起n次而形成多糖。所述包括两个糖分子的基本单元不打算暗示通式Ia和Ib仅涉及具有偶数个糖分子的多糖。当然,通式Ia基团存在。
基团Y和Z彼此独立地代表以下化学酰基或羧基烷基:-CHO、-COCH3、-COC2H5、-COC3H7、-COC4H9、-COC5H11、-COCH(CH3)2、-COCH2CH(CH3)2、-COCH(CH3)C2H5、-COC(CH3)3、-CH2COO-、-C2H4COO-、-C3H6COO-、-C4H8COO-。
优选酰基-COCH3、-COC2H5、-COC3H7和羧基烷基-CH2COO-、-C2H4COO-、-C3H6COO-。更优选乙酰基和丙酰基以及羧甲基和羧乙基。尤其优选乙酰基和羧甲基。
另外,优选的是,基团Y代表酰基,且基团Z代表羧基烷基。更优选Y是基团-COCH3、-COC2H5或-COC3H7且尤其-COCH3的情形。此外,进一步优选的是,如果Z是羧乙基或羧甲基,那么尤其优选羧甲基。
式Ia绘示的二糖基本单元各自包括取代基Y和另一个基团Z。这很明显,本发明的多糖包括两个不同基团,即Y和Z。本文中,通式Ia不应仅包括含有严格交替顺序的基团Y和Z的多糖,所述多糖将由于将二糖基本单元连在一起而产生;而且包括在氨基处携带有完全随机顺序的基团Y和Z的多糖。另外,通式Ia还应包括含有不同数目的基团Y和Z的多糖。Y基团的数目与Z基团的数目的比率可在70%∶30%之间,优选在60%∶40%之间且尤其优选在45%∶55%之间。尤其优选实质上一半的氨基上携带有Y残基而另一半氨基上携带有Z残基的通式Ia多糖,其中Y残基和Z残基的分布仅是随机的。术语“实质上一半”意指在最合适的情况下正好为50%,但也应包括45%到55%的范围且尤其48%到52%的范围。
优选通式Ia的化合物,其中基团Y和Z具有以下含义:
Y=-CHO且Z=-C2H4COO-
Y=-CHO且Z=-CH2COO-
Y=-COCH3且Z=-C2H4COO-
Y=-COCH3且Z=-CH2COO-
Y=-COC2H5且Z=-C2H4COO-
Y=-COC2H5且Z=-CH2COO-。
尤其优选通式Ia的化合物,其中基团Y和Z具有以下含义:
Y=-CHO且Z=-C2H4COO-
Y=-COCH3且Z=-CH2COO-。
尤其优选通式Ib的化合物,其中Y是以下基团中的一个:-CHO、-COCH3、-COC2H5或-COC3H7。进一步优选基团-CHO、-COCH3、-COC2H5,且尤其优选基团-COCH3。
通式Ib的化合物仅含有微量游离氨基。当用茚三酮测试无法再检测到氨基时,由于所述测试的灵敏性,可推断所有-NH-Y基团的小于2%、优选小于1%且尤其优选小于0.5%以游离氨基形式存在,即Y代表氢的基团-NH-Y处于所述低百分比下。
当通式Ia和Ib的多糖含有羧酸酯基和氨基时,通式Ia和Ib还包括相应多糖的碱金属和碱土金属盐。因此,可提及诸如钠盐、钾盐、锂盐等碱金属盐或诸如镁盐或钙盐等碱土金属盐。另外,使用氨、伯胺、仲胺、叔胺以及季胺、吡啶和吡啶衍生物可产生铵盐,优选烷基铵盐和吡啶鎓盐。与多糖形成盐的碱包含无机和有机碱,诸如NaOH、KOH、LiOH、CaCO3、Fe(OH)3、NH4OH、四烷基氢氧化铵和类似化合物。
根据本发明的通式Ib的化合物可由肝素或硫酸乙酰肝素通过首先使多糖实质上完全脱硫且接着使其实质上完全N-酰化来制备。术语“实质上完全脱硫”是指脱硫程度超过90%、优选超过95%且尤其优选超过98%。脱硫程度可根据检测游离氨基的所谓的茚三酮测试进行测定。脱硫进行到用DMMB(二甲基亚甲蓝)无法获得显色反应的程度。所述显色测试适合检测硫酸化多糖,但技术文献中尚不知其检测极限。脱硫可(例如)通过在溶剂混合物中高温分解吡啶鎓盐来进行。尤其已证明DMSO、1,4-二恶烷和甲醇的混合物具有价值。
经由总水解和接着再乙酰化使硫酸乙酰肝素以及肝素脱硫。此后,由13C-NMR测定每个二糖单元的硫酸基的数目(S/D)。下表1展示肝素和脱硫、再乙酰化的肝素(Ac-肝素)的实例的这些结果。
表1:如由13C-NMR测量法所测定,肝素和Ac-肝素的实例上每个二糖单元的官能团分布。
2-S | 6-S | 3-S | NS | N-Ac | NH2 | S/D | |
肝素 | 0.63 | 0.88 | 0.05 | 0.90 | 0.08 | 0.02 | 2.47 |
Ac-肝 | 0.03 | 0 | 0 | 0 | 1.00 | - | 0.03 |
素 |
2-S,、3-S、6-S:2、3或6位的硫酸基;
NS:氨基上的硫酸基;
N-Ac:氨基上的乙酰基;
NH2:游离氨基;
S/D:每个二糖单元的硫酸基。
与肝素情况下约2.5个硫酸基/二糖单元(S/D)相比,在Ac-肝素的情况下可再现地获得约0.03个硫酸基/二糖单元的硫酸基含量。
这些通式Ia和Ib的化合物具有每个二糖单元小于0.2、优选小于0.07、更优选小于0.05且尤其优选小于0.03个硫酸基的硫酸基/二糖单元含量。
实质上完全N-酰化是指N-酰化程度超过94%、优选超过97%且尤其优选超过98%。以用检测游离氨基的茚三酮反应无法再获得显色反应的方式完全进行酰化。对于酰化剂,优选使用羧酰氯、羧酰溴或羧酸酐。举例来说,乙酸酐、丙酸酐、丁酸酐、乙酰氯、丙酰氯或丁酰氯适合根据本发明的化合物的合成。羧酸酐尤其适合作为酰化剂。
肽、核苷酸、糖类
此外,肽、蛋白质、核苷酸和糖类也是非常合适的基质材料,其一方面可包埋活性剂且另一方面展示对细胞壁具有一定亲和力且在转移到细胞壁上以后可生物降解。
所述化合物的实例可为壳聚糖、甲壳素、糖胺聚糖(如肝素)、硫酸皮肤素、硫酸乙酰肝素、硫酸软骨素以及透明质酸、胶原蛋白、角叉菜胶、琼脂、角豆树胶、纤维蛋白、纤维素、人造纤维、具有50到500个氨基酸的肽、具有20到300个碱基的核苷酸以及具有20到400个糖分子的糖类。所述载体对生物组织具有一定的亲和力且可在短期膨胀期间将活性剂充分转移到脉管壁上。
优选分子量为2千道尔顿到400千道尔顿、优选5千道尔顿到150千道尔顿、更优选10千道尔顿到100千道尔顿且尤其优选30千道尔顿到80千道尔顿的多糖。优选的寡糖和/或多糖的特征在于其含有大量N-酰基葡糖胺或N-酰基半乳糖胺分子作为单体。这意指40%-60%、优选45%-55%且尤其优选48%-52%的单体是N-酰基葡糖胺或N-酰基半乳糖胺,且实质上剩余的糖单体各自具有羧基残基。因此,寡糖和/或多糖通常由超过95%、优选超过98%的仅两种糖单体组成,其中一种单体携带羧基残基且另一种单体携带N-酰基残基。
优选寡糖和/或多糖的糖单体是N-酰基葡糖胺或N-酰基半乳糖胺,优选N-乙酰基葡糖胺或N-乙酰基半乳糖胺,且另一个单体是糖醛酸,优选葡糖醛酸和艾杜糖醛酸(iduronic acid)。
优选实质上由糖葡糖胺或半乳糖胺组成的寡糖和/或多糖,其中实质上一半的糖单元携带N-酰基、优选N-乙酰基,且另一半的葡糖胺单元携带经由氨基直接键结或经由一个或一个以上亚甲基键结的羧基。这些与氨基键结的羧酸基优选是羧甲基或羧乙基。进一步优选以下寡糖和/或多糖,其中实质上一半(即,48-52%、优选49-51%且尤其优选49.5-50.5%)由N-酰基葡糖胺或N-酰基半乳糖胺、优选N-乙酰基葡糖胺或N-乙酰基半乳糖胺组成,且实质上其另一半由糖醛酸、优选葡糖醛酸以及艾杜糖醛酸组成。尤其优选以下寡糖和/或多糖,其展示实质上交替顺序(即,尽管存在统计学偏差比率,但仍在交替连接的情况下)的两个糖单元。偏差连接的比率应在1%以下,优选在0.1%以下。
令人惊讶地,已展示具体来说,实质上脱硫且实质上N-酰化的肝素以及部分N-羧基烷基化且N-酰化的壳聚糖以及脱硫且实质上N-酰化的硫酸皮肤素、硫酸软骨素以及链长减小的透明质酸尤其适用于根据本发明的用途。具体来说,N-乙酰化的肝素以及部分N-羧基甲基化且N-乙酰化的壳聚糖适用于血相容性涂层。
由“实质上”所界定的脱硫程度和酰化程度已在上文进一步定义。术语“实质上”打算阐明必须考虑统计学偏差。实质上交替顺序的糖单体意指两个相同的糖单体通常并不彼此键结,但也不完全排除所述错误键联。因此,“实质上一半”意指接近50%,但也允许微小变化,这是因为尤其对于以生物合成方式产生的大分子,最合适的情况从未实现过,且在任何情况下都必须考虑一定的偏差,因为酶不会完美地起作用且催化通常涉及一定的误差率。然而,在天然肝素的情况下,存在严格交替顺序的N-乙酰基葡糖胺和糖醛酸单体。
举例来说,已发现角叉菜胶与磷脂酰胆碱和甘油的混合物特定粘附到细胞壁上。对于用于活性剂或活性剂的组合的粘附到外细胞膜上的基质,多糖与膜可渗透的物质的所述混合物可在比医学装置与脉管壁的短期接触所允许的时间明显要长的时间内提供活性剂向细胞溶质中的受控转移。
此外,揭示打算用于直接血液接触的表面的血相容性涂布方法。在所述方法中,提供天然和/或人工表面,且在所述表面上固定上述寡糖和/或多糖。
寡糖和/或多糖在这些表面上的固定可经由疏水性相互作用、范德华力、静电相互作用、氢键、离子相互作用、寡糖和/或多糖的交联和/或通过共价键结到表面上来实现。优选寡糖和/或多糖的共价键联,更优选共价单点键联(侧基键结)且尤其优选共价端点键联(端基键结)。
术语“实质上剩余的糖单体”意指剩余糖单体的93%、优选剩余60%-40%糖单体的96%且尤其优选98%携带羧基残基。
因此,尤其优选具有前述肝素衍生物、壳聚糖衍生物和/或寡肽和多肽的所述血相容性涂层的短期植入物,在暴露时间期间可能需要所述涂层的增强的生物相容性,例如在短期植入物中,如果未涂布有活性剂的表面显示改进的生物相容性,那么不是完全地而是部分地涂布活性剂是有利的。如果在植入物在生物体内的短期停留期间,未涂布的金属表面部分或完全地暴露,那么血相容性层同样适用。
为改进所述载体物质的粘附,可使肽、蛋白质、核苷酸原(pronucleotide)、核苷酸和糖交联,所述交联可(例如)用戊二醛来实现。
作为载体物质的油和脂肪
除以上所提及的生物稳定且生物可降解的聚合物以外,还可使用生理学上可接受的油、脂肪、脂质、类脂以及蜡作为用于转运介体和活性剂的载体基质。WO 03/022265A1描述同样可使用的太平洋紫杉醇的油性调配物。然而,尤其优选可固化或自动聚合的油和脂肪。
对于所述可用作无活性剂的载体物质或层、尤其顶层的油、脂肪以及蜡,可由以下通式表示的物质是合适的:
其中:
R、R′、R″、R*以及R**彼此独立地为具有1到20个碳原子的烷基、烯基、炔基、杂烷基、环烷基、杂环基;具有3到20个碳原子的芳基、芳基烷基、烷基芳基、杂芳基;或官能团且优选表示以下基团:-H、-OH、-OCH3、-OC2H5、-OC3H7、-O-环-C3H5、-OCH(CH3)2、-OC(CH3)3、-OC4H9、-OPh、-OCH2-Ph、-OCPh3、-SH、-SCH3、-SC2H5、-NO2、-F、-Cl、-Br、-I、-CN、-OCN、-NCO、-SCN、-NCS、-CHO、-COCH3、-COC2H5、-COC3H7、-CO-环-C3H5、-COCH(CH3)2、-COC(CH3)3、-COOH、-COOCH3、-COOC2H5、-COOC3H7、-COO-环-C3H5、-COOCH(CH3)2、-COOC(CH3)3、-OOC-CH3、-OOC-C2H5、-OOC-C3H7、-OOC-环-C3H5、-OOC-CH(CH3)2、-OOC-C(CH3)3、-CONH2、-CONHCH3、-CONHC2H5、-CONHC3H7、-CON(CH3)2、-CON(C2H5)2、-CON(C3H7)2、-NH2、-NHCH3、-NHC2H5、-NHC3H7、-NH-环-C3H5、-NHCH(CH3)2、-NHC(CH3)3、-N(CH3)2、-N(C2H5)2、-N(C3H7)2、-N(环-C3H5)2、-N[CH(CH3)2]2、-N[C(CH3)3]2、-SOCH3、-SOC2H5、-SOC3H7、-SO2CH3、-SO2C2H5、-SO2C3H7、-SO3H、-SO3CH3、-SO3C2H5、-SO3C3H7、-OCF3、-OC2F5、-O-COOCH3、-O-COOC2H5、-O-COOC3H7、-O-COO-环-C3H5、-O-COOCH(CH3)2、-O-COOC(CH3)3、-NH-CO-NH2、-NH-CO-NHCH3、-NH-CO-NHC2H5、-NH-CO-N(CH3)2、-NH-CO-N(C2H5)2、-O-CO-NH2、-O-CO-NHCH3、-O-CO-NHC2H5、-O-CO-NHC3H7、-O-CO-N(CH3)2、-O-CO-N(C2H5)2、-O-CO-OCH3、-O-CO-OC2H5、-O-CO-OC3H7、-O-CO-O-环-C3H5、-O-CO-OCH(CH3)2、-O-CO-OC(CH3)3、-CH2F、-CHF2、-CF3、-CH2Cl、-CH2Br、-CH2I、-CH2-CH2F、-CH2-CHF2、-CH2-CF3、-CH2-CH2Cl、-CH2-CH2Br、-CH2-CH2I、-CH3、-C2H5、-C3H7、-环-C3H5、-CH(CH3)2、-C(CH3)3、-C4H9、-CH2-CH(CH3)2、-CH(CH3)-C2H5、-Ph、-CH2-Ph、-CPh3、-CH=CH2、-CH2-CH=CH2、-C(CH3)=CH2、-CH=CH-CH3、-C2H4-CH=CH2、-CH=C(CH3)2、-C≡CH、-C≡C-CH3、-CH2-C≡CH;
X为酯基或酰胺基且尤其为-O-烷基、-O-CO-烷基、-O-CO-O-烷基、-O-CO-NH-烷基、-O-CO-N-二烷基、-CO-NH-烷基、-CO-N-二烷基、-CO-O-烷基、-CO-OH、-OH;
m、n、p、q、r、s以及t彼此独立地为0到20、优选0到10的整数。
例如在-CO-O-烷基中,术语“烷基”优选是关于上述基团R、R′等(诸如-CH2-Ph)所提及的一个烷基。上述通式的化合物也可以如下形式存在:其盐、外消旋体或非对映异构混合物、纯对映异构体或非对映异构体以及混合物或寡聚物或共聚物或嵌段共聚物。此外,上述物质也可与其它物质(诸如生物稳定且生物可降解的聚合物)以混合物形式使用且尤其可与本文中所提及的油和/或脂肪酸以混合物形式使用。优选适合聚合、尤其自动聚合的所述混合物和个别物质。
适合聚合、尤其自动聚合的物质包括诸如油、脂肪、脂质、脂肪酸以及脂肪酸酯,其将在下文中更详细地描述。脂质优选是呈三甘油酯形式和/或非甘油结合的游离形式的单或多不饱和脂肪酸和/或这些不饱和脂肪酸的混合物。
不饱和脂肪酸优选地选自包括以下各物的族群:油酸、二十碳五烯酸(eicosapentaenoic acid,timnodonic acid)、二十二碳六烯酸、花生四烯酸、亚油酸、α-亚麻酸、γ-亚麻酸以及前述脂肪酸的混合物。这些混合物尤其包括纯不饱和化合物的混合物。
对于油,优选使用亚麻籽油、大麻籽油、玉米油、核桃油、菜籽油、大豆油、向日葵油、罂粟籽油、红花油、小麦胚芽油、蓟油、葡萄籽油、月见草油、琉璃苣籽油、黑茗油、藻油、鱼油、鱼肝油和/或前述油的混合物。尤其合适的是纯不饱和化合物的混合物。
除少量α-亚麻酸(ALA C18:3)外,鱼油和鱼肝油主要含有二十碳五烯酸(EPA C20:5)和二十二碳六烯酸(DHA C22:6)。所有这三种脂肪酸都是ω-3脂肪酸,其作为许多细胞结构的重要生物化学构成物质(DHA和EPA)而为生物体所需,举例来说,如已提及,其基本用于细胞膜的构建和维持(鞘脂、神经酰胺、神经节苷脂)。ω-3脂肪酸不仅可见于鱼油中,而且可见于植物油中。诸如ω-6脂肪酸等其它不饱和脂肪酸存在于草本起源的油中,其在所述油中部分地构成比动物脂肪中高的比例。因此,推荐将具有相应高含量的必需脂肪酸的不同植物油(诸如亚麻籽油、核桃油、亚麻油、月见草油)用作特别高质量且有价值的食用油。尤其,亚麻籽油表示ω-3和ω-6脂肪酸的有价值的提供者且数十年来以高质量食用油著称。
对于参与聚合反应的物质,优选ω-3以及ω-6脂肪酸以及所有具有至少一个ω-3和/或ω-6脂肪酸部分的物质。所述物质也展示良好的自动聚合性能。固化能力(即自动聚合的能力)是基于益固油(也称为toweling oil)的组成,且可追溯到高含量的必需脂肪酸,更确切来说,不饱和脂肪酸的双键。当暴露在空气中时,借助于氧在脂肪酸分子的双键位点处产生自由基,所述自由基启动并传播自由基聚合,以致脂肪酸在失去双键的情况下自身交联。随着脂肪分子中双键的去除,熔点增加且脂肪酸分子的交联引起额外固化。产生高分子树脂,其作为柔性聚合物膜均匀地覆盖医学表面。
自动聚合也称为自聚合且可(例如)由氧、尤其大气氧启动。所述自动聚合也可在隔光的情况下进行。另一种可能性是通过电磁辐射、尤其通过光来启动自动聚合。另一个不太优选的变体以由化学分解反应、尤其欲聚合的物质的分解反应启动的自动聚合为代表。
脂肪酸部分中存在的重键(multiple bond)越多,交联程度越高。因此,烷基部分(脂肪酸部分)以及一个分子中重键的密度较高,主动参与聚合反应的物质的量越小。
主动参与聚合反应的物质相对于沉积于医学产品表面上的所有物质的总量的含量是至少25重量百分比,优选35重量百分比,更优选45重量百分比且尤其优选55重量百分比。
下表1展示本发明中优选使用的不同油中脂肪酸组成部分的列表。
表1
分别用于根据本发明的涂层中的油和油的混合物含有至少40重量百分比的量的不饱和脂肪酸,优选50重量百分比的量、更优选60重量百分比的量、进一步优选70重量百分比的量且尤其优选75重量百分比的量的不饱和脂肪酸。可向所使用的市面上可购得的含有低于40重量百分比的量的具有至少一个重键的化合物的油、脂肪或蜡中加入使不饱和化合物的量增加到超过40重量百分比的量的不饱和化合物。在小于40重量百分比的量的情况下,聚合速率降低过多,以致无法再保证均匀涂层。
聚合性质尤其使得具有大量多不饱和脂肪酸的脂质能够成为本发明的极佳物质。
因此,亚油酸(十八碳二烯酸)具有两个双键且亚麻酸(十八碳三烯酸)具有三个双键。二十碳五烯酸(EPA C20:5)在一个分子中具有5个双键且二十二碳六烯酸(DHA C22:6)在一个分子中具有6个双键。随着双键数目增加,可聚合性也增加。
不饱和脂肪酸和其混合物的这些性质以及其自动聚合的倾向可用于具有(例如)鱼油、鱼肝油或亚麻籽油的医学表面、尤其支架的生物相容性和柔性涂层(参见实例13-18)。
亚油酸也称为顺-9,顺-12-十八碳二烯酸(化学命名法),或分别称为Δ9,12-十八碳二烯酸或十八碳二烯酸(18:2)和十八碳二烯酸18:2(n-6)(分别为生物化学和生理学命名法)。在十八碳二烯酸18:2(n-6)的情况下,n代表碳原子的数目且数字“6”指示最后双键的位置。因此,18:2(n-6)是具有18个碳原子、两个双键且最后双键到外部甲基的距离为6个碳原子的脂肪酸。
对于本发明,优选使用以下不饱和脂肪酸作为参与聚合反应的物质和分别含有这些脂肪酸的物质或含有这些脂肪酸的烷基部分(即,无羧酸酯基(-COOH))的物质。
表1:单烯烃脂肪酸
表2:多不饱和脂肪酸
表3:炔系脂肪酸
在实现含有一个直链或支链和一个经取代或未经取代的烷基部分的物质与至少一个重键的所述聚合以后,获得至少部分具有聚合物层的医学产品的表面。在理想情况下,在支架或具有或不具有卷曲支架的导管球囊的整个外表面上形成均匀、连续的厚聚合物层。支架或具有或不具有支架的导管球囊的表面上的所述聚合物层是由参与聚合反应的物质组成且包含不主动参与聚合反应的聚合物基质中的物质和/或活性剂和/或雷帕霉素。所述包含优选地适合使不参与聚合的物质(尤其雷帕霉素和其它活性剂)从聚合物基质中扩散出来。
聚合物质的生物相容性涂层提供支架或具有或不具有支架的导管球囊所必需的血液相容性且同时代表诸如太平洋紫杉醇和雷帕霉素等活性剂的合适载体。在支架和/或导管球囊的整个表面上均匀分布的所加入活性剂(或活性剂组合)使得表面上的细胞、尤其平滑肌和内皮细胞的群体以受控方式出现。因此,不会在支架表面上发生可能导致再狭窄的细胞的快速群体出现和过度生长。然而,高浓度药物无法完全阻止支架表面上细胞的群体出现,这必然伴有血栓形成的危险。这两种效应的所述组合对根据本发明的医学产品的表面、尤其支架表面赋予快速生长到血管壁的能力,并降低再狭窄与血栓形成的风险。一种或一种以上活性剂的释放跨越植入后1到12个月、优选1到2个月的时间。
优选在第一步中用例如石墨或硬脂酸酯等润滑剂涂布常规导管球囊,且接着优选通过喷涂用油或脂肪和例如雷帕霉素或太平洋紫杉醇等活性剂的粘稠混合物进行涂布。必要时,接着可发生通过由氧分子或辐射和/或自由基生成体启动的自动聚合所引起的少量固化。因此,在导管球囊表面上产生光滑表面,其通常不需要免于提前分开的进一步保护。可将导管球囊以其存在形式推进到脉管的狭窄部分,且在所述部分处可通过使球囊膨胀而将涂层转移到脉管壁上,其中润滑剂支持直接位于球囊表面上的油性涂层分开。
脂质体调配物
本发明的其它优选实施例涉及涂布具有或不具有支架的导管球囊的活性剂的脂质体调配物。
优选通过第一步将活性剂(例如太平洋紫杉醇或雷帕霉素)或活性剂的组合溶解于水性介质或缓冲介质中,且接着使其与含有成膜物质的溶液接触来产生脂质体调配物。所述方法产生至少30%到高达95%的高包含率。
成膜物质是带有负载的两亲化合物,优选烷基碳酸、烷基磺酸、烷基胺、烷基铵盐、磷酸醇酯、天然存在和合成的脂质,诸如磷脂酰甘油(PG)、磷脂酰丝氨酸(PS)、磷脂酰乙醇胺衍生物(PE衍生物)和胆固醇衍生物、磷脂酸、磷脂酰肌醇、心磷脂、鞘磷脂、呈天然、半合成或合成形式的神经酰胺、硬脂胺和硬脂酸(stearinic acid)、棕榈酰基-D-葡糖苷酸和/或有负载的鞘脂(例如硫脑苷脂)。
中性成膜物质为(例如)磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、类固醇(优选胆固醇)、复合脂质和/或中性鞘脂的已知组分。
也通过使用例如透析、超滤、凝胶过滤、沉降或浮选等已知技术来实现脂质体从水溶液中的提取。脂质体具有10纳米到400纳米的平均直径。
优选地,还可将所述脂质体调配物涂覆到折叠球囊的折叠中。
含有磁性粒子的涂层
根据本发明的导管球囊的另一涂层包含如(例如)DE 197 26 282A中所揭示的优选平均粒径在纳米到微米范围内的磁性粒子和/或能够引起内吞作用的粒子。
已知纳米粒子可经由内吞作用从细胞中并入。DE 197 26 282.1中提及一种产生所述细胞可渗透的纳米粒子的方法。可在活体外研究中在高度纯化的细胞材料中研究纳米粒子的吸收。在DE 199 12 798 C1中,列出可将任何来自组织的细胞带入培养物中的方法。这些方法允许以在某些细胞类型中出现高吸收率的方式以化学方法设计粒子。因此,在DE 100 59 151 A中,通过离子相互作用来进行诸如太平洋紫杉醇和雷帕霉素等物质例如与粒子的偶合,其中接合物富集在组织中。
对于磁性粒子,涂层优选可由单体氨基硅烷组成,所述单体氨基硅烷例如3-氨基丙基三乙氧基硅烷、2-氨基乙基-3-氨基丙基三甲氧基硅烷、三甲氧基硅烷基丙基二乙烯三胺或N-(6-氨基己基)-3-氨基丙基三甲氧基硅烷,其根据熟知的程序进行缩聚以达到所需稳定性。举例来说,DE 196 14 136 A或DE 195 15 820 A中描述合适的方法。
进一步已知,所述磁性粒子可借助于外加磁场局部富集(DE 109 59 151A),或可例如通过与抗体偶合而以化学方式增强目标性质(DE 44 28 851 A1、EP 0516252 A2)。将粒子和活性剂的接合物带入细胞、尤其肿瘤细胞中的多壳粒子是描述于专利申请案WO 98/58673A中。此外,通过施加外部交变磁场,例如通过例如45℃和45℃以上的磁滞热也可实现粒子的加热。
纳米粒子本身由磁性材料、优选铁磁性、反铁磁性、亚铁磁性、反亚铁磁性或超顺磁性材料组成,尤其由超顺磁性铁氧化物或具有氧化物层的纯铁组成。优选地,纳米粒子由铁氧化物组成且尤其由磁铁矿(Fe3O4)、磁赤铁矿(γ-Fe2O3)或两种氧化物的混合物组成。一般来说,优选纳米粒子可用式FeOx描述,其中x是1到2的数字。纳米粒子优选具有小于500纳米的直径。优选地,纳米粒子具有15纳米或优选在1-100纳米范围内且尤其优选在10-20纳米范围内的平均直径。
除式FeOx(其中x是1.0到2.0的数字)的磁性材料外,根据本发明也可使用通式M(II)Fe2O4的材料,其中M=Co、Ni、Mn、Zn、Cu、Cd、Ba或其它铁氧体。除铁原子以外的金属原子的含量为优选不超过70%的金属原子,尤其不超过35%的金属原子。然而,纳米粒子优选由超过98重量百分比的含有比率为优选1∶1到1∶3的Fe(III)以及Fe(II)的铁氧化物组成。此外,包埋和/或键结例如本文中列出的磁性材料等磁性材料的二氧化硅和聚合物粒子也是合适的。
所使用的纳米粒子核心也可由非磁性材料组成。其可适当来自例如聚合物纳米粒子(例如MgO、CaO、TiO2、ZrO2、SiO2、Al2O3)。根据本发明,任何可通过前述方法涂有肿瘤特异性壳的材料都是合适的,因为内吞的能力不依赖于粒子而是依赖于壳。
治疗活性物质可与这些纳米粒子结合,其中共价结合以及吸附和离子结合都是可能的。
根据本发明,纳米粒子和活性剂的诱导性接合物优选以含磁铁的核心为主,所述核心被一个或一个以上视情况经由官能团与活性剂偶合的胶体壳或涂层包围。本文中,核心由磁铁矿或磁赤铁矿组成。壳的主要作用在于获得水性介质中的胶体分布和防止纳米粒子凝聚。如专利申请案WO 98/58673中所描述的多壳粒子原则上适合作为纳米粒子和活性剂的诱导性接合物的基础,因为所述粒子的生物特性可由具有聚合物的涂层调整且活性剂可能与第一壳的官能团偶合。
如WO 98/58673中所描述的纳米粒子和活性剂的诱导性接合物的另一涂层(例如具有聚合物)也有可能存在且可用于改进纳米粒子和活性剂的接合物的生物性质。
根据本发明,导管球囊因此具有含有磁性粒子和/或能够引起内吞作用的粒子的涂层。另外,所述涂层也可包括优选一种或一种以上聚合物,其中磁性粒子和/或能够引起内吞作用的粒子可与诸如太平洋紫杉醇或雷帕霉素等活性剂或活性剂的组合包埋在一起。此外,也有可能将造影剂或造影剂类似物与活性剂和磁性粒子和/或能够引起内吞作用的粒子的混合物涂覆到具有或不具有卷曲支架的球囊的表面上。此外,可产生磁性粒子和/或能够引起内吞作用的粒子和活性剂于优选光挥发性溶剂中的溶液或分散液,所述溶剂诸如丙酮、甲醇、乙醇、四氢呋喃(THF)、二氯甲烷、氯仿、醚、石油醚、乙酸乙酯和乙酸甲酯、环己烷、己烷和其它沸点低于100℃的有机溶剂,接着优选通过喷涂法将所述溶液或分散液涂覆在具有或不具有卷曲支架的导管球囊上。
如先前所提及,活性剂可以粘附方式或另外以共价方式与磁性粒子和/或能够引起内吞作用的粒子的外壳结合,或将磁性粒子和/或能够引起内吞作用的粒子与活性剂或活性剂的组合物(例如雷帕霉素和/或太平洋紫杉醇)一起封闭到微胶囊或脂质体调配物中并以所述形式涂覆到球囊的表面上。
当然,可用另一保护层以及释放控制层涂布活性剂和磁性粒子和/或能够引起内吞作用的粒子的所述涂层。
在膨胀期间脆性破裂的层或涂层尤其适合作为导管球囊的涂层的外壳,其对球囊提供特别良好的润滑且仅显示极少的与脉管壁的相互作用或滑动摩擦。
在一个包括具有磁性粒子和/或能够引起内吞作用的粒子的涂层的尤其优选的实施例中,借助于外部磁场将所述粒子或含有这些粒子的涂层固定在球囊的表面上。在另一个实施例中,在导管球囊内部或其外层中布置例如电磁铁等具有可逆极性的磁体,所述磁体在导管放置期间吸引相反极化的粒子且因此使其牢固结合于球囊表面上。在球囊膨胀时,球囊内部的磁体的极性逆转且排斥具有相同极性的粒子或同样极化的粒子,因此将磁性粒子挤压到脉管壁和单细胞或平滑肌细胞中。
所述实施例确保在导管球囊放置期间基于外部局部磁场或优选导管球囊内部所产生的磁场的磁性牢固粘附磁性粒子,且另外在展开导管球囊时使得磁性粒子被定量推斥并转移到邻接组织中。
在所述方法中,小于30秒的极短导管球囊膨胀时间是足够的,优选5-20秒,更优选5-10秒且尤其优选3-6秒。
当一种或一种以上活性剂借助于吸附或借助于可能还经由连接子产生的共价键或通过包埋于粒子的磁性核心的表面涂层中而与磁性粒子的表面牢固连接时,在导管放置期间活性剂的损失同样极低。
此外,磁性粒子可具有对平滑肌细胞具有特别高的亲和力且对内皮细胞具有较低亲和力的涂层,以致可通过磁性微米或纳米粒子的涂层来控制以下情形:优选杀死平滑肌细胞或抑制其增殖,而几乎不损伤内皮细胞,这在再狭窄的预防和治疗中极具积极作用。此外,可通过所涂覆的活性剂的量来控制(例如)太平洋紫杉醇是发挥细胞毒性作用还是细胞抑制作用。
因为活性剂牢固地(但通常并非不可逆地)与磁性粒子结合,所以活性剂与磁性粒子一起被并入细胞、优选平滑肌细胞中,并在细胞内部发挥其作用,从而使得活性剂的效应显着增强。
水凝胶
在根据本发明的另一个实施例中,在具有或不具有支架的导管球囊上涂覆含有至少一种前述活性剂、优选太平洋紫杉醇或雷帕霉素或其衍生物的水凝胶。
当在自展开镍钛合金支架中使用时,优选通过外覆层来保护所述水凝胶涂层免于与血液接触,直到将导管球囊放置到脉管狭窄部分的所述时间为止。在狭窄部分处,保护性外覆层被去除且当与血液接触时,水凝胶开始膨胀。导管球囊的展开将大部分水凝胶层转移到脉管壁上,且所述水凝胶层在数天或数周期间作为短期活性剂池停留在脉管壁上,连续将例如太平洋紫杉醇或雷帕霉素等活性剂释放到脉管壁中直到水凝胶层溶解。
活性剂的盐
本发明的一个尤其优选的实施例是用活性剂、优选太平洋紫杉醇或雷帕霉素或其衍生物且尤其太平洋紫杉醇以及一种或一种以上生理学上可接受的盐的溶液或分散液涂布优选不具有支架的导管球囊。
对于盐,可使用含有钠阳离子、钙、镁、锌、铁或锂阳离子以及硫酸根、氯离子、溴离子、碘离子、磷酸根、硝酸根、柠檬酸根或乙酸根阴离子的化合物。
向所述溶液、分散液或悬浮液中加入活性剂或活性剂的组合。优选地,水充当溶剂,有可能也有辅溶剂。盐浓度应相对较高。
经由浸渍法或喷涂法或刷涂法或喷射法,用所述含有活性剂的盐溶液涂布导管球囊,且随后干燥导管球囊,以致在导管球囊上产生牢固盐壳。此外,也可将离子造影剂用作盐,或可向前述盐中加入离子造影剂。
目标在于在导管球囊上产生封闭活性剂的固体(即,盐)的几乎均匀的涂层。然后,当在自展开支架中使用所述盐壳时,向其提供保护性覆盖层或可去除包装纸以保护其免于提前分开。第三种变体在于使用折叠球囊并特别将所述盐混合物涂覆在导管球囊的折叠下方。
盐涂层极具吸湿性且因此对脉管组织具有高亲和力。膨胀时,包装纸被去除或外部保护性障壁层破裂,或当使用折叠球囊时,折叠展开且将盐涂层压向脉管壁。
随后,盐涂层一直粘在脉管壁上,其在脉管壁中履行数项任务。一方面,局部极高的盐浓度产生使细胞破裂的高等渗压,且另一方面,高盐浓度也溶解硬斑块和脉管中的其它沉降且另外释放尤其抑止平滑肌细胞增殖的活性剂。
依量而定,在数小时到数天后,转移到脉管壁上的盐涂层完全溶解。
涂布方法
此外,本发明也涉及涂布具有或不具有卷曲支架的导管球囊的方法。
短期植入物通过喷涂法、浸渍法、刷涂法、喷射法、滚涂法、拖涂法、移液法或电解自旋法完全或部分地涂有包含活性剂或活性剂的组合的待涂覆物质的溶液,或完全或部分地涂有基质。
对于溶剂,可使用挥发性有机化合物,诸如二氯甲烷、氯仿、乙醇、丙酮、庚烷、正己烷、DMF、DMSO、甲醇、丙醇、四氢呋喃(THF)、二氯甲烷、醚、汽油、乙腈、乙酸乙酯和乙酸甲酯、环己烷以及其相应混合物。根据涂布材料(例如水凝胶或水溶性活性剂),也可能需要存在水。
当选择溶剂时,使短期植入物的材料不溶解或不致使短期植入物无用或暴露时间极短因而不会发生损坏通常极为重要。
基质是由囊封活性剂的合成、半合成或天然的生物稳定或生物可降解的生物相容性聚合物或聚合物混合物、预聚物、诸如不饱和脂肪酸等可聚合物质、胶束或脂质体构建物质组成,这些物质应满足植入物的要求。合适的聚合物在上文中已提及。由此可实现另一储存效应和剂量增强。
导管球囊可在展开或折叠状态下经涂布,可部分或完全地经涂布或与安装的支架一起经涂布。
可通过喷涂法、浸渍法、刷涂法、喷射法、拖涂法、滚涂法和/或移液法进行涂布。移液法、拖涂法、滚涂法或喷射法尤其适合用于折叠导管球囊或折叠球囊,因为使用这些方法,可将具有活性剂或活性剂的组合的溶液特定地涂覆到折叠中或折叠下方。由此,重要的是由于所述部分涂布,官能团不发生损坏。举例来说,折叠在展开时可能并未粘在一起且因此阻碍展开。同样地,即使为抵消折叠中涂层的粘附力,也不应使球囊上的标称压力增加到超出最大值。同时应避免不均匀展开。涂层在任何情况下都不应损伤球囊导管的展开特征。
此外,导管球囊可与卷曲支架一起经涂布,或可将裸露的支架以及已涂布的支架卷曲在经涂布的导管球囊上,从而实现例如从导管球囊快速释放的活性剂和从支架涂层缓慢释放的活性剂的系统。
在愈合过程初期,释放物质的球囊导管与部分经涂布且能够释放活性剂的支架的组合尤其有利,因为仅以此方式即可实现与待治疗的区域完全接触且活性剂以其完整尺寸进入受感染的脉管壁中。当整个感染区域暴露于球囊导管的表面时,对所述区域提供活性剂,而具有优选较小表面的支架仅覆盖脉管壁表面的一小部分。
应给予不断引发问题的支架边缘区同样的优势。能够释放活性剂的导管球囊在边缘区中也为甚至在支架的问题区中的脉管传递最佳供给。
盐溶液和含有造影剂的组合物或另外盐和造影剂的组合物尤其适合涂布具有粗糙的有毛的多孔或微结构表面的折叠球囊或导管球囊,或使这些混合物进入折叠球囊的折叠中或折叠下方。
具有特殊表面的导管球囊优选用喷涂法或移液法进行涂布。在喷涂法中,使导管球囊以旋转方式悬浮且通过低真空来稳定导管球囊的形式。举例来说,可阻止折叠球囊的折叠翻转或滑动且因此阻止非特定局部地执行涂布。
因此,拴系球囊导管数次,短暂喷涂,同时间歇干燥。必要时,同样优选通过喷涂来涂覆外部保护层或障壁层。这同样适用于也优选通过喷涂涂覆的仅含有诸如太平洋紫杉醇或雷帕霉素等活性剂的层。
移液法尤其适合涂布球囊导管。本文中,借助于用毛细管延长的细喷嘴来涂布可旋转栓系的球囊导管(具有或不具有支架),涂布溶液经由所述喷嘴纵向通过球囊导管。
在喷射法或移液法中,在折叠下方移动细喷嘴或插管以优选填充折叠球囊的折叠,且将欲涂覆的溶液喷射到折叠中,其中优选沿折叠移动喷嘴或插管或当喷嘴或插管固定时,沿折叠纵向移动折叠球囊。这一方法允许极其确切且精确地涂布各单个折叠或整个球囊。蒸发或在真空下去除可能使用的溶剂。
如果欲涂覆的混合物或溶液的稠度允许流入折叠中,那么使一个折叠在上水平放置折叠球囊,或优选使折叠球囊倾斜5到25度,如此可将注射器或喷嘴设置在折叠球囊的下端折叠的小孔处且混合物可独自流到折叠中并将其完全填满。
在这些盐溶液中,优选使用水作为溶剂,因为水不留痕迹且不损坏球囊材料。一旦混合物具有无法再流出折叠的稠度,就翻转折叠球囊,且填充下一个折叠直到球囊的所有(通常4到6个)折叠都经填充。虽然折叠球囊优选在压缩状态下经涂布,但折叠球囊的一些特殊实施例也可在展开时经涂布。
所述涂布方法包括以下步骤:
a)提供折叠球囊,
b)将球囊的折叠放置在水平位置或倾斜至多25度,
c)将注射器的小孔设置在折叠的小孔处,面对球囊顶部,
d)使注射器的小孔与折叠球囊沿折叠纵向相对移动,
e)在移动期间用活性剂和盐和/或离子造影剂于合适溶剂中的混合物填充折叠,
f)必要时,干燥折叠内部的混合物,直到不会发生混合物的漏泄的程度,
g)将球囊翻转360°除以折叠数目的度数,
h)重复步骤b)到g),直到所有折叠都经填充,以及
i)干燥折叠内部的混合物,直到混合物硬化。
如果使用较多的流体溶液,那么在步骤c)中将注射器的小孔设置在底端且在无根据步骤d)的相对移动的情况下主要借助于毛细管力来填充折叠。
本发明进一步涉及一种借助于短期膨胀来保持狭窄脉管腔、尤其心血管畅通的方法。在这一方法中,在最长50秒、优选最长40秒、更优选最长30秒且最优选最长20秒期间展开不具有支架的导管球囊,且然后将其再压缩成直径小于1.5倍最初直径,其中脉管在非狭窄状态下仅过度拉伸其直径的最大10%且每平方毫米球囊表面至少20%的所含活性剂被释放且主要转移到脉管壁上。
本文中,活性剂的转移优选不以其纯形式发生而是在基质中发生,这一基质具有膨胀后作为活性剂存储至少1小时的活性且在溶解或降解之前将其它活性剂释放到脉管壁中。
因此,这一方法的特征在于在优选短时间期间将优选大量活性剂局部且特定地转移到脉管狭窄部分的脉管壁上且在随后30到60分钟直到最长3天期间提供活性剂的局部存储,然后溶解或降解。
在所述方法中,尤其已展示合并消炎和抗增殖性质的活性剂为尤其合适的(参见第7-10页的活性剂列表)。其例如为秋水仙素、血管抑肽,但展示首先雷帕霉素和其衍生物,此外其它疏水性活性剂,尤其太平洋紫杉醇和太平洋紫杉醇衍生物为极其合适的。
根据本发明的另一种方法涉及用油状可聚合物质涂布导管球囊。这一方法包括以下步骤:
a)提供导管球囊,
b)提供由至少50重量百分比的具有至少一个重键的油状物质组成且含有至少一种活性剂的混合物,
c)在导管球囊的表面上涂覆润滑剂以主要阻止油状物质粘附于导管球囊的表面上,
d)在导管球囊上的润滑剂或润滑剂层上涂覆油状混合物,
e)涂布步骤d)期间,旋转导管球囊,
f)借助于光、氧或自由基起动子启动聚合,直到获得不硬而具弹性的聚合物层,
g)可能重复涂布步骤d)到f)。
根据本发明的折叠涂布或折叠填充法是移液法,也称为毛细管法;喷射法和喷涂法,也称为折叠喷涂法,以阐明用于整个导管球囊的非选择性喷涂法的差别。
因此,本发明涉及涂布或填充导管折叠球囊的折叠的方法,其中:
a)在导管折叠球囊的折叠的远端或近端释放含有活性剂的组合物且通过毛细管力来填充折叠;或
b)沿折叠纵向相对于导管折叠球囊移动不断释放含有活性剂的组合物的连续流的注射器;或
c)在折叠球囊的折叠下方移动多个对齐的释放小孔且同时从所述多个释放小孔中释放含有活性剂的组合物并使其进入折叠中。
优点在于所述涂布或填充法可优选在导管球囊的压缩状态或放气状态或最大10%充气状态下进行。术语“10%充气状态”意指导管球囊经历膨胀期间所预计的最大展开的10%充气或展开。如果将膨胀期间所预计的展开称为100%且将放气状态设定为0%,那么10%充气由下式得出:
(放气导管球囊的直径)
+
(充气导管球囊的直径-放气导管球囊的直径)/10。
此外,根据本发明的方法可同时涂布或填充数个或所有折叠,或涂布和填充可为特定的。折叠的特定填充或涂布意指仅填充或涂布所述折叠,且将不会涂布折叠外部的导管球囊表面。
活性剂、溶剂和诸如造影剂等基质的优选使用的组合物具有糊状物、粘块凝胶或粘稠分散液或乳液或韧性半流质(tough pap)的稠度。
所述组合物的优点在于其在涂布期间并不聚合并维持其稠度。在压力下用喷射装置、优选如图1中所示的喷嘴将所述糊状物或(高)粘块或稠悬浮液涂覆到折叠中。
必要时,喷嘴可加宽球囊的折叠且特定地填充由折叠形成的空腔。折叠球囊通常具有4个或4个以上折叠,这些折叠将相继经填充。
展示在填充一个或一个以上折叠或所有折叠后,沿折叠的小孔的方向旋转折叠球囊是尤其有利的。这一旋转使得粘稠糊状物完全且均匀地分布于折叠中且释放可能锁住的空气。在旋转折叠球囊后,可进行已填充的折叠或空折叠的进一步填充。
在旋转期间或旋转后,在大气压下或略降低的压力下干燥折叠中的组合物。通过经由蒸发去除至少一种醇来进行组合物的干燥或硬化。干燥的组合物具有多孔的稠度且在膨胀期间可非常容易地与球囊表面分开。除常见残余物外,已去除作为溶剂的醇,且造影剂形成所述试剂的多孔基质且另外在使折叠球囊膨胀后能够快速且大量释放活性剂。此外,根据本发明的方法具有非常节省材料的优点,因为仅涂布或填充折叠且因此并无活性剂位于球囊的外表面上,而外表面上即使存在活性剂也可能会在导管引入期间丢失。
涂布方法的概述
移液法-毛细管法
这一方法包括以下步骤:
a)提供折叠的压缩的导管球囊,
b)提供具有能够逐点释放涂布溶液的小孔的涂布装置,
c)将能够逐点释放涂布溶液的小孔设置在导管球囊的折叠的近端或远端,
d)通过位于折叠的近端或远端的出口释放确定量的涂布溶液,以及
e)借助于毛细管效应用涂布溶液填充折叠。
视情况,还可存在用于干燥的步骤f):
f)干燥折叠中的涂布溶液,其中导管球囊在干燥期间绕其纵轴沿折叠的小孔方向旋转。
这一方法特定地涂布或填充折叠且可用任何涂布溶液来执行,所述涂布溶液仍具有一定粘稠性以致在5分钟、优选2分钟期间借助于毛细管力或另外通过使用重力将其抽取到折叠中,且因此其通常完全填充折叠。
喷射法或注射法:
这一方法包括以下步骤:
a)提供折叠的压缩的导管球囊,
b)提供具有至少一个喷嘴或至少一个注射器状出口的涂布装置,
c)将喷嘴或出口设置在导管球囊的折叠的近端或远端,
d)沿折叠相对于折叠移动喷嘴或出口,以及
e)释放已确定时间和所覆盖距离的涂布溶液流。
视情况,还可存在用于干燥的步骤f):
f)干燥折叠中的涂布溶液或使涂层均匀分布于折叠中,其中导管球囊绕其纵轴沿折叠的小孔方向旋转。
这一方法特定地涂布或填充折叠且可用任何涂布溶液来执行,所述涂布溶液仍具有一定粘稠性以致可借助于小喷嘴或小出口将其填充到折叠中。
喷涂法或折叠喷涂法:
这一方法包括以下步骤:
a)提供折叠的压缩的导管球囊,
b)提供具有多个对齐的释放小孔的涂布装置,
c)在导管球囊的折叠下方插入多个对齐的释放小孔,
d)从释放小孔同时释放确定量的涂布溶液并使其进入折叠中;以及
e)干燥折叠中的涂布溶液。
视情况,还可存在用于干燥的步骤f):
f)干燥折叠中的涂布溶液或使涂层均匀分布于折叠中,其中导管球囊绕其纵轴沿折叠的小孔方向旋转。
这一方法特定地涂布或填充折叠且可用任何涂布溶液来执行,所述涂布溶液仍具有一定粘稠性以致可借助于小喷嘴或小出口将其填充到折叠中。
拖涂法或液滴拖涂法:
这一方法包括以下步骤:
a)提供呈折叠、部分充气或完全充气状态的导管球囊,
b)提供具有分配装置的涂布装置,
c)在分配装置处形成涂布溶液的液滴,
d)在欲涂布的导管球囊的表面上拖动液滴而无需使分配装置本身与导管球囊的表面接触,以及
e)再给予涂布溶液,以致液滴实质上维持其大小。
这一精致且尤其小心地用于导管球囊的方法使用欲在球囊表面上移动或拖动的涂布溶液的液滴而无需使分配装置与球囊表面接触,且因此液滴以及球囊表面相对彼此移动。
以使得液滴实质上维持其大小以及使得分配装置与球囊表面相连接的方式再给予涂布溶液。借助于体积测量装置,可在涂布后精确确定所分配的涂布溶液的量且因此精确确定球囊上活性剂的量。
线拖涂法:
这一方法包括以下步骤:
a)提供呈折叠、部分充气或完全充气状态的导管球囊,
b)提供具有呈线、海绵、皮革条或纺织品片形式的分配装置的涂布装置,
c)提供涂布溶液,
d)用涂布溶液浸渍分配装置,
e)将涂布溶液从分配装置转移到欲涂布的导管球囊的表面上,以及
f)再给予涂布溶液,以致出现将涂布溶液从分配装置一致地分配到欲涂布的导管球囊的表面上。
这一同样极其精致的方法对导管球囊的表面也非常柔和,因为虽然分配装置与球囊表面接触但以不损坏球囊表面的方式成型。通过导管球囊相对于分配装置的移动在球囊表面上拖动或推动分配装置且由此释放确定量的涂布溶液。借助于体积测量装置,可在涂布后精确确定转移到球囊上的涂布溶液的分配量,因此得到球囊表面上活性剂的确切量。
圆珠法或滚涂法:
这一方法包括以下步骤:
a)提供具有圆珠的涂布装置,所述圆珠用于将涂布溶液转移到欲涂布的导管球囊的表面上,
b)接近圆珠提供涂布溶液,
c)将涂布装置的圆珠设置在欲涂布的导管球囊的表面上,
d)对涂布装置的圆珠施加压力以使涂布溶液能够流出,以及
e)用圆珠描画欲涂布的导管球囊的表面,从而将涂布溶液转移到欲涂布的导管球囊的表面上。
在所述同样十分精致的方法中,分配装置通过导管球囊相对于分配装置的移动而在球囊表面上滚动且由此借助于圆珠将可用体积测量装置确定的量的涂布溶液释放到球囊表面上。
在下文中,更详细地阐明涂布和填充方法。
移液法或毛细管法:
在这一方法中,使用移液管或注射器或任何能够逐点释放含有活性剂的组合物的其它装置。
如本文中所使用的术语“含有活性剂的组合物”或“涂布溶液”是指活性剂和溶剂和/或赋形剂和/或载体的混合物,因此是指活性剂或活性剂的组合与至少一种欲选自本文中列出的以下组分的组分的实际溶液、分散液、悬浮液或乳液:溶剂、油、脂肪酸、脂肪酸酯、氨基酸、维生素、造影剂、盐和/或膜构建物质。术语“溶液”进一步意指其是流体混合物,然而其也可以是凝胶状的、粘稠的或糊状的(浓粘稠或高粘稠)。
用含有活性剂的组合物填充移液管或注射器或出口或能够逐点释放所述组合物的其它装置且将其出口优选设置在折叠的近端或远端。通过毛细管力将流出的组合物抽取到折叠中且沿折叠抽取直到到达折叠的另一端。
导管球囊是经压缩的,即放气的。甚至导管球囊的部分或边缘充气通常也不需要略微打开折叠。尽管如此,折叠的填充仍可在导管球囊的边缘充气最大达膨胀时所提供的直径的10%下进行。填充折叠时,也可存在通过施加100千帕(1巴)过压、优选50千帕(0.5巴)过压来略微加宽折叠所致的折叠的略微加宽。
在这一方法中,重要的是含有活性剂的组合物具有足够流动性以发展毛细管力。
对于组合物,尤其优选活性剂或活性剂的组合于醇或醇的混合物中的溶液。
毛细管力应极强以致在5到80秒期间、优选在15到60秒期间且尤其优选在25到45秒期间完全填充长度为10毫米的折叠。
如果组合物或溶液过于粘稠,那么倾斜导管球囊可能是有利的,其中欲填充的折叠离水平位置向上最大45°,优选最大30°,且因此也利用重力。然而,在导管球囊处于水平位置时通常发生借助于毛细管力的折叠填充,其中欲填充的折叠在上。将移液管或注射器或能够逐点释放含有活性剂的组合物的其它装置设置在折叠上,优选折叠的近端或远端,其中折叠轴方向与水平面成锐角,所述角经测量为10°到65°、优选20°到55°的角、更优选27°到50°的角且尤其优选35°到45°的角。然后,从折叠的上端执行折叠的填充,以致涂布溶液存在下坡梯度且除毛细管力外,亦利用重力。
原则上,还存在将移液管或注射器或能够逐点释放含有活性剂的组合物的其它装置设置在折叠的中间或远端与近端之间的任何其它点的可能,以致折叠自身同时在近端和远端方向上借助于毛细管力进行填充,但发现位于折叠末端的起点为优选的。
当填充折叠或本发明折叠的组合物到达另一端时,物质流动通常自动停止且可去除移液管或注射器或出口或能够逐点释放含有活性剂的组合物的其它装置。
为防止含有活性剂的组合物的较大液滴停留在移液管或注射器或能够逐点释放含有活性剂的组合物的其它装置的设置点处,发现在含有活性剂的组合物完全到达折叠的另一端之前去除移液管或注射器或其它释放装置是有利的。由此,将移液管或注射器或其它释放装置的设置点处所停留的含有活性剂的组合物抽取到折叠中,以致并无涂布组合物或更优选的填充组合物停留在折叠外部。
优选地,当含有活性剂的组合物填充约90%的折叠时,去除移液管或注射器或其它释放装置。去除移液管或注射器或其它释放装置的最佳时刻可用数个实验确切地且可再现地确定。
术语“能够逐点释放含有活性剂的组合物的其它装置”是指类似于移液管的能够提供含有活性剂的组合物的稳定且连续流的装置,因此其也可以指代泵、微泵或确保含有活性剂的组合物的这一稳定且连续的释放的另一存储器。
在填充折叠后,旋转导管球囊,以致下一个欲填充的折叠处于向上状态且优选为水平的。现在重复填充程序。
根据含有活性剂的组合物的稠度,可能有必要在旋转球囊以填充下一个折叠之前干燥先前填充的折叠。优选通过蒸发溶剂实现干燥。
此外,如果含有活性剂的组合物的稠度允许,即稠度并不具有使得组合物流出并非水平放置的折叠的流动性,那么这一方法也使得能够同时填充或涂布导管球囊的两个、两个以上或所有折叠。
移液法尤其适合同时填充导管球囊的数个或所有折叠。本文中,导管球囊可水平或优选垂直地排列,且将释放装置设置成其上端与折叠的下端优选成10度到70度的角,以致含有活性剂的组合物可流入折叠中。
当球囊的所有折叠都经填充时,开始最后干燥。原则上,不需要导管球囊的所有折叠都经填充,但对所有折叠都进行填充是常见且优选的实施例,因为膨胀期间,应在优选短时间内将优选最大量的活性剂转移到脉管壁上。
在根据本发明的折叠球囊中,膨胀持续优选最长60秒且尤其优选最长30秒。
在填充最后一个折叠后,优选在非真空下在正常压力下通过蒸发溶剂来干燥最后的折叠,即干燥最后一个折叠的内含物。
这一初步干燥之后可为最后干燥,最后干燥是根据本发明在旋转的导管球囊中进行。必要时,另外可在旋转期间施加真空。涂布方法之后更详细地描述这一特殊的干燥法。
喷射法或注射法:
在根据本发明的这一方法中,将细注射器、注射器状开口、注射器状出口或针或喷嘴设置在折叠的近端或远端,且这一呈注射器、针或喷嘴形式的释放装置沿折叠的纵轴相对于折叠移动,且根据所描画的部分,释放一定量的含有活性剂的组合物或确定流量的涂布溶液。
本文中,究竟是拴系导管球囊且释放装置沿折叠移动还是固定释放装置且导管球囊相对移动还是导管球囊与释放装置相对彼此移动并不重要。如果导管和释放装置相对彼此移动,那么优选在相反方向上沿直线移动。
从释放装置(即,注射器、针或喷嘴等)释放优选呈糊状物或凝胶或油状物形式的优选中等粘稠到浓粘稠的含有活性剂的组合物并使其进入折叠内部。优选溶液的粘度在101毫帕·秒与106毫帕·秒之间、优选102毫帕·秒与105毫帕·秒之间且尤其优选103毫帕·秒与104毫帕·秒之间的范围内。
因此,那些含有活性剂以及以上列出的油、醇(尤其二醇和多元醇)、脂肪酸、脂肪酸酯、氨基酸、聚氨基酸、膜构建物质、脂质体调配物和/或其盐的组合物是尤其合适的。
在涂布程序中,注射器、针或喷嘴的尖端大概一直到达折叠内部的中心,因此进入折叠的中心,即喷嘴或出口位于折叠所形成的空腔的相对中心处。在相对中心处出现含有活性剂的组合物的连续流,其存在方式使得关于释放装置与导管球囊的相对位移速度的释放的速度和量适合用含有活性剂的组合物填充折叠或折叠内部至少50体积百分比、优选至少70体积百分比且尤其优选至少85体积百分比。
折叠的填充在10毫米的折叠长度内持续约5到80秒,优选约15到60秒且尤其优选约25到45秒。
在填充程序期间,导管球囊是经压缩的,即放气的。甚至导管球囊的部分或边缘充气通常也不需要略微打开折叠。尽管如此,折叠的填充仍可在导管球囊的边缘充气最大达膨胀时所提供的直径的10%下进行。填充折叠时,也可存在通过施加100千帕(1巴)过压、优选50千帕(0.5巴)过压来略微加宽折叠所致的折叠的略微加宽。
这一涂布方法当然也可用含有活性剂的流体组合物进行,但更适合油状组合物和高浓缩盐溶液。
此外,这一方法提供可同时涂布或填充一个以上折叠且尤其所有折叠的优点。本文中,根据折叠的数目以使得每个折叠提供一个释放装置的方式安置呈环形阵列的释放装置。通过略微旋转,将释放装置的尖端插入折叠中且大概放置在折叠内部的中心处。通过释放装置相对于折叠的纵轴的略微且同时移动,可用含有活性剂的组合物的连续且稳定流同时填充所有折叠。
在填充或涂布一个或所有折叠期间,可将导管球囊垂直、水平或倾斜放置。
如果含有活性剂的组合物中使用挥发性溶剂,那么可能有必要干燥折叠的内含物或去除沸点小于150℃的挥发性溶剂。在挥发性溶剂中,这优选首先通过蒸发一种或一种以上挥发性溶剂来完成。
然后,可发生最后干燥,其中从折叠内部看来,导管球囊在折叠的开口方向上旋转。下文更详细地阐明这一方法。如果使用在去除可能存在的溶剂后保持油状或糊状的涂布溶液,那么旋转干燥一方面可用于去除沸点小于150℃的溶剂残余物且另一方面,可用于在折叠内部均匀分布油状或糊状层。
导管球囊在折叠开口方向上的翻转或旋转也可用于在折叠内部均匀分布位于折叠中或折叠下方的组合物。
当使用含有活性剂的油状或糊状组合物来确保含有活性剂的组合物在折叠内部以及折叠表面上均匀分布时,折叠球囊的这一旋转可能尤其有利。
相反,术语“填充”更确切是指用含有活性剂的组合物完全填充折叠的内部空间。
如果使用可通过干燥去除的溶剂,那么通常不能实现填充。因此,更确切为对折叠内表面的涂布。
如果改为使用具有高沸点的物质作为载体或赋形剂,那么只要含有活性剂的组合物中不存在大量挥发性物质,就有可能几乎完全填充折叠。
这一喷射法或注射法尤其适合将无法通过常规浸渍法和喷涂法涂覆到导管球囊上或甚至折叠内部的含有活性剂的组合物涂覆到折叠导管球囊的折叠中。
与支架或导管球囊上的通常使用的固体涂层相反,这些油状和糊状涂层和填充物的优点在于含有活性剂的组合物不完全干燥,而是通常维持其稠度。因此,优选使用在空气或保护性气体中在正常压力下不完全硬化的涂布溶液,即在实质上去除涂布溶液的可能使用的溶剂后,油状或糊状涂层在通过蒸发或在减压下去除溶剂后仍保持在导管球囊的折叠内部。因此,优选在去除视情况使用的溶剂后具有小于20℃、优选小于30℃的熔点或凝固点且另外显示浓粘稠、油状或糊状稠度以在存储经涂布的导管球囊数月至一年时涂层也不会渗出折叠的涂布溶液。
然而,使用可去除的溶剂并不是必需的,如此也可使用生理学上可接受的溶剂或涂布溶液的生理学上可接受的组分,诸如聚乙二醇、甘油、丙二醇等,其无需去除且留在涂层中并在经涂布的医学装置的存放期内使折叠中的涂层保持油状和糊状。
所述油状和糊状涂层的诸多优点是显而易见的。如果使导管球囊在狭窄位置处充气或膨胀,那么所述油状和糊状组合物至少部分地但通常实质上被转移到脉管壁上并充当活性剂储库以在数小时到数天内延迟将活性剂释放到邻接组织中,且另外具有溶解斑块或阻碍斑块沉降的益处且稍后自身生物降解而不释放生理学危险的代谢物。这一系统完美解决以下问题:一方面将涂层安全涂覆到导管球囊上而当引入时不会被血流洗掉或当与脉管壁接触时不会转移,且另一方面在膨胀期间在相对较短的时间内(即,30到300秒)将足量活性剂转移到脉管壁上,即尽可能少的涂层停留在导管球囊上且尽可能多的(即,至少50%)涂层被转移到脉管壁上以有效阻碍再狭窄。
根据本发明的所述系统不仅可通过喷射法产生,而且可由本文中所达的其它涂布方法产生。
喷涂法或折叠喷涂法
在根据本发明的这一方法中,在折叠球囊的折叠下方移动或设置多个对齐的释放小孔且同时从所述多个小孔中释放含有活性剂的组合物并使其进入相应的折叠中。
释放装置优选由2到10个优选以等间隔沿折叠纵向对齐的喷嘴或释放小孔组成。
然后,将这一释放装置插入导管球囊的折叠下方,且通过从喷嘴或其它释放小孔同时释放含有活性剂的组合物来填充或涂布相应的折叠。
与所谓的喷射法中类似,当具有10毫米的折叠长度且使用4个释放小孔时,折叠的填充持续约5到80秒,优选约15到60秒且尤其优选约25到45秒。释放小孔优选主要位于折叠下方的空腔的中心处。
因此,在涂布或填充变体中,不必要在导管球囊的折叠中相对于折叠的纵向移动释放装置。通常在填充或涂布期间固定导管球囊和释放装置,然而其中也有可能沿折叠的纵向移动。如果提供相对移动,那么移动的距离优选不大于释放装置的两个喷嘴或释放小孔之间的距离。
释放装置包括优选均匀分布在10毫米的距离内的至少2个且最多10个释放小孔或喷嘴等或由所述释放小孔或喷嘴等组成,且优选包括3到6个且尤其优选4或5个释放小孔或喷嘴等或由所述释放小孔或喷嘴等组成。
释放装置具有2到10个能够将含有活性剂的组合物均匀释放或均匀喷涂到折叠中的喷嘴或类似小孔。
在这一填充或涂布方法中,优选使用活性剂或活性剂的组合的中等到稀粘稠组合物或溶液,其特别含有醇性溶剂。此外,优选不完全硬化而是维持凝胶状、粘稠、油状或糊状稠度的涂布溶液。此处,以上关于喷射法的叙述也尤其适用涂布溶液和干燥。
在这一折叠喷涂法中,导管球囊是经压缩的,即放气的。甚至导管球囊的部分或边缘充气通常也不需要略微打开折叠。尽管如此,折叠的填充仍可在导管球囊的边缘充气最大达膨胀时所提供的直径的10%下进行。填充折叠时,也可存在通过施加100千帕(1巴)过压、优选50千帕(0.5巴)过压来略微加宽折叠所致的折叠的略微加宽。
在填充折叠后,旋转导管球囊,以致下一个欲填充的折叠优选处于向上状态且优选水平定位。现在将重复折叠填充或涂布程序。
根据含有活性剂的组合物的稠度,可能有必要在旋转球囊以填充下一个折叠之前干燥先前填充的折叠。优选通过蒸发溶剂来实现干燥。
此外,如果含有活性剂的组合物的稠度允许,即如果稠度并不具有使得组合物流出并非水平定位的折叠的流动性,那么在这一方法中也可能同时涂布或填充导管球囊的两个、两个以上或所有折叠。为填充或涂布数个或所有折叠,提供对应于折叠数目的释放装置的适当的环形安置且将其放置在优选垂直定位的导管球囊上,且通过旋转使得释放小孔位于折叠下方,此处发生含有活性剂的组合物的同时释放。
当球囊的所有折叠都经填充时,进行最后干燥。本质上,当然不必要填充折叠导管球囊的所有折叠,然而,填充所有折叠是现行且优选的实施例,因为在膨胀期间,应在优选短时间内将优选最大量的活性剂转移到脉管壁上。
在填充最后一个折叠后,优选在非真空下在正常压力下通过蒸发溶剂进行最后的折叠的干燥,即最后一个折叠的内含物的干燥。
这一初步干燥之后可为最后干燥,最后干燥是根据本发明在旋转的导管球囊中进行。必要时,另外可在旋转期间施加真空。在根据本发明的涂布方法之后更详细地描述这一特殊的干燥法。
拖涂法或液滴拖涂法:
用于整体涂布以及特定涂布或填充折叠的尤其优选的方法是所谓的拖涂法或液滴拖涂法。
所述方法允许用含有活性剂的流体组合物在折叠的内部和外部的完整表面上涂布呈压缩状态的导管球囊。
在所述方法中,使呈注射器、针、移液管或喷嘴形式的分配装置接近优选水平拴系、固定或优选旋转的球囊,且然后以在分配装置的尖端形成与分配装置以及球囊接触的液滴的方式分配一定体积的含有活性剂的组合物。
为获得更好的性能,可在出口处用细金属丝、线或海绵状工具延长分配装置,以致借助于所述工具建立并维持分配装置与球囊之间的液体接触。
视情况,也可使用具有侧边开口或分叉突出的剂量针。
通过使分配装置沿球囊纵向相对于旋转球囊横向移动来拖动液滴且根据所描画的部分,一定量的含有活性剂的组合物在描画表面上以薄膜形式干燥。本文中,通过再给予含有活性剂的组合物来维持液滴大小,直到达到最终剂量。
维持移动,直到完整靶表面经涂布且球囊表面上不再存在流体。
为抵消用于在球囊表面与分配装置之间构建液滴的在最初剂量时折叠的毛细管效应,可用合适溶剂沾湿球囊,因为由此折叠已经液体填充且毛细管效应不会抽吸液滴。
因为大多数分配装置的尖端是由较硬或硬质材料或明显损坏球囊材料的材料制成,而这可能在膨胀期间导致危险的并发情况,所以尤其优选的实施例在于在分配装置的尖端引导线或金属丝通过分配装置或至少分配装置的末端开口或在所述位置拴系所述线或金属丝,所述线或金属丝然后用于接触球囊表面而分配装置的尖端并不接触球囊。所述线或金属丝是由不会损坏球囊材料的材料组成。
也可使用海绵或海绵状物质、纺织品片或相应细尺寸的皮革碎片或头发或刚毛束来代替线或金属丝。然而,要求这些工具由不会损坏导管球囊的材料组成,即其不尖锐或不锋利,也不释放腐蚀性、碱性、酸性或粘稠物质或可完全或部分溶解、分解、硬化、刻划或切割导管球囊的聚合物的化学物质。
因此,尤其优选所述物质和聚合物作为这些也可由纺织品、线、纱线、刷用刚毛制成的工具的材料。
根据本发明,从而实现以下情形,即可将分配装置的尖端固持在相距球囊表面一定距离处且可经由呈线、金属丝、海绵、皮革条、刚毛或纺织品片形式的接触装置来控制和调控液滴和液滴相对于球囊表面的移动。
本质上,究竟是分配装置移动而球囊固定还是球囊移动而分配装置固定并不重要。优选实施例是由水平位置的旋转球囊以及自上安置且沿球囊纵轴移动的分配装置组成。在所述实施例中,发生导管球囊的完整表面的螺旋涂布。
在另一个优选实施例中,每隔一段时间发生水平位置的导管球囊的涂布。由于球囊固定,分配装置沿导管球囊纵向按大致从一端到另一端的直线移动并返回,其中当分配装置到达导管球囊的远端或近端时,使球囊旋转一定的角度。通过所述实施例发生完整球囊表面的线性涂布。
然而,如果将分配装置设置在折叠上且沿折叠移动且在使球囊旋转后对其它折叠重复所述程序,那么得到特定折叠经填充的导管球囊。
线拖涂法:
在所述方法中,在导管球囊的表面上不移动液滴,而是在球囊表面上拖动与分配装置连接或充当分配装置的线,或将所述线设置或点刻在球囊表面上且所述线也可在不操作状态下用于释放含有活性剂的溶液。
在所述程序中,含有活性剂的溶液沿线流动,其中优选不形成液滴。线被含有活性剂的溶液持久地沾湿且一旦线与球囊表面接触就将所述溶液释放到球囊表面上。
所述方法还具有重要优点:与液滴拖涂法中类似,主要由硬质材料组成的分配装置的尖端并不与球囊材料接触,且因此不发生对导管球囊的损坏。
优选地,沿纵向水平地拖动线同时使导管球囊旋转,其中所述线释放含有活性剂的溶液的快速干燥痕迹。
然而,所述方法并不限于使用一根线的实施例,而且可在球囊表面上同时移动数根线,其中在所述情况下,优选垂直地放置球囊。此外,线也可连接或形成网。本文中,线与至少一个分配装置连接,所述分配装置不断地向线或网提供含有活性剂的溶液。
因此,所述方法适合球囊表面的完全或部分涂布。如果改为仅填充或涂布折叠,那么存在将线至少部分地插入折叠中或当折叠球囊时将线放入折叠中且借助于所述线使含有活性剂的溶液流入折叠中的选择,其中填充折叠后,优选去除所述线。
此外,对于折叠的特定填充,移液法和线拖涂法的组合是尤其合适的,其中借助于近端或远端的线将大量含有活性剂的溶液从分配装置释放到充气导管球囊的未填充的折叠中,其中毛细管效应将溶液抽吸到折叠中。
液滴拖涂法以及线拖涂法完美地解决以下问题:用确定量的活性剂特定涂布或填充球囊表面或特定涂布或填充球囊的折叠而不损坏球囊材料。分配装置可具有记录或显示含有活性剂的溶液的释放量的体积测量装置。
此外,这些方法尤其适合涂布和/或填充尤其需要的放气(折叠)状态的球囊的折叠,因为折叠球囊的球囊表面并不均匀且用于规则形体的常见涂布方法仅可在具有相应问题的情况下应用。实情为,在液滴拖涂法或线拖涂法中,由呈线、金属丝、海绵、皮革条、刚毛或纺织品片形式的接触装置完美抵消球囊表面与分配装置之间距离的差异。
圆珠法或滚涂法:
液滴拖涂法的优选变体是由使用球形涂布球组成。所述球具有刚好不掉出涂布容器的出口的直径。其完全关闭容器,以致并无涂布溶液可从球与脉管壁之间流出。当接触欲涂布的物体时对所述球施加压力,此时所述球根据可变地施加的压力移动到容器中且涂布溶液可在球与脉管壁之间流出溶液容器。由于涂布容器或欲涂布的物体的同时移动和其间的期望角,球在表面上滚动且确保表面上的尤其均匀的涂布。因此,可以形式保真性涂布不同物体,因为球可像传感器一样借助于可调整的压力和角度来描画表面,且因此相对于欲涂布的表面以及涂布选择提供尤其高的可变性。
所述涂布方法可极好地应用于尤其导管球囊,因为各导管球囊具有不同的表面设计,不均匀且球囊表面彼此不相同。优选光学控制的圆珠涂布方法提供均匀地涂布任何不同且不均匀以及不相同表面的选择。此外,转移涂布溶液的圆珠的优点在于其不会损坏导管球囊的表面且圆珠或球可由软质或橡胶状材料(例如天然橡胶)制成,与金属球相比,其对球囊表面甚至更不会造成损失。
此外,因为可非常精确地放置圆珠,所以可控制涂布的起点和终点。此外,也可以一定方式设计涂布装置,所述方式使得可能进行三维移动,以致可涂布完整的导管球囊,甚至没有一次中断或重新设置圆珠。在以蛇型方式描画欲涂布的球囊表面后,涂布装置的圆珠返回到起点,其中同时干燥最初涂布的痕迹且可在第一涂层上涂覆另一涂层。
此外,由于圆珠的滚动产生极易控制且均匀的涂层,其中可经由施加到球上的压力和推力来控制涂层的厚度。
旋转干燥:
如以上所提及,可在涂布或填充各折叠后或在涂布或填充所有折叠后或如果不是所有折叠都应经涂布或填充,那么在涂布或填充所有欲涂布或填充的折叠后,在旋转期间干燥经涂布或填充的导管球囊。这在根据本发明的方法中通常以步骤f)指示。
所述旋转干燥具有数个优点。一方面,干燥含有活性剂的组合物,且另外将所述组合物均匀分布在折叠内部以及折叠表面上。
旋转干燥尤其适合含有活性剂的油状或粘稠组合物以获得组合物在相应折叠中的均匀分布,其中这些涂层通常不干燥而是维持其粘稠、油状、凝胶状或糊状稠度,这也是所期望且尤其优选的。
另外,也可在导管球囊旋转期间施加真空以获得含有活性剂的组合物的充分干燥。
在真空下干燥期间,尤其在粘稠、高粘稠或固化溶液中,发生沸腾延迟,即封在油或固体中的溶剂的残余物自发释放且撕破或爆裂涂层或填充物。通过在真空下干燥且同时旋转,避免这些沸腾延迟且在折叠内获得干燥和/或油状、粘稠、凝胶状或糊状的均匀涂层。
此外,旋转方向至关重要。当从折叠内部看时,旋转方向在折叠的小孔的方向上。导管球囊因此像斗轮式挖掘机的斗一样旋转以借助于旋转力将含有活性剂的组合物压入折叠的内部。
优选地,折叠球囊以50到500、优选150到300转/分的旋转速度旋转。
可根据欲引入折叠中的活性剂或根据欲引入导管球囊的折叠下方的含有活性剂的组合物的稠度来选择根据本发明的合适涂布方法。
使得能够特定涂布或填充折叠的根据本发明的所有涂布方法都是合适的,其视情况与旋转干燥法一起以获得折叠的非固体但为油状、凝胶状、糊状或高粘稠的涂层或填充物。
折叠喷涂法优选适合稀到中等粘稠的含有活性剂的组合物,而移液法优选适合轻度、中等和微硬粘稠的组合物且喷射法极其适用于中等粘稠、粘稠到高粘稠的组合物。
术语粘度是指动态粘度[η]:
喷射法可优选用于浓粘稠组合物。优选在室温下在油(橄榄油:102毫帕·秒)、蜂蜜(103毫帕·秒)、甘油(1480毫帕·秒)或糖浆(105毫帕·秒)的范围内的粘度。所述方法当然也在η≤102毫帕·秒的稀粘稠溶液中起作用。
移液法优选可用于中等粘稠溶液中。优选在室温下在0.5毫帕·秒到5000毫帕·秒范围内、更优选在0.7毫帕·秒到1000毫帕·秒范围内、甚至更优选在0.9毫帕·秒到200毫帕·秒范围内且尤其优选在1.0毫帕·秒到100毫帕·秒范围内的粘度。在所述粘度范围内,可发现用常见溶剂、尤其醇稀释的油、造影剂和/或盐。移液法可在极宽粘度范围内使用。
折叠喷涂法优选用于稀粘稠组合物中。优选在室温下在0.1毫帕·秒到400毫帕·秒范围内、更优选在0.2毫帕·秒到100毫帕·秒范围内且尤其优选在0.3毫帕·秒到50毫帕·秒范围内的粘度(水:1.0毫帕·秒;煤油:0.65毫帕·秒;戊烷:0.22毫帕·秒;己烷:0.32毫帕·秒;庚烷:0.41毫帕·秒;辛烷:0.54毫帕·秒;壬烷:0.71毫帕·秒;氯仿:0.56毫帕·秒;乙醇:1.2毫帕·秒;丙醇:2.3毫帕·秒;异丙醇:2.43毫帕·秒;异丁醇:3.95毫帕·秒;异十三醇:42毫帕·秒)。
经涂布的导管球囊
根据本文中所揭示的方法,可涂布不具有支架以及部分具有支架的导管球囊,因此本发明涉及可通过本文中所述的方法获得的经涂布的导管球囊。
尤其优选的实施例使用具有卷曲支架的导管球囊。这些支架可以是裸露的未经涂布的(裸露的)支架或优选仅涂有一个血相容性层的支架。对于血相容性层,尤其优选本文中所揭示的肝素和壳聚糖衍生物且主要是脱硫且再乙酰化或再丙酰化的肝素。
此外,存在在含有转运介体的层下方和/或其上涂覆一个或一个以上的纯活性剂或聚合物或含有活性剂的聚合物的层的选择。
当使用在压缩时形成折叠的折叠球囊时,可使其填充活性剂和转运介体。因此,移液法尤其合适。
可在降低的压力下去除可能存在的溶剂,从而干燥折叠内部的混合物。当使通常不具有支架而使用的所述球囊膨胀时,折叠翻转或膨胀到外部且因此将其内含物释放到脉管壁上。
如果将涂布或填充的导线、螺旋形物、导管、插管、管和通常管式植入物或部分前述医学装置中含有类似于支架的结构元件,那么根据本发明的方法适合所述医学装置的涂布。例如,可涂布支架和尤其诸如冠状动脉、脉管、气管、支气管、尿道、食道、胆、肾、小肠、结肠支架。
经涂布的医学装置尤其是用于保持所有管状结构畅通,所述结构例如泌尿道、食道、气管、胆管、肾管、全身(包含脑、十二指肠、幽门、小肠和大肠)的血管,而且当用于肠或气管时是用于保持人工出口打开。
因此,经涂布的医学装置适合预防、降低或治疗狭窄、再狭窄、动脉粥样硬化以及闭塞脉管或通道或出口狭窄的所有其它形式。
根据本发明的不具有支架的球囊导管尤其适合治疗支架内狭窄,即或治疗已植入的优选不可生物吸收的支架内部的复发脉管狭窄。在所述支架内再狭窄中,在已存在的支架内部放置另一个支架尤其成问题,因为脉管通常只能被第二个支架加宽一点。本文中,借助于球囊膨胀涂覆活性剂提供理想的治疗方法,因为必要时所述治疗可重复数次且从治疗观点来看,可获得与另一支架植入相同的效果或显着好于另一支架植入的效果。
此外,根据本发明的不具有卷曲支架的导管球囊尤其适合治疗小脉管,优选小血管。小脉管是指那些脉管直径小于2.5毫米、优选小于2.2毫米的脉管。
继续,对于所选择的基质和赋形剂的使用,以下适用:
上述基质和赋形剂以及其混合物和组合优选具有以下特征中的至少一个以成功地局部涂覆一种或一种以上活性剂:
1)短期植入物的暴露时间足以将合适治疗量的活性剂转移到细胞中,
2)在暴露期间,足量含有活性剂的涂布材料粘附到脉管壁上以确保期望的治疗效应,且此为尤其优选的,
3)含有活性剂且存在于短期植入物上的涂层对脉管壁显示比对植入物表面高的亲和力,以致可出现将活性剂最佳转移到靶上。这主要对糊状、凝胶状或油状涂层作用极佳。
当然,在所有情况下,视个体要求而定,可将经涂布或未经涂布的支架与球囊导管一起构建成系统。同样地,必要时可加入例如成像剂等其它赋形剂。
举例来说,由喷涂法用太平洋紫杉醇涂布的球囊导管的尤其优选实施例的暴露时间已足以通过喷涂法将治疗量的无定形沉降的太平洋紫杉醇涂覆到细胞壁上和细胞壁中。此处,变得与半合成寡糖血相容且同样涂有太平洋紫杉醇的支架充当用于较长时间间隔的存储器以洗脱所提供的其它量的活性剂。
由于由特殊喷涂法获得的支架和导管球囊上的太平洋紫杉醇的无定形稠度,太平洋紫杉醇在导管引入期间并未被从表面冲掉或洗掉,以致期望的量的活性剂到达其靶且在所述位置通过膨胀释放到脉管壁中。由于同时涂布支架和导管球囊,脉管由活性剂完全覆盖。进一步优选的是,导管球囊的延伸支架末端的部分也经太平洋紫杉醇涂布,以致在支架末端部分和在近端和远端方向上超出1到3毫米处也对脉管提供太平洋紫杉醇(或代替太平洋紫杉醇的任何其它活性剂)。此处,太平洋紫杉醇的无定形结构也极其重要,因为由此仅具有活性剂的层的表面因此而增大,最优量的活性剂粘附到细胞壁上且可进入细胞壁或细胞。
直接作用于细胞壁的血管扩张剂或容易渗透膜的载体(例如DMSO、PETN、卵磷脂)的加入仍可显着增强在优选30秒到300秒的累积暴露时间期间细胞中的吸收。
在物质洗脱性球囊导管的另一个尤其优选的实施例中,将活性剂和疏水性长链脂肪酸(例如肉豆蔻酸异丙酯)一起溶解于合适的溶剂中并涂覆到导管球囊的表面上。对于涂布,以下描述的所有涂布方法都是合适的。脂肪酸的加入使涂布材料能够从导管表面转移到脉管壁上,其中所转移的物质洗脱基质的量足以提供足够浓度的活性剂以及防止基质在血流中被即刻洗掉。
另一个尤其优选的实施例在于,使用多糖角叉菜胶、磷脂酰胆碱、作为膜渗透物质的细胞膜的一种主要组分以及甘油(因为其粘附性质极佳)的对细胞壁具有高亲和力的混合物允许活性剂延迟释放直到脉管膨胀后12小时。所有涂布方法都适合所述实施例,尤其优选的是本文中所述的移液法、线拖涂法以及圆珠法。
附图说明
图1显示用PEG中的太平洋紫杉醇涂布的球囊导管(放大80倍)。
图2显示用乙醇中的太平洋紫杉醇涂布的球囊导管(放大40倍)。
图3显示用太平洋紫杉醇和PVP涂布的展开后的球囊导管(放大80倍)。
图4显示用氯仿中的低剂量太平洋紫杉醇涂布的展开后的4×20毫米球囊(放大40倍)。
图5显示根据圆珠法的涂布装置,其中涂布溶液在涂布装置内部且经由可旋转的球释放到欲涂布的表面上。
具体实施方式
实例
实例1
将编码血红素加氧酶HO-2的基因包埋到pAH 9载体中。通过使用二醚或四醚将质粒存储在脂质囊泡中。向所得乳液中加入生物聚合物太平洋紫杉醇或雷帕霉素。对于生物聚合物,使用肝素、硫酸乙酰肝素或肝素或硫酸乙酰肝素衍生物(诸如脱硫肝素)。
在加入脱硫肝素后,首先经由浸渍法将稀粘稠混合物涂覆到呈压缩形式的导管球囊上。因此,将导管球囊垂直插入浸渍溶液中且缓慢(v<1毫米/秒)并垂直地从溶液中拉出,以致可在导管表面上形成相同的无泡膜。
在最长30分钟的短干燥时间后,尤其再用移液法重新填充折叠以确保球囊导管上雷帕霉素的完全涂布和最优负载。为此,以特定方式将经涂布的球囊导管以25°的倾角安置在旋转马达上,所述方式使得球囊导管不能弯曲。以特定方式放置末端为钝插管的剂量注射器,所述方式使得将所述注射器从折叠上端插入折叠中且将确定量的涂布溶液释放到折叠中。
填充折叠后,在等待最多30秒后使球囊导管绕其纵轴旋转,以致可填充下一个折叠。
借助于倾角,可根据期望的雷帕霉素剂量使用毛细管效应和重力完全或部分地填充折叠。
当使脉管内部的球囊膨胀时,脂质体复合物与细胞壁接触且与亲脂性细胞膜融合。在细胞中,核内体将脂质体复合物转运到核中。诱导性DNA并未并入细胞的染色体DNA中,而是在核中作为独立的所谓的游离质粒DNA保留活性。形状如启动子的质粒DNA的一部分起始血红素加氧酶1的合成,这随后产生CO。
实例1a)
有可能通过以特定方式将球囊导管安装在旋转马达上来进行折叠的完全且相同的涂布,所述方式使得球囊导管水平地经拴系而无弯曲或下垂。欲涂布的折叠处于向上状态,以致其不能向侧面弯曲。
现以从近端到远端移动期间能进入折叠的方式放置涂布插管且以插管沿折叠移动期间仅提升用涂布溶液同时填充的那部分折叠材料的方式返回。
因此,从折叠起点到末端获得涂布溶液的均匀分布。
因此,调整插管沿折叠水平移动的速度和透入折叠中的深度,以致在填充步骤后折叠均匀地闭合。
通过在室温下旋转干燥来实现以此方式填充的球囊导管的干燥。
实例2
根据Biochemistry 2002.30,41(30),9286-9830和MPMI第16卷,第12期,2003,第1094-1104页中的方案重组产生NO合酶III。
将重组NOS III溶解于主要为水性的介质中。可向水溶液中加入至多15体积百分比、优选至多9体积百分比的辅溶剂。对于辅溶剂,四氢呋喃(THF)、丙醇、异丙醇、乙醇、甲醇、二甲基甲酰胺(DMF)、二甲基磺酰胺(DMSO)、丙酮或乙酸是合适的。
此外,向具有10体积百分比DMSO的水溶液中加入过量L-精氨酸以及每毫升溶液15毫克辛伐他汀。
向所得溶液中加入生物可降解的聚合物。优选的可吸收性聚合物是聚甲基丙烯酸甲酯(PMMA)、聚四氟乙烯(PTFE)、聚氨酯、聚氯乙烯(PVC)、聚乙烯吡咯烷酮、聚乙二醇、聚二甲基硅氧烷(PDMS)、聚酯、尼龙、聚氧化乙烯以及聚交酯。尤其优选聚乙烯吡咯烷酮、聚乙二醇、聚酯、聚交酯以及二醇和酯或二醇和交酯的共聚物。对于二醇,例如使用乙烷-1,2-二醇、丙烷-1,3-二醇或丁烷-1,4-二醇。
在本发明情况下,向水性溶液中加入聚乙烯吡咯烷酮和法舒地尔,以致得到含1%聚合物的粘稠溶液。借助于线拖涂法,用所述溶液完全涂布具有卷曲支架的导管球囊数次。
经由接头将具有卷曲支架的球囊导管安装在旋转马达的传动轴上且以水平放置而无弯曲的方式进行拴系。
通过剂量针和拖涂金属丝上的焊接物,在旋转球囊上拖动一滴溶液,直到形成粘附的涂层。此后,将仍在旋转的导管/支架系统暴露在稍温暖的气流中以进行初步干燥,从而形成高粘稠的非液体表面。接着,在室温下干燥。
支架以及涂层在并入细胞壁中之后可具有可吸收性且可缓慢降解。尤其在植入后的前10天期间,NOS III提供足量的积极影响和调控细胞壁愈合过程和细胞生长的NO。
实例3
经由液滴拖涂法,用硝酸纤维素的生物稳定涂层涂布导管球囊。
为此,将导管以水平拴系而不可能弯曲或下垂的方式固定在旋转马达的接头中。以特定方式将分配装置拴系在球囊上,所述方式使得涂布溶液流出所历经的移液管距离的大小正好使流出的液滴与球囊表面接触而不与移液管尖端分开。以特定方式调整涂布溶液的流出速度,所述方式使得在导管球囊的纵向移动期间液滴无法离开。以特定方式完全涂布球囊的上表面,所述方式使得球囊的旋转导致邻接区域可在同一纵向上经涂布。频繁重复所述程序,直到球囊导管执行一个完整的循环。
在所述层上,通过涂覆后使酶NOS III或HO-1与戊二醛交联来固定所述酶。尽管如此,酶在支架植入后仍保持足够的产生CO或NO的活性程度。
在所述层上涂覆不是太平洋紫杉醇的纯活性剂层。
必要时,太平洋紫杉醇物质层可涂有以下物质的障壁层:聚交酯、聚乙交酯、聚酸酐、聚磷腈、聚原酸酯、多糖、多核苷酸、多肽、聚烯烃、氯乙烯聚合物、含氟聚合物、特氟隆、聚乙酸乙烯酯、聚乙烯醇、聚乙烯醇缩乙醛、聚丙烯酸酯、聚甲基丙烯酸酯、聚苯乙烯、聚酰胺、聚酰亚胺、聚缩醛、聚碳酸酯、聚酯、聚氨酯、聚异氰酸酯、聚硅酮以及这些聚合物的共聚物和混合物。
实例4
根据WO 02/00230A1的实施例1或2产生血红蛋白衍生物。在三个连续实验中使用所得血红蛋白聚合物。
用CO使一份血红蛋白聚合物饱和。用NO使另一份饱和且用CO和NO的混合物使剩余那份饱和。此后向各份中加入活性剂太平洋紫杉醇。
用生物稳定性聚合物涂层涂布导管球囊。在本发明情况下,使用聚乙烯酯作为生物稳定性聚合物。在所述聚合物层上,借助于喷涂法在CO气氛中涂覆CO饱和的血红蛋白聚合物,干燥并将其存储在CO气氛中。
使用NO饱和的血红蛋白聚合物来涂布导管球囊以及卷曲的钴/铬支架。为此,将NO饱和的血红蛋白聚合物与聚交酯一起混合到水溶液中,加入太平洋紫杉醇,经由滚涂法将其涂覆到包含支架的球囊上,其中滚涂法和干燥法各重复三次。在氩气作为惰性气体的情况下进行涂布程序,且然后将包含支架的导管球囊存储在氩气中。
将具有卷曲支架的球囊导管固定在水平位置。以可沿导管纵向且垂直地移动的方式安置用于涂布溶液的分配装置。本文中经由以特定方式向球固定施加压力来控制垂直移动,所述方式使得总是通过与欲涂布的表面接触而同等程度地对出口的球施加压力且因此总是流出相同量的涂布溶液。这确保在相同时间期间,总是将相同量的涂布溶液涂覆在导管球囊以及支架的表面和支架间隔上。
涂布期间,对应于当与表面的接触程度使得溶液沿球流出出口时所调整的压力来挤压所述球。通过使导管/支架同时沿纵向匀速移动,使球移动且通过滚动将涂布溶液均匀分布到表面上。
在使导管绕其纵轴同时轻微旋转的情况下进行表面的描画,以致可进行导管的完整表面的涂布而不间断球形出口的滚动。
将NO和CO饱和的血红蛋白聚合物与聚乙交酯和太平洋紫杉醇一起混合到水溶液中,且然后以高粘稠喷涂溶液形式用于导管球囊的折叠的特定涂布。为此,水平拴系球囊并将其充气到折叠开始打开的较小程度。现可借助于喷嘴在折叠底部沿折叠涂覆经调整的分配量的涂布溶液,同时球囊导管绕其纵轴旋转。因为涂布糊状物粘在折叠的底部,所以球囊导管可在填充各折叠后即刻安全地旋转以填充下一个折叠。
在去除略微过压后,折叠可重新回到其初始位置。干燥程序在所述实例中不是必需的。
实例5
在本发明的另一个实施例中,CO或NO或CO和NO的混合物在膨胀期间从导管球囊内部通过多个微米或纳米孔释放,且一方面,在膨胀期间支持导管球囊上的涂层与球囊表面分开,且另一方面,支持将球囊表面上的涂层中的活性剂吸收到脉管壁中作为血管扩张剂。球囊表面上优选存在含有一种或一种以上抵制或预防脉管再闭塞或再狭窄的活性剂的聚合物涂层。
实例6a
经由线拖涂法,用含碘造影剂和太平洋紫杉醇(或另一种活性剂或活性剂的组合)的醇性溶液完全涂布球囊导管。
为此,产生造影剂的2%溶液,其中溶解的太平洋紫杉醇的量产生活性剂的30%溶液。
用所述溶液完全涂布球囊,且然后在室温下在绕纵轴缓慢旋转的情况下干燥至少三小时。重复所述程序至少一次。
完全干燥后,用1%PVA溶液(例如用外涂层)以相同的方式或通过诸如滚涂法等另一种合适的方法涂布由活性剂以此方式涂布的球囊导管。
实例7a
将展开到标称压力的折叠球囊浸渍在太平洋紫杉醇和氯仿的1%浸渍溶液中达5-10秒,且接着在绕纵轴旋转的情况下将其干燥到大部分氯仿已蒸发的程度。在完全干燥之前,再次在空气流中使球囊放气。
实例7b
将折叠球囊以水平位置拴系在可旋转轴上,以致欲填充的折叠总是处于向上状态。因此,借助于特氟隆插管作为针注射器的扩大部分,用含有显示类蜂蜜或糖浆的粘度(粘度为102到105毫帕·秒)的活性剂的溶液(例如来自实例17)从折叠的起点到终点逐步填充各折叠。
为此,将特氟隆插管插到由折叠形成的空腔的中心,且在水平拴系的导管沿其纵向移动期间,将确定量的高粘稠溶液释放到折叠空腔中(喷射法)。以填充后折叠并未从球囊体提升的方式限制填充材料的量且对应于不同的球囊尺寸和制造商而变化。
实例7c
可在第二步中通过喷涂法用聚合物外层作为障壁来涂布负载活性剂且如部分负载活性剂的实例7b的球囊般再放气的实例7a的球囊。为此,必须使聚合物喷涂溶液的浓度保持足够小以使干燥后获得的聚合物层不阻碍常规展开。举例来说,因此0.5%PVP溶液是适当的。
实例8
用太平洋紫杉醇的纯活性剂层涂布导管球囊。然后,向导管球囊提供如自展开镍钛合金支架中所使用的保护性包装纸以防止活性剂提前分开。保护性包装纸可在膨胀之前即刻在活体内去除。
实例9
在甲醇/乙醇混合物中制备脱硫肝素的溶液且用乙酸酸化以致得到3到5的pH值。向所述溶液中加入太平洋紫杉醇。用所述溶液涂布导管球囊,且接着进行球囊上的干燥涂层与戊二醛的略微交联。
实例10
优选在第一步中用诸如石墨或硬脂酸酯等润滑剂涂布常规导管球囊,且接着优选通过喷射法用油或脂肪和诸如雷帕霉素或太平洋紫杉醇等活性剂的粘稠混合物进行涂布。
必要时,可通过由氧分子或辐射和/或自由基生成体启动的自动聚合来执行略微硬化。因此,导管球囊表面上产生光滑表面,其通常不需要免于提前分开的进一步保护。可将导管球囊以其存在形式推进到脉管的狭窄部分,且在所述位置可通过使球囊膨胀来实现将涂层转移到脉管壁上,其中直接位于球囊表面上的润滑剂促进油状涂层分开。
实例11
根据已知方法提供具有含铁核心的纳米到微米范围内的磁性粒子,其具有含羧基的外壳。在甲醇/乙醇混合物中向这些磁性粒子中加入太平洋紫杉醇,且然后使用醇性溶液来涂布导管球囊。
涂布溶液可由于其低粘度低而通过喷涂法进行涂覆。如果优选用所述溶液涂布球囊折叠,那么折叠喷涂法为尤其合适的。如果同时执行通过数个喷嘴的分配以致沿整个折叠长度同时喷涂折叠,那么当在温暖的柔和气流中工作以使球囊的所有折叠都可在最短时间内经涂布时可进行初步干燥。然后,进行旋转干燥。
在使经涂布的导管球囊膨胀时,施加外部磁场,其在狭窄部分使磁性粒子固定且因此促进将其吸收到平滑肌细胞中。
实例12
提供磁性铁氧体粒子,其具有含有活性剂太平洋紫杉醇的有机壳。在导管球囊上涂覆磁性粒子,导管球囊的内部可产生磁场以固定磁性粒子。
在使导管球囊膨胀时,磁场的极性逆转且因此排斥来自球囊表面的磁性粒子并增加平滑肌细胞中的吸收。
实例13
将太平洋紫杉醇溶解于含有约10体积百分比水的DMSO中。向所述溶液中加入草酸钾、氯化钠、谷氨酸以及草酸,且通过使用线拖涂法用所述溶液涂布导管球囊数次并在涂布后干燥。接着,提供具有生物可降解的内酰胺层的经涂布的导管球囊。
实例14
制备硬脂酸钠、戊酸钾、丙二酸和太平洋紫杉醇于乙二醇、乙醇和水中的混合物,将其填充到移液管中并借助于移液管将其喷射到折叠球囊的折叠下方。干燥后,得到在球囊膨胀时容易分开的折叠间隙的粉状涂层。
实例15
将太平洋紫杉醇与硫酸镁、氯化钾、氯化锂以及乙酸钠混合,且通过加入醇性溶剂形成糊状物,且可能加入造影剂进行稀释,然后将其填充到注射器中并喷射到折叠球囊的折叠下方,并将在所述位置处在空气中干燥直到得到脆性涂层。涂布期间,喷射喷嘴的尖端沿折叠描画以沿折叠的纵向在折叠中涂覆糊状物层。
实例16
制备太平洋紫杉醇的稀粘稠醇性溶液,其足够稀粘稠以致单独通过毛细管力将溶液拖涂到折叠中。借助于设置在折叠末端上的毛细管,使醇性太平洋紫杉醇溶液流入折叠中直到通过毛细管力完全填充折叠的内部空间。干燥折叠的内含物,使球囊旋转且填充下一个折叠。各折叠仅填充一次。
实例17
制备70%亚麻籽油和30%橄榄油的混合物。将所述混合物以1∶1比率溶解在氯仿中,且在加入太平洋紫杉醇(25重量百分比)后,借助于滚涂法将其涂覆到匀速旋转的导管球囊上。在柔和的气流中蒸发氯仿后,将球囊导管存储在70℃的干燥橱中,以致提供已具有粘附性但仍光滑、高度粘稠且不阻碍展开球囊的表面。
实例18
将钴/铬支架卷曲到聚酰胺的导管球囊中。
现在借助于注射器将太平洋紫杉醇于DMSO中的溶液涂覆到支架上。溶液足够稀粘稠以致其在支架的紧密安装的支柱之间流动并填充球囊表面与支架内表面之间以及支架的单个支柱之间的间隙。溶剂蒸发,且纯活性剂以固体形式沉降在导管球囊上,支架下方,支架间隙中以及支架和球囊表面上。在支架两端用活性剂涂布导管球囊直到超出支架末端约2到3毫米。
实例19
在乙醇中制备雷帕霉素溶液且将溶液喷涂到不具有支架的导管球囊上数次,同时通过使溶剂蒸发来干燥导管球囊。
重复喷涂三次后,最后干燥导管球囊且将未涂布的金属支架卷曲在球囊上。
实例20
用每平方毫米球囊表面3微克的量的太平洋紫杉醇涂布市面上可购得的导管球囊。通过使用太平洋紫杉醇于DMSO中的溶液,用移液法完成涂布。DMSO溶液另外可含有每毫升至多1毫克的盐(诸如乙酸钠)且优选含有酸以及中性氨基酸。然后,将未涂布的钴/铬金属支架卷曲在经涂布的导管球囊上。
实例21
借助于液滴拖涂法,用太平洋紫杉醇于DMSO中的溶液涂布具有卷曲的未涂布金属支架的导管球囊。重复涂布程序三到四次,直到球囊表面与支架内表面之间的间隙以及支架的单个支柱的间隙明显被活性剂填充。
必要时,另外可在具有活性剂太平洋紫杉醇的层上涂覆例如聚交酯的保护层。
实例22
用太平洋紫杉醇于具有5体积百分比乙酸的乙酸乙酯中的分散液涂布市面上可购得的导管球囊,以致得到每平方毫米球囊表面2-3微克的量的太平洋紫杉醇。将聚羟基丁酸酯的生物可吸收的支架卷曲在经涂布的球囊表面上。
实例23
在经由毛细管法经太平洋紫杉醇涂布折叠且具有每平方毫米折叠1-2微克的量的太平洋紫杉醇的导管球囊上,卷曲钛支架,所述支架经含有优选细胞抑制剂量的活性剂太平洋紫杉醇的聚醚砜的聚合物载体系统涂布。预先经由移液法用太平洋紫杉醇和聚醚砜于二氯甲烷中的溶液涂布钛支架。在钛支架上,每平方毫米支架表面上存在约0.5微克的太平洋紫杉醇。
实例24
提供经包埋在聚交酯-聚乙交酯聚合物中的雷帕霉素涂布的导管球囊。现在将聚交酯的生物可吸收的支架卷曲在所述导管球囊上,所述导管球囊经含有每平方毫米支架表面约1.0微克的量的太平洋紫杉醇的聚交酯涂布。
实例25
借助于所述移液法,用活性剂和作为载体的赋形剂完全涂布未膨胀的折叠球囊。
为此,将150毫克西罗莫司溶解于4.5毫升丙酮中,并与100微升肉豆蔻酸异丙酯于450微升乙醇中的溶液混合。涂布溶液后,干燥折叠球囊过夜。
实例26
将根据实例25涂布的折叠球囊引入PBS填充的硅管中,且然后展开到标称压力历时60秒。
接着,在用乙腈萃取后借助于HPLC测量法来测定仍位于球囊导管上的西罗莫司含量、溶解于PBS缓冲液中的部分以及粘附到管内表面上的活性剂的含量:
实例27
用线拖涂法涂布导管
当启动导管的旋转时,对球囊施加微小负压,以致折叠在球囊绕其自身的纵轴旋转运动期间不弯曲。接着,用润湿溶液将球囊预沾湿。即刻进行涂布程序。在球囊上通过分配针和拖涂金属丝上的焊接物拖动一滴溶液直到溶剂蒸发到形成固体涂层的程度。
在结束经调整的覆盖涂层后,使导管保持旋转数秒。接着,从装置中去除导管并在室温下干燥。
实例28
支架的共价血相容性涂布
将医学不锈钢LVM 316的未展开的洁净支架浸渍在3-氨基丙基三乙氧基硅烷于乙醇/水混合物(50/50(体积/体积))中的2%溶液中达5分钟,且接着干燥。然后,用脱矿物质水洗涤支架过夜。
将3毫克脱硫且再乙酰化的肝素溶解于30毫升0.1摩尔浓度的MES缓冲液(2-(N-吗啉基)乙烷磺酸)(pH 4.75)中,且然后加入30毫克N-环己基-N’-(2-吗啉基乙基)碳化二亚胺-甲基-对甲苯磺酸酯。在4℃下,将支架在所述溶液中搅拌过夜。接着,用水和4摩尔浓度的NaCl溶液彻底洗涤。
实例29
将洁净或以共价方式涂布的支架卷曲在球囊导管上,且一起借助于线拖涂法用含有活性剂的喷涂溶液涂布。
喷涂溶液的制备:将44毫克紫杉醇溶解于6克氯仿中。
实例30
借助于滚涂法,用含有活性剂的基质涂布具有血相容性的支架
涂布溶液:用氯仿补足145.2毫克聚交酯和48.4毫克紫杉醇的聚交酯RG5032/紫杉醇溶液到22克。
实例31
用负载活性剂的基质作为基础涂层和活性剂作为上涂层来涂布一体化系统支架+球囊
基础涂层:用氯仿补足19.8毫克亚麻籽油和6.6毫克紫杉醇到3克。
上涂层:用氯仿补足8.8毫克紫杉醇到2克。
借助于液滴拖涂法,用基础涂层涂布具有卷曲支架的球囊导管。一旦所述基础涂层通过溶剂蒸发而变成高粘稠膜,就可在系统表面上喷涂具有纯活性剂的第二层。
实例32
用含有活性剂的细胞亲和基质涂布球囊导管
借助于接头将球囊导管安装在旋转马达的传动轴上且以停留在水平位置而无弯曲的方式固定。对球囊施加微小负压后,根据调整数目的球囊痕迹用溶液涂布球囊。
涂布溶液:将角叉菜胶、磷脂酰胆碱以及甘油(1∶2∶2)溶解于乙醇/水(1∶1;体积∶体积)中。
线拖涂法:
在旋转的球囊上通过分配针和拖涂金属丝上的焊接物拖动一滴溶液直到溶剂蒸发,以致形成固体涂层。接着,从装置中去除导管并在室温下在连续旋转下干燥过夜。
Claims (8)
1.一种作为转运调节的物质的柠檬酸酯与抗再狭窄活性剂的用途,用于涂布导管球囊。
2.根据权利要求1所述的用途,其特征在于所述柠檬酸酯是柠檬酸乙酰基三丁酯或柠檬酸乙酰基三乙酯或具有以下通式:
其中
R、R’和R”彼此独立地为氢或烷基、芳基烷基或环烷基,其为直链或支链,为饱和或不饱和的,经至少一个官能部分取代或未经取代。
3.根据权利要求1所述的用途,其特征在于所述柠檬酸酯是属于由柠檬酸三乙酯、柠檬酸乙酰基三乙酯、柠檬酸三丁酯以及柠檬酸乙酰基三丁酯组成的族群的一员。
4.根据权利要求1所述的用途,其特征在于所述抗再狭窄活性剂是太平洋紫杉醇。
5.一种经涂布的导管球囊,其特征在于涂布有抗再狭窄活性剂与作为转运调节的物质的柠檬酸酯。
6.根据权利要求5所述的导管球囊,其特征在于所述柠檬酸酯是柠檬酸乙酰基三丁酯或柠檬酸乙酰基三乙酯或具有以下通式:
其中
R、R’和R”彼此独立地为氢或烷基、芳基烷基或环烷基,其为直链或支链,为饱和或不饱和的,经至少一个官能部分取代或未经取代。
7.根据权利要求5所述的导管球囊,其特征在于所述柠檬酸酯是属于由柠檬酸三乙酯、柠檬酸乙酰基三乙酯、柠檬酸三丁酯以及柠檬酸乙酰基三丁酯组成的族群的一员。
8.根据权利要求5所述的导管球囊,其特征在于所述抗再狭窄活性剂是太平洋紫杉醇。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007003914.1 | 2007-01-21 | ||
DE102007003914 | 2007-01-21 | ||
DE102007006557.6 | 2007-02-09 | ||
DE102007006557 | 2007-02-09 | ||
DE102007013586.8 | 2007-03-21 | ||
DE102007013586 | 2007-03-21 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008800024704A Division CN101687066B (zh) | 2007-01-21 | 2008-01-21 | 治疗体通道狭窄和预防危险的再狭窄的医学产品 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101972492A CN101972492A (zh) | 2011-02-16 |
CN101972492B true CN101972492B (zh) | 2014-12-10 |
Family
ID=39523684
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010532053.XA Active CN101972492B (zh) | 2007-01-21 | 2008-01-21 | 治疗体通道狭窄和预防危险的再狭窄的医学产品 |
CN2008800024704A Active CN101687066B (zh) | 2007-01-21 | 2008-01-21 | 治疗体通道狭窄和预防危险的再狭窄的医学产品 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008800024704A Active CN101687066B (zh) | 2007-01-21 | 2008-01-21 | 治疗体通道狭窄和预防危险的再狭窄的医学产品 |
Country Status (17)
Country | Link |
---|---|
US (2) | US8597720B2 (zh) |
EP (3) | EP2491962A1 (zh) |
JP (2) | JP4906926B2 (zh) |
KR (3) | KR101144984B1 (zh) |
CN (2) | CN101972492B (zh) |
AU (2) | AU2008207191B2 (zh) |
BR (2) | BRPI0823269B8 (zh) |
CA (2) | CA2743022C (zh) |
DE (1) | DE112008000881A5 (zh) |
ES (2) | ES2409759T3 (zh) |
IL (2) | IL199568A (zh) |
MX (2) | MX2009007663A (zh) |
NZ (2) | NZ578341A (zh) |
PL (2) | PL2269664T3 (zh) |
RU (2) | RU2458710C2 (zh) |
WO (1) | WO2008086794A2 (zh) |
ZA (1) | ZA201007601B (zh) |
Families Citing this family (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8177743B2 (en) | 1998-05-18 | 2012-05-15 | Boston Scientific Scimed, Inc. | Localized delivery of drug agents |
US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
FR2892939B1 (fr) * | 2005-11-10 | 2010-01-22 | Groupement Coeur Artificiel Total Carpentier Matra Carmat | Materiau hemocompatible composite et son procede d'obtention |
PL3150236T3 (pl) * | 2006-02-09 | 2019-06-28 | B. Braun Melsungen Ag | Sposób powlekania zwijanego balonu |
US8430055B2 (en) | 2008-08-29 | 2013-04-30 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters |
US8414909B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US9700704B2 (en) | 2006-11-20 | 2017-07-11 | Lutonix, Inc. | Drug releasing coatings for balloon catheters |
US8425459B2 (en) | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent |
US8414525B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US20080276935A1 (en) | 2006-11-20 | 2008-11-13 | Lixiao Wang | Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs |
US9737640B2 (en) | 2006-11-20 | 2017-08-22 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8414910B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8998846B2 (en) | 2006-11-20 | 2015-04-07 | Lutonix, Inc. | Drug releasing coatings for balloon catheters |
US8414526B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids |
NZ578341A (en) | 2007-01-21 | 2011-06-30 | Hemoteq Ag | Method for producing a coated catheter balloon |
US9192697B2 (en) | 2007-07-03 | 2015-11-24 | Hemoteq Ag | Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis |
DE102007036685A1 (de) | 2007-08-03 | 2009-02-05 | Innora Gmbh | Verbesserte arzneimittelbeschichtete Medizinprodukte deren Herstellung und Verwendung |
US8162880B2 (en) * | 2008-01-18 | 2012-04-24 | Swaminathan Jayaraman | Delivery of therapeutic and marking substance through intra lumen expansion of a delivery device |
EP2262566A1 (en) | 2008-03-06 | 2010-12-22 | Boston Scientific Scimed, Inc. | Balloon catheter devices with folded balloons |
JP5667559B2 (ja) * | 2008-03-28 | 2015-02-12 | サーモディクス,インコーポレイティド | 微粒子が配置された弾性基質を有する挿入可能な医療機器、および薬物送達方法 |
NZ588549A (en) | 2008-04-17 | 2013-05-31 | Micell Technologies Inc | Stents having bioabsorbable layers |
EP2285443B1 (en) | 2008-05-01 | 2016-11-23 | Bayer Intellectual Property GmbH | Catheter balloon drug adherence techniques and methods |
DE102008002471A1 (de) * | 2008-06-17 | 2009-12-24 | Biotronik Vi Patent Ag | Stent mit einer Beschichtung oder einem Grundkörper, der ein Lithiumsalz enthält, und Verwendung von Lithiumsalzen zur Restenoseprophylaxe |
US9510856B2 (en) | 2008-07-17 | 2016-12-06 | Micell Technologies, Inc. | Drug delivery medical device |
US9486431B2 (en) | 2008-07-17 | 2016-11-08 | Micell Technologies, Inc. | Drug delivery medical device |
DE102008034826A1 (de) * | 2008-07-22 | 2010-01-28 | Alexander Rübben | Verfahren zur Erzeugung einer bioaktiven Oberfläche auf dem Ballon eines Ballonkatheters |
IT1394522B1 (it) | 2009-01-09 | 2012-07-05 | Invatec Technology Ct Gmbh | Dispositivo medicale con rilascio di farmaco |
CN102481195B (zh) | 2009-04-01 | 2015-03-25 | 米歇尔技术公司 | 涂覆支架 |
DE102010030191A1 (de) | 2009-06-17 | 2011-03-03 | Dot Gmbh | Verfahren und Vorrichtung zur Beschichtung von Kathetern oder Ballonkathetern |
EP2944332B1 (en) | 2009-07-10 | 2016-08-17 | Boston Scientific Scimed, Inc. | Use of nanocrystals for a drug delivery balloon |
WO2011008393A2 (en) | 2009-07-17 | 2011-01-20 | Boston Scientific Scimed, Inc. | Nucleation of drug delivery balloons to provide improved crystal size and density |
MX2012004410A (es) * | 2009-10-16 | 2012-08-23 | Hemoteq Ag | Uso de composiciones para revestir balones de cateter y balones de cateter revestido. |
WO2011097103A1 (en) | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
EP2560576B1 (en) | 2010-04-22 | 2018-07-18 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
DE102010022588A1 (de) * | 2010-05-27 | 2011-12-01 | Hemoteq Ag | Ballonkatheter mit einer partikelfrei Wirkstoff-abgebenden Beschichtung |
WO2012009684A2 (en) | 2010-07-16 | 2012-01-19 | Micell Technologies, Inc. | Drug delivery medical device |
US8889211B2 (en) | 2010-09-02 | 2014-11-18 | Boston Scientific Scimed, Inc. | Coating process for drug delivery balloons using heat-induced rewrap memory |
WO2012039884A1 (en) | 2010-09-23 | 2012-03-29 | Boston Scientific Scimed, Inc. | Drug coated balloon with transferable coating |
DE102010055562B4 (de) * | 2010-12-23 | 2015-07-09 | Heraeus Medical Gmbh | Beschichtungsvorrichtung und Beschichtungsverfahren |
US9272095B2 (en) * | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
WO2013007273A1 (en) * | 2011-07-08 | 2013-01-17 | Cardionovum Sp.Z.O.O. | Balloon surface coating |
US10117972B2 (en) | 2011-07-15 | 2018-11-06 | Micell Technologies, Inc. | Drug delivery medical device |
US8669360B2 (en) | 2011-08-05 | 2014-03-11 | Boston Scientific Scimed, Inc. | Methods of converting amorphous drug substance into crystalline form |
WO2013028208A1 (en) | 2011-08-25 | 2013-02-28 | Boston Scientific Scimed, Inc. | Medical device with crystalline drug coating |
JP6076351B2 (ja) | 2011-09-29 | 2017-02-08 | カーディオノブーム エスぺー. ゼット. オー. オー. | バルーン表面コーティング |
US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
DE102011117526B4 (de) * | 2011-11-03 | 2015-07-30 | Heraeus Medical Gmbh | Beschichtungsverfahren und Beschichtungsvorrichtung für medizinische Implantate |
WO2013091722A1 (en) * | 2011-12-23 | 2013-06-27 | Innora Gmbh | Drug-coated medical devices |
JP6104232B2 (ja) | 2012-03-27 | 2017-03-29 | テルモ株式会社 | コーティング組成物および医療機器 |
CN104203297B (zh) * | 2012-03-27 | 2016-04-06 | 泰尔茂株式会社 | 涂布组合物及医疗器械 |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
CA2874824C (en) * | 2012-06-01 | 2021-10-26 | Surmodics, Inc. | Apparatus and methods for coating balloon catheters |
WO2014029442A1 (en) | 2012-08-23 | 2014-02-27 | Cardionovum Gmbh | Balloon surface coating for valvuloplasty |
CN110935070A (zh) * | 2012-10-18 | 2020-03-31 | 米歇尔技术公司 | 药物递送医疗装置 |
CA2889062C (en) * | 2012-10-25 | 2022-06-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11090468B2 (en) * | 2012-10-25 | 2021-08-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US20140172118A1 (en) * | 2012-12-19 | 2014-06-19 | Cook Medical Technologies Llc | Bioactive Compositions, Bioactive Eluting Devices and Methods of Use Thereof |
CN105307597A (zh) | 2013-03-12 | 2016-02-03 | 脉胜医疗技术公司 | 可生物吸收的生物医学植入物 |
US20140276356A1 (en) * | 2013-03-14 | 2014-09-18 | Teleflex Medical Incorporated | Novel Enhanced Device and Composition for Local Drug Delivery |
US9872940B2 (en) | 2013-04-01 | 2018-01-23 | Terumo Kabushiki Kaisha | Drug coating layer |
EP2789354A1 (de) | 2013-04-13 | 2014-10-15 | IPPyramids GmbH | Mit Mikrobohrungen und einem Metallnetz versehener Katheterballon |
KR20180059584A (ko) | 2013-05-15 | 2018-06-04 | 미셀 테크놀로지즈, 인코포레이티드 | 생흡수성 생체의학적 임플란트 |
DK3065793T3 (da) | 2013-11-08 | 2021-05-17 | Hollister Inc | Oleofile smurte katetre |
CN104174074B (zh) * | 2013-11-27 | 2016-05-18 | 浙江归创医疗器械有限公司 | 一种适用于涂在植入或介入医疗器械表面的药物涂层组合物 |
JP6498664B2 (ja) | 2014-04-01 | 2019-04-10 | テルモ株式会社 | バルーンコーティングのための位置決め方法およびバルーンコーティング方法 |
JP6504571B2 (ja) * | 2014-04-01 | 2019-04-24 | テルモ株式会社 | バルーンコーティング方法 |
EP3106198B1 (en) * | 2014-04-01 | 2019-09-18 | Terumo Kabushiki Kaisha | Positioning method for balloon coating |
JP6866156B2 (ja) * | 2014-04-01 | 2021-04-28 | テルモ株式会社 | バルーンコーティング方法、コート層制御方法およびバルーンコーティング装置 |
US10143779B2 (en) | 2014-05-16 | 2018-12-04 | Terumo Kabushiki Kaisha | Method of inhibiting thickening of vascular intima |
US10188771B2 (en) | 2014-05-16 | 2019-01-29 | Terumo Kabushiki Kaisha | Method of treating peripheral artery diseases in lower limbs |
US10149925B2 (en) | 2014-05-16 | 2018-12-11 | Terumo Kabushiki Kaisha | Method of reducing the risk of embolization of peripheral blood vessels |
US11406742B2 (en) * | 2014-07-18 | 2022-08-09 | M.A. Med Alliance SA | Coating for intraluminal expandable catheter providing contact transfer of drug micro-reservoirs |
CN106178233A (zh) * | 2014-12-26 | 2016-12-07 | 先健科技(深圳)有限公司 | 药物球囊扩张导管的制备方法及折翼卷绕球囊 |
EP3251720A4 (en) | 2015-04-23 | 2018-10-03 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotation method, and balloon coating device |
JP6762525B2 (ja) | 2015-04-23 | 2020-09-30 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
JP6797547B2 (ja) | 2015-04-23 | 2020-12-09 | テルモ株式会社 | バルーンコーティング方法およびバルーン回転方法 |
JP6793116B2 (ja) | 2015-04-23 | 2020-12-02 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
JP6723807B2 (ja) | 2015-04-23 | 2020-07-15 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
JP6778507B2 (ja) | 2015-04-23 | 2020-11-04 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
BR112018008738B1 (pt) * | 2015-10-30 | 2022-06-21 | Acotec Scientific Co. Ltd | Cateter de balão revestido com fármacos |
WO2017093483A1 (en) * | 2015-12-02 | 2017-06-08 | Neurescue Aps | A device for emergency treatment of cardiac arrest |
WO2017134049A1 (en) * | 2016-02-01 | 2017-08-10 | Schierholz Jörg Michael | Implantable medical products, a process for the preparation thereof, and use thereof |
US10905457B2 (en) | 2016-06-06 | 2021-02-02 | Terumo Kabushiki Kaisha | Device handle for a medical device |
CA3028423A1 (en) * | 2016-06-22 | 2017-12-28 | Medchem Partners, Llc. | Nitric oxide donors |
CN106621003A (zh) * | 2016-11-10 | 2017-05-10 | 乐普(北京)医疗器械股份有限公司 | 一种药物球囊导管及其制备方法和应用 |
US10349528B2 (en) * | 2017-02-21 | 2019-07-09 | Palo Alto Research Center Incorporated | Spring loaded rollerball pen for deposition of materials on raised surfaces |
WO2018183389A1 (en) * | 2017-03-28 | 2018-10-04 | Allied Bioscience, Inc. | Antimicrobial coatings for medical implements and medical devices |
CN107458913A (zh) * | 2017-08-02 | 2017-12-12 | 安徽省无为天成纺织有限公司 | 一种纺织纱线节省型润滑剂装置 |
JP2018069080A (ja) * | 2017-11-15 | 2018-05-10 | ルトニックス,インコーポレーテッド | 医療用具のための薬物放出コーティング |
JP7198218B2 (ja) * | 2017-11-22 | 2022-12-28 | テルモ株式会社 | 薬剤付与器具および薬剤層の形成方法 |
CN108580197B (zh) * | 2018-04-23 | 2019-12-03 | 青岛西海岸市政工程有限公司 | 一种管材内壁防水层涂抹装置与涂抹方法 |
CN112638436A (zh) | 2018-05-22 | 2021-04-09 | 界面生物公司 | 用于将药物递送至血管壁的组合物和方法 |
CN109550634B (zh) * | 2018-11-16 | 2020-11-27 | 福州兴创云达新材料科技有限公司 | 一种高性能助焊剂的自动涂覆装置以及控制方法 |
WO2020112816A1 (en) | 2018-11-29 | 2020-06-04 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
CN109696447B (zh) * | 2018-12-29 | 2020-10-16 | 苏州瑞派宁科技有限公司 | 一种软x射线显微成像装置 |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
DE102019116791B4 (de) * | 2019-06-21 | 2023-10-26 | InnoRa Gesellschaft mbH | Stent mit sofort ablösbarer Beschichtung |
CN111122523B (zh) * | 2019-12-06 | 2021-09-28 | 山西大学 | 一种快速识别Ag+和Cys的三相输出功能的分子逻辑门及其构建方法 |
DE102020101197A1 (de) * | 2020-01-20 | 2021-07-22 | Charité - Universitätsmedizin Berlin | Medizinprodukt zur Arzneimittelabgabe mit verstärkter Wirkung |
EP4262905A4 (en) * | 2020-12-18 | 2024-11-13 | The Cleveland Clinic Foundation | TWO-AGENT NANOPARTICLE COMPOSITION FOR COATING MEDICAL DEVICES |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029732A (en) * | 1974-08-02 | 1977-06-14 | Produits Chimiques Ugine Kuhlmann | Preparation of bromine |
EP0770401A2 (de) * | 1995-10-24 | 1997-05-02 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Verfahren zur Herstellung intraluminaler Stents aus bioresorbierbarem Polymermaterial |
CN1688350A (zh) * | 2002-09-20 | 2005-10-26 | 乌尔里希·施佩克 | 用于递送药物的医用装置 |
Family Cites Families (554)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US304121A (en) | 1884-08-26 | Helm munch | ||
US2098381A (en) | 1935-08-14 | 1937-11-09 | Kleinert I B Rubber Co | Safety device |
CS173836B1 (zh) | 1974-03-19 | 1977-03-31 | ||
US4186745A (en) | 1976-07-30 | 1980-02-05 | Kauzlarich James J | Porous catheters |
US4481323A (en) | 1980-05-07 | 1984-11-06 | Medical Research Associates, Ltd. #2 | Hydrocarbon block copolymer with dispersed polysiloxane |
US4364392A (en) | 1980-12-04 | 1982-12-21 | Wisconsin Alumni Research Foundation | Detachable balloon catheter |
US4515593A (en) | 1981-12-31 | 1985-05-07 | C. R. Bard, Inc. | Medical tubing having exterior hydrophilic coating for microbiocide absorption therein and method for using same |
CA1191064A (en) | 1981-12-31 | 1985-07-30 | Bard (C. R.), Inc. | Catheter with selectively rigidified portion |
US4769013A (en) | 1982-09-13 | 1988-09-06 | Hydromer, Inc. | Bio-effecting medical material and device |
NZ205680A (en) | 1982-10-01 | 1986-05-09 | Ethicon Inc | Glycolide/epsilon-caprolactone copolymers and sterile surgical articles made therefrom |
US4603152A (en) | 1982-11-05 | 1986-07-29 | Baxter Travenol Laboratories, Inc. | Antimicrobial compositions |
US4644936A (en) | 1982-11-19 | 1987-02-24 | Iabp | Percutaneous intra-aortic balloon and method for using same |
US4693243A (en) | 1983-01-14 | 1987-09-15 | Buras Sharon Y | Conduit system for directly administering topical anaesthesia to blocked laryngeal-tracheal areas |
US4490421A (en) | 1983-07-05 | 1984-12-25 | E. I. Du Pont De Nemours And Company | Balloon and manufacture thereof |
US4589873A (en) | 1984-05-29 | 1986-05-20 | Becton, Dickinson And Company | Method of applying a hydrophilic coating to a polymeric substrate and articles prepared thereby |
US4931583A (en) | 1984-06-11 | 1990-06-05 | Morflex Chemical Compay, Inc. | Citrate esters |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4784647A (en) | 1986-07-30 | 1988-11-15 | The Kendal Company | Catheter meatal pad device |
US5250069A (en) | 1987-02-27 | 1993-10-05 | Terumo Kabushiki Kaisha | Catheter equipped with expansible member and production method thereof |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4796629A (en) * | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US4950256A (en) | 1988-04-07 | 1990-08-21 | Luther Medical Products, Inc. | Non-thrombogenic intravascular time release catheter |
DE8904026U1 (de) * | 1988-04-20 | 1989-05-24 | Schneider (Europe) AG, Zürich | Katheter zum Rekanalisieren von verengten Gefäßen |
JP2683750B2 (ja) | 1988-06-06 | 1997-12-03 | 住友電気工業株式会社 | カテーテル用バルーン |
DE3821544C2 (de) | 1988-06-25 | 1994-04-28 | H Prof Dr Med Just | Dilatationskatheter |
US6730105B2 (en) | 1988-07-29 | 2004-05-04 | Samuel Shiber | Clover leaf shaped tubular medical device |
US4950239A (en) | 1988-08-09 | 1990-08-21 | Worldwide Medical Plastics Inc. | Angioplasty balloons and balloon catheters |
US5169933A (en) | 1988-08-15 | 1992-12-08 | Neorx Corporation | Covalently-linked complexes and methods for enhanced cytotoxicity and imaging |
US5213580A (en) | 1988-08-24 | 1993-05-25 | Endoluminal Therapeutics, Inc. | Biodegradable polymeric endoluminal sealing process |
DE68922497T2 (de) | 1988-08-24 | 1995-09-14 | Marvin J Slepian | Endoluminale dichtung mit bisdegradierbaren polymeren. |
US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
US4906244A (en) * | 1988-10-04 | 1990-03-06 | Cordis Corporation | Balloons for medical devices and fabrication thereof |
US5091205A (en) | 1989-01-17 | 1992-02-25 | Union Carbide Chemicals & Plastics Technology Corporation | Hydrophilic lubricious coatings |
FR2642474B1 (fr) | 1989-01-27 | 1992-05-15 | Floquet Monopole | Axe creux, en particulier pour piston de moteur a combustion interne, et son procede de fabrication |
US5087244A (en) | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
EP0383429B1 (en) | 1989-01-31 | 1995-11-08 | C.R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
US6146358A (en) | 1989-03-14 | 2000-11-14 | Cordis Corporation | Method and apparatus for delivery of therapeutic agent |
US5041100A (en) | 1989-04-28 | 1991-08-20 | Cordis Corporation | Catheter and hydrophilic, friction-reducing coating thereon |
US4994033A (en) | 1989-05-25 | 1991-02-19 | Schneider (Usa) Inc. | Intravascular drug delivery dilatation catheter |
US5049131A (en) | 1989-05-31 | 1991-09-17 | Ashridge Ag | Balloon catheter |
US5026607A (en) | 1989-06-23 | 1991-06-25 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
EP0420488B1 (en) | 1989-09-25 | 1993-07-21 | Schneider (Usa) Inc. | Multilayer extrusion as process for making angioplasty balloons |
US5135516A (en) | 1989-12-15 | 1992-08-04 | Boston Scientific Corporation | Lubricious antithrombogenic catheters, guidewires and coatings |
US5439446A (en) | 1994-06-30 | 1995-08-08 | Boston Scientific Corporation | Stent and therapeutic delivery system |
US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
US5304121A (en) | 1990-12-28 | 1994-04-19 | Boston Scientific Corporation | Drug delivery system making use of a hydrogel polymer coating |
US5843089A (en) | 1990-12-28 | 1998-12-01 | Boston Scientific Corporation | Stent lining |
US5545208A (en) | 1990-02-28 | 1996-08-13 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
CA2049973C (en) | 1990-02-28 | 2002-12-24 | Rodney G. Wolff | Intralumenal drug eluting prosthesis |
US5236413B1 (en) | 1990-05-07 | 1996-06-18 | Andrew J Feiring | Method and apparatus for inducing the permeation of medication into internal tissue |
WO1991017724A1 (en) | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
US5199951A (en) | 1990-05-17 | 1993-04-06 | Wayne State University | Method of drug application in a transporting medium to an arterial wall injured during angioplasty |
US5092841A (en) * | 1990-05-17 | 1992-03-03 | Wayne State University | Method for treating an arterial wall injured during angioplasty |
US5498238A (en) * | 1990-06-15 | 1996-03-12 | Cortrak Medical, Inc. | Simultaneous angioplasty and phoretic drug delivery |
WO1991019529A1 (en) * | 1990-06-15 | 1991-12-26 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5499971A (en) * | 1990-06-15 | 1996-03-19 | Cortrak Medical, Inc. | Method for iontophoretically delivering drug adjacent to a heart |
US5320634A (en) | 1990-07-03 | 1994-06-14 | Interventional Technologies, Inc. | Balloon catheter with seated cutting edges |
US5196024A (en) | 1990-07-03 | 1993-03-23 | Cedars-Sinai Medical Center | Balloon catheter with cutting edge |
US5180366A (en) * | 1990-10-10 | 1993-01-19 | Woods W T | Apparatus and method for angioplasty and for preventing re-stenosis |
US5342628A (en) | 1990-10-11 | 1994-08-30 | Applied Medical Research, Inc. | Drug diffusion polymer system and method |
DE69124395T2 (de) * | 1990-11-09 | 1997-08-28 | Boston Scientific Corp., Watertown, Mass. | Führungsdraht zum durchqueren von okklusionen in blutgefässen |
US6524274B1 (en) * | 1990-12-28 | 2003-02-25 | Scimed Life Systems, Inc. | Triggered release hydrogel drug delivery system |
US5893840A (en) | 1991-01-04 | 1999-04-13 | Medtronic, Inc. | Releasable microcapsules on balloon catheters |
US5324261A (en) | 1991-01-04 | 1994-06-28 | Medtronic, Inc. | Drug delivery balloon catheter with line of weakness |
US5102402A (en) * | 1991-01-04 | 1992-04-07 | Medtronic, Inc. | Releasable coatings on balloon catheters |
DE4117782C2 (de) | 1991-05-28 | 1997-07-17 | Diagnostikforschung Inst | Nanokristalline magnetische Eisenoxid-Partikel, Verfahren zu ihrer Herstellung sowie diagnostische und/oder therapeutische Mittel |
US5318531A (en) | 1991-06-11 | 1994-06-07 | Cordis Corporation | Infusion balloon catheter |
US5213576A (en) | 1991-06-11 | 1993-05-25 | Cordis Corporation | Therapeutic porous balloon catheter |
US5264260A (en) | 1991-06-20 | 1993-11-23 | Saab Mark A | Dilatation balloon fabricated from low molecular weight polymers |
CA2074304C (en) | 1991-08-02 | 1996-11-26 | Cyril J. Schweich, Jr. | Drug delivery catheter |
US5811447A (en) * | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5500013A (en) | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
JP3053029B2 (ja) | 1991-10-08 | 2000-06-19 | テルモ株式会社 | 血管拡張用カテーテルバルーン |
CA2100970A1 (en) | 1991-12-18 | 1993-06-19 | Paul J. Buscemi | Lubricous polyer network |
CA2086642C (en) | 1992-01-09 | 2004-06-15 | Randall E. Morris | Method of treating hyperproliferative vascular disease |
US5282823A (en) | 1992-03-19 | 1994-02-01 | Medtronic, Inc. | Intravascular radially expandable stent |
US5599352A (en) | 1992-03-19 | 1997-02-04 | Medtronic, Inc. | Method of making a drug eluting stent |
US5571166A (en) | 1992-03-19 | 1996-11-05 | Medtronic, Inc. | Method of making an intraluminal stent |
US5254089A (en) | 1992-04-02 | 1993-10-19 | Boston Scientific Corp. | Medication dispensing balloon catheter |
EP0569263B1 (en) | 1992-04-06 | 1997-07-02 | Terumo Kabushiki Kaisha | Balloon catheter |
KR100284210B1 (ko) | 1992-04-28 | 2001-03-02 | 이건 이. 버그 | 과증식성 혈관 질환 치료용 배합 제제 |
US5569184A (en) | 1992-04-29 | 1996-10-29 | Cardiovascular Dynamics, Inc. | Delivery and balloon dilatation catheter and method of using |
US5368566A (en) * | 1992-04-29 | 1994-11-29 | Cardiovascular Dynamics, Inc. | Delivery and temporary stent catheter having a reinforced perfusion lumen |
US5629008A (en) | 1992-06-02 | 1997-05-13 | C.R. Bard, Inc. | Method and device for long-term delivery of drugs |
US5383928A (en) * | 1992-06-10 | 1995-01-24 | Emory University | Stent sheath for local drug delivery |
GB9213077D0 (en) | 1992-06-19 | 1992-08-05 | Erba Carlo Spa | Polymerbound taxol derivatives |
US5500180A (en) * | 1992-09-30 | 1996-03-19 | C. R. Bard, Inc. | Method of making a distensible dilatation balloon using a block copolymer |
US5489525A (en) * | 1992-10-08 | 1996-02-06 | The United States Of America As Represented By The Department Of Health And Human Services | Monoclonal antibodies to prostate cells |
GB9221220D0 (en) | 1992-10-09 | 1992-11-25 | Sandoz Ag | Organic componds |
US5634901A (en) | 1992-11-02 | 1997-06-03 | Localmed, Inc. | Method of using a catheter sleeve |
US5578075B1 (en) | 1992-11-04 | 2000-02-08 | Daynke Res Inc | Minimally invasive bioactivated endoprosthesis for vessel repair |
US5449382A (en) | 1992-11-04 | 1995-09-12 | Dayton; Michael P. | Minimally invasive bioactivated endoprosthesis for vessel repair |
US5807306A (en) | 1992-11-09 | 1998-09-15 | Cortrak Medical, Inc. | Polymer matrix drug delivery apparatus |
US5688516A (en) | 1992-11-12 | 1997-11-18 | Board Of Regents, The University Of Texas System | Non-glycopeptide antimicrobial agents in combination with an anticoagulant, an antithrombotic or a chelating agent, and their uses in, for example, the preparation of medical devices |
US5419760A (en) | 1993-01-08 | 1995-05-30 | Pdt Systems, Inc. | Medicament dispensing stent for prevention of restenosis of a blood vessel |
US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1994021320A1 (en) * | 1993-03-15 | 1994-09-29 | Advanced Cardiovascular Systems, Inc. | Fluid delivery catheter |
WO1994021308A1 (en) | 1993-03-18 | 1994-09-29 | Cedars-Sinai Medical Center | Drug incorporating and releasing polymeric coating for bioprosthesis |
WO1994023787A1 (en) | 1993-04-22 | 1994-10-27 | Rammler David H | Sampling balloon catheter |
US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5344402A (en) | 1993-06-30 | 1994-09-06 | Cardiovascular Dynamics, Inc. | Low profile perfusion catheter |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5599307A (en) * | 1993-07-26 | 1997-02-04 | Loyola University Of Chicago | Catheter and method for the prevention and/or treatment of stenotic processes of vessels and cavities |
US5380299A (en) * | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
DE69433506T2 (de) | 1993-10-01 | 2004-06-24 | Boston Scientific Corp., Natick | Medizinische, thermoplastische elastomere enthaltende ballone |
US5556383A (en) | 1994-03-02 | 1996-09-17 | Scimed Lifesystems, Inc. | Block copolymer elastomer catheter balloons |
US6146356A (en) | 1994-03-02 | 2000-11-14 | Scimed Life Systems, Inc. | Block copolymer elastomer catheter balloons |
US5470307A (en) | 1994-03-16 | 1995-11-28 | Lindall; Arnold W. | Catheter system for controllably releasing a therapeutic agent at a remote tissue site |
US5588962A (en) | 1994-03-29 | 1996-12-31 | Boston Scientific Corporation | Drug treatment of diseased sites deep within the body |
US5599306A (en) * | 1994-04-01 | 1997-02-04 | Localmed, Inc. | Method and apparatus for providing external perfusion lumens on balloon catheters |
WO1995029729A1 (en) | 1994-04-29 | 1995-11-09 | Boston Scientific Corporation | Novel micro occlusion balloon catheter |
US5857998A (en) | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
US5626862A (en) | 1994-08-02 | 1997-05-06 | Massachusetts Institute Of Technology | Controlled local delivery of chemotherapeutic agents for treating solid tumors |
DE4428851C2 (de) | 1994-08-04 | 2000-05-04 | Diagnostikforschung Inst | Eisen enthaltende Nanopartikel, ihre Herstellung und Anwendung in der Diagnostik und Therapie |
US5891108A (en) | 1994-09-12 | 1999-04-06 | Cordis Corporation | Drug delivery stent |
US5707385A (en) * | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
CA2163837C (en) | 1994-12-13 | 1999-07-20 | Robert K. Perrone | Crystalline paclitaxel hydrates |
US5599576A (en) | 1995-02-06 | 1997-02-04 | Surface Solutions Laboratories, Inc. | Medical apparatus with scratch-resistant coating and method of making same |
US5869127A (en) * | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
US5702754A (en) | 1995-02-22 | 1997-12-30 | Meadox Medicals, Inc. | Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings |
CA2213403C (en) | 1995-02-22 | 2007-01-16 | Menlo Care, Inc. | Covered expanding mesh stent |
US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
DE19515820A1 (de) | 1995-04-29 | 1996-10-31 | Inst Neue Mat Gemein Gmbh | Verfahren zur Herstellung schwach agglomerierter nanoskaliger Teilchen |
US5833657A (en) | 1995-05-30 | 1998-11-10 | Ethicon, Inc. | Single-walled balloon catheter with non-linear compliance characteristic |
US7611533B2 (en) | 1995-06-07 | 2009-11-03 | Cook Incorporated | Coated implantable medical device |
US5766201A (en) | 1995-06-07 | 1998-06-16 | Boston Scientific Corporation | Expandable catheter |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US6774278B1 (en) | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
US5865801A (en) * | 1995-07-18 | 1999-02-02 | Houser; Russell A. | Multiple compartmented balloon catheter with external pressure sensing |
US6283951B1 (en) * | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US5728066A (en) * | 1995-12-13 | 1998-03-17 | Daneshvar; Yousef | Injection systems and methods |
US6099454A (en) | 1996-02-29 | 2000-08-08 | Scimed Life Systems, Inc. | Perfusion balloon and radioactive wire delivery system |
US6234951B1 (en) | 1996-02-29 | 2001-05-22 | Scimed Life Systems, Inc. | Intravascular radiation delivery system |
US5855546A (en) | 1996-02-29 | 1999-01-05 | Sci-Med Life Systems | Perfusion balloon and radioactive wire delivery system |
SI0932399T1 (sl) | 1996-03-12 | 2006-10-31 | Pg Txl Co Lp | Vodotopna paklitakselna predzdravila |
DE19614136A1 (de) | 1996-04-10 | 1997-10-16 | Inst Neue Mat Gemein Gmbh | Verfahren zur Herstellung agglomeratfreier nanoskaliger Eisenoxidteilchen mit hydrolysebeständigem Überzug |
US5833658A (en) | 1996-04-29 | 1998-11-10 | Levy; Robert J. | Catheters for the delivery of solutions and suspensions |
NZ505584A (en) | 1996-05-24 | 2002-04-26 | Univ British Columbia | Delivery of a therapeutic agent to the smooth muscle cells of a body passageway via an adventia |
US20020042645A1 (en) | 1996-07-03 | 2002-04-11 | Shannon Donald T. | Drug eluting radially expandable tubular stented grafts |
US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US5830217A (en) | 1996-08-09 | 1998-11-03 | Thomas J. Fogarty | Soluble fixation device and method for stent delivery catheters |
US5704908A (en) * | 1996-10-10 | 1998-01-06 | Genetronics, Inc. | Electroporation and iontophoresis catheter with porous balloon |
EP0835673A3 (en) | 1996-10-10 | 1998-09-23 | Schneider (Usa) Inc. | Catheter for tissue dilatation and drug delivery |
US6197013B1 (en) | 1996-11-06 | 2001-03-06 | Setagon, Inc. | Method and apparatus for drug and gene delivery |
US7229413B2 (en) | 1996-11-06 | 2007-06-12 | Angiotech Biocoatings Corp. | Echogenic coatings with overcoat |
US5868719A (en) * | 1997-01-15 | 1999-02-09 | Boston Scientific Corporation | Drug delivery balloon catheter device |
US6511477B2 (en) * | 1997-03-13 | 2003-01-28 | Biocardia, Inc. | Method of drug delivery to interstitial regions of the myocardium |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
DE69837141T2 (de) | 1997-05-12 | 2007-10-31 | Metabolix, Inc., Cambridge | Polyhydroxyalkanoate für in vivo anwendungen |
DE19726282A1 (de) | 1997-06-20 | 1998-12-24 | Inst Neue Mat Gemein Gmbh | Nanoskalige Teilchen mit einem von mindestens zwei Schalen umgebenen eisenoxid-haltigen Kern |
US5902299A (en) * | 1997-07-29 | 1999-05-11 | Jayaraman; Swaminathan | Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation |
US6245103B1 (en) | 1997-08-01 | 2001-06-12 | Schneider (Usa) Inc | Bioabsorbable self-expanding stent |
US6306166B1 (en) | 1997-08-13 | 2001-10-23 | Scimed Life Systems, Inc. | Loading and release of water-insoluble drugs |
US5854382A (en) | 1997-08-18 | 1998-12-29 | Meadox Medicals, Inc. | Bioresorbable compositions for implantable prostheses |
US6592548B2 (en) | 1997-09-18 | 2003-07-15 | Iowa-India Investments Company Limited Of Douglas | Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and method of use |
US20030233068A1 (en) | 1997-09-18 | 2003-12-18 | Swaminathan Jayaraman | Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and method of use |
US7445792B2 (en) | 2003-03-10 | 2008-11-04 | Abbott Laboratories | Medical device having a hydration inhibitor |
WO1999016500A2 (en) | 1997-10-01 | 1999-04-08 | Medtronic Ave, Inc. | Drug delivery and gene therapy delivery system |
EP0951310B1 (en) | 1997-11-07 | 2005-05-18 | Ave Connaught | Balloon catheter for repairing bifurcated vessels |
US5971979A (en) * | 1997-12-02 | 1999-10-26 | Odyssey Technologies, Inc. | Method for cryogenic inhibition of hyperplasia |
US6093463A (en) | 1997-12-12 | 2000-07-25 | Intella Interventional Systems, Inc. | Medical devices made from improved polymer blends |
US6099926A (en) | 1997-12-12 | 2000-08-08 | Intella Interventional Systems, Inc. | Aliphatic polyketone compositions and medical devices |
IT1302061B1 (it) * | 1998-02-24 | 2000-07-20 | Sorin Biomedica Cardio Spa | Protesi vascolare rivestita e procedimento per la sua produzione. |
WO1999049908A1 (en) | 1998-03-31 | 1999-10-07 | University Of Cincinnati | Temperature controlled solute delivery system |
US6219577B1 (en) | 1998-04-14 | 2001-04-17 | Global Vascular Concepts, Inc. | Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues |
US6364856B1 (en) | 1998-04-14 | 2002-04-02 | Boston Scientific Corporation | Medical device with sponge coating for controlled drug release |
DK1019111T3 (da) | 1998-04-27 | 2002-10-14 | Surmodics Inc | Overtræk der frigiver bioaktivt stof |
US6240407B1 (en) | 1998-04-29 | 2001-05-29 | International Business Machines Corp. | Method and apparatus for creating an index in a database system |
US8177743B2 (en) | 1998-05-18 | 2012-05-15 | Boston Scientific Scimed, Inc. | Localized delivery of drug agents |
US6280411B1 (en) | 1998-05-18 | 2001-08-28 | Scimed Life Systems, Inc. | Localized delivery of drug agents |
US6206283B1 (en) | 1998-12-23 | 2001-03-27 | At&T Corp. | Method and apparatus for transferring money via a telephone call |
DE19856983A1 (de) | 1998-06-25 | 1999-12-30 | Biotronik Mess & Therapieg | Implantierbare, bioresorbierbare Gefäßwandstütze, insbesondere Koronarstent |
DE59913189D1 (de) | 1998-06-25 | 2006-05-04 | Biotronik Ag | Implantierbare, bioresorbierbare Gefässwandstütze, insbesondere Koronarstent |
US6369039B1 (en) | 1998-06-30 | 2002-04-09 | Scimed Life Sytems, Inc. | High efficiency local drug delivery |
WO2000010622A1 (en) | 1998-08-20 | 2000-03-02 | Cook Incorporated | Coated implantable medical device |
US8257724B2 (en) | 1998-09-24 | 2012-09-04 | Abbott Laboratories | Delivery of highly lipophilic agents via medical devices |
US20060240070A1 (en) | 1998-09-24 | 2006-10-26 | Cromack Keith R | Delivery of highly lipophilic agents via medical devices |
US6299980B1 (en) | 1998-09-29 | 2001-10-09 | Medtronic Ave, Inc. | One step lubricious coating |
US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US6955661B1 (en) | 1999-01-25 | 2005-10-18 | Atrium Medical Corporation | Expandable fluoropolymer device for delivery of therapeutic agents and method of making |
US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery |
US6468297B1 (en) | 1999-02-24 | 2002-10-22 | Cryovascular Systems, Inc. | Cryogenically enhanced intravascular interventions |
US6428534B1 (en) | 1999-02-24 | 2002-08-06 | Cryovascular Systems, Inc. | Cryogenic angioplasty catheter |
US6514245B1 (en) * | 1999-03-15 | 2003-02-04 | Cryovascular Systems, Inc. | Safety cryotherapy catheter |
US6432102B2 (en) | 1999-03-15 | 2002-08-13 | Cryovascular Systems, Inc. | Cryosurgical fluid supply |
US6648879B2 (en) | 1999-02-24 | 2003-11-18 | Cryovascular Systems, Inc. | Safety cryotherapy catheter |
DE19908318A1 (de) | 1999-02-26 | 2000-08-31 | Michael Hoffmann | Hämokompatible Oberflächen und Verfahren zu deren Herstellung |
DE19912798C1 (de) | 1999-03-10 | 2000-02-17 | Andreas Jordan | Verfahren zur Kultivierung von Krebszellen aus Humangewebe und Vorrichtung zur Aufbereitung von Gewebeproben |
US6200257B1 (en) | 1999-03-24 | 2001-03-13 | Proxima Therapeutics, Inc. | Catheter with permeable hydrogel membrane |
PT1163019E (pt) | 1999-03-25 | 2007-12-06 | Metabolix Inc | Dispositivos médicos e aplicações de polímeros de poli-hidroxialcanoato |
US6186745B1 (en) * | 1999-04-28 | 2001-02-13 | Chemand Corporation | Gas pressurized liquid pump with intermediate chamber |
US6368346B1 (en) | 1999-06-03 | 2002-04-09 | American Medical Systems, Inc. | Bioresorbable stent |
ATE262856T1 (de) | 1999-06-24 | 2004-04-15 | Abbott Vascular Devices Ltd | Mittels eines ballons expandierbarer stent |
US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
US6203551B1 (en) * | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
US6682545B1 (en) * | 1999-10-06 | 2004-01-27 | The Penn State Research Foundation | System and device for preventing restenosis in body vessels |
US6733513B2 (en) * | 1999-11-04 | 2004-05-11 | Advanced Bioprosthetic Surfaces, Ltd. | Balloon catheter having metal balloon and method of making same |
US6418448B1 (en) | 1999-12-06 | 2002-07-09 | Shyam Sundar Sarkar | Method and apparatus for processing markup language specifications for data and metadata used inside multiple related internet documents to navigate, query and manipulate information from a plurality of object relational databases over the web |
US6270522B1 (en) | 1999-12-21 | 2001-08-07 | Advanced Cardiovascular Systems, Inc. | High pressure catheter balloon |
US6527740B1 (en) | 1999-12-22 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Medical regrooming and drug delivery device |
US6899731B2 (en) | 1999-12-30 | 2005-05-31 | Boston Scientific Scimed, Inc. | Controlled delivery of therapeutic agents by insertable medical devices |
US7166098B1 (en) | 1999-12-30 | 2007-01-23 | Advanced Cardiovascular Systems, Inc. | Medical assembly with transducer for local delivery of a therapeutic substance and method of using same |
US20020041898A1 (en) | 2000-01-05 | 2002-04-11 | Unger Evan C. | Novel targeted delivery systems for bioactive agents |
DE10031742A1 (de) | 2000-06-29 | 2002-01-17 | Sanguibio Tech Ag | Verfahren zur Herstellung künstlicher Sauerstoffträger aus kovalent vernetzten Hämoglobinen mit verbesserten funktionellen Eigenschaften durch Vernetzung in Anwesenheit chemisch nicht reagierender Effektoren der Sauerstoffaffinität der Hämoglobine |
DE10031740A1 (de) | 2000-06-29 | 2002-02-14 | Sanguibio Tech Ag | Künstliche Sauerstoffträger aus vernetztem modifizierten Human- oder Schweinehämoglobin mit verbesserten Eigenschaften, Verfahren zu ihrer technisch einfachen Herstellung aus gereinigtem Material in hohen Ausbeuten, sowie deren Verwendung |
US6506408B1 (en) * | 2000-07-13 | 2003-01-14 | Scimed Life Systems, Inc. | Implantable or insertable therapeutic agent delivery device |
EP1305078B1 (en) * | 2000-07-24 | 2011-06-29 | Jeffrey Grayzel | Stiffened balloon catheter for dilatation and stenting |
US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
JP2004520088A (ja) | 2000-08-15 | 2004-07-08 | サーモディックス,インコーポレイティド | 薬剤混和マトリックス |
US6602246B1 (en) | 2000-08-18 | 2003-08-05 | Cryovascular Systems, Inc. | Cryotherapy method for detecting and treating vulnerable plaque |
US6544221B1 (en) | 2000-08-30 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon designs for drug delivery |
US6585926B1 (en) | 2000-08-31 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a porous balloon |
US6863861B1 (en) | 2000-09-28 | 2005-03-08 | Boston Scientific Scimed, Inc. | Process for forming a medical device balloon |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
AU2002239436B2 (en) | 2000-10-31 | 2007-04-26 | Cook Medical Technologies Llc | Coated implantable medical device |
US6638246B1 (en) | 2000-11-28 | 2003-10-28 | Scimed Life Systems, Inc. | Medical device for delivery of a biologically active material to a lumen |
DE10059151C2 (de) | 2000-11-29 | 2003-10-16 | Christoph Alexiou | Magnetische Partikel zur zielgerichteten regionalen Therapie und Verwendung derselben |
US6545097B2 (en) | 2000-12-12 | 2003-04-08 | Scimed Life Systems, Inc. | Drug delivery compositions and medical devices containing block copolymer |
US6623452B2 (en) | 2000-12-19 | 2003-09-23 | Scimed Life Systems, Inc. | Drug delivery catheter having a highly compliant balloon with infusion holes |
US6544223B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
US7179251B2 (en) | 2001-01-17 | 2007-02-20 | Boston Scientific Scimed, Inc. | Therapeutic delivery balloon |
JP2002240847A (ja) | 2001-02-14 | 2002-08-28 | Shiseido Co Ltd | ロールオン容器 |
DE10114247A1 (de) * | 2001-03-22 | 2002-10-10 | Heraeus Kulzer Gmbh & Co Kg | Antibiotikum-/Antibiotika-Polymer-Kombination |
DE10115740A1 (de) | 2001-03-26 | 2002-10-02 | Ulrich Speck | Zubereitung für die Restenoseprophylaxe |
AU2002255235A1 (en) | 2001-03-30 | 2002-10-15 | Nanopass Ltd. | Inflatable medical device with combination cutting elements and drug delivery conduits |
US6645135B1 (en) | 2001-03-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance |
US6796960B2 (en) | 2001-05-04 | 2004-09-28 | Wit Ip Corporation | Low thermal resistance elastic sleeves for medical device balloons |
US7018371B2 (en) | 2001-05-07 | 2006-03-28 | Xoft, Inc. | Combination ionizing radiation and radiosensitizer delivery devices and methods for inhibiting hyperplasia |
US7247338B2 (en) | 2001-05-16 | 2007-07-24 | Regents Of The University Of Minnesota | Coating medical devices |
US7862495B2 (en) | 2001-05-31 | 2011-01-04 | Advanced Cardiovascular Systems, Inc. | Radiation or drug delivery source with activity gradient to minimize edge effects |
US6706013B1 (en) | 2001-06-29 | 2004-03-16 | Advanced Cardiovascular Systems, Inc. | Variable length drug delivery catheter |
US6786900B2 (en) | 2001-08-13 | 2004-09-07 | Cryovascular Systems, Inc. | Cryotherapy methods for treating vessel dissections and side branch occlusion |
US20040137066A1 (en) | 2001-11-26 | 2004-07-15 | Swaminathan Jayaraman | Rationally designed therapeutic intravascular implant coating |
KR20030023369A (ko) | 2001-09-13 | 2003-03-19 | 한국과학기술연구원 | 화학색전용 파클리탁셀 유성 조성물, 그의 제형 및 제조방법 |
US7195640B2 (en) * | 2001-09-25 | 2007-03-27 | Cordis Corporation | Coated medical devices for the treatment of vulnerable plaque |
US20030064965A1 (en) | 2001-10-02 | 2003-04-03 | Jacob Richter | Method of delivering drugs to a tissue using drug-coated medical devices |
DE10294792D2 (de) | 2001-10-15 | 2004-09-16 | Hemoteq Gmbh | Beschichtung von Stents zur Verhinderung von Restenose |
US20030077310A1 (en) | 2001-10-22 | 2003-04-24 | Chandrashekhar Pathak | Stent coatings containing HMG-CoA reductase inhibitors |
US7682387B2 (en) | 2002-04-24 | 2010-03-23 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
DE60235775D1 (de) | 2001-11-08 | 2010-05-06 | Ziscoat N V | Intraluminale Vorrichtung mit einer therapeutisches-mittel enthaltenden Beschichtung |
MXPA04005038A (es) | 2001-11-30 | 2004-08-11 | Bristol Myers Squibb Co | Solvatos de paclitaxel. |
US6663880B1 (en) | 2001-11-30 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Permeabilizing reagents to increase drug delivery and a method of local delivery |
US6972024B1 (en) | 2001-12-21 | 2005-12-06 | Advanced Cardiovascular Systems, Inc. | Method of treating vulnerable plaque |
US7160317B2 (en) | 2002-01-04 | 2007-01-09 | Boston Scientific Scimed, Inc. | Multiple-wing balloon catheter to reduce damage to coated expandable medical implants |
AU2003205315A1 (en) | 2002-01-22 | 2003-09-02 | Endobionics, Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US6790224B2 (en) | 2002-02-04 | 2004-09-14 | Scimed Life Systems, Inc. | Medical devices |
US7186237B2 (en) | 2002-02-14 | 2007-03-06 | Avantec Vascular Corporation | Ballon catheter for creating a longitudinal channel in a lesion and method |
US6780324B2 (en) | 2002-03-18 | 2004-08-24 | Labopharm, Inc. | Preparation of sterile stabilized nanodispersions |
DE60327067D1 (de) | 2002-04-25 | 2009-05-20 | Univ R | Expandierbare führungshülse |
US7008979B2 (en) | 2002-04-30 | 2006-03-07 | Hydromer, Inc. | Coating composition for multiple hydrophilic applications |
US7048962B2 (en) | 2002-05-02 | 2006-05-23 | Labcoat, Ltd. | Stent coating device |
US6645547B1 (en) | 2002-05-02 | 2003-11-11 | Labcoat Ltd. | Stent coating device |
US7709048B2 (en) | 2002-05-02 | 2010-05-04 | Labcoat, Ltd. | Method and apparatus for coating a medical device |
US6960346B2 (en) | 2002-05-09 | 2005-11-01 | University Of Tennessee Research Foundation | Vehicles for delivery of biologically active substances |
AU2003243885B8 (en) | 2002-05-09 | 2009-08-06 | Hemoteq Ag | Medical products comprising a haemocompatible coating, production and use thereof |
US7105175B2 (en) | 2002-06-19 | 2006-09-12 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent |
US8211455B2 (en) | 2002-06-19 | 2012-07-03 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent |
US20030236513A1 (en) | 2002-06-19 | 2003-12-25 | Scimed Life Systems, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent |
AU2003279253A1 (en) | 2002-06-21 | 2004-01-06 | Genzyme Corporation | Silicone blends and composites for drug delivery |
US7335184B2 (en) * | 2002-07-02 | 2008-02-26 | Sentient Engineering And Technology | Balloon catheter and treatment apparatus |
WO2004006976A1 (en) | 2002-07-12 | 2004-01-22 | Cook Incorporated | Coated medical device |
US20040034336A1 (en) * | 2002-08-08 | 2004-02-19 | Neal Scott | Charged liposomes/micelles with encapsulted medical compounds |
AU2003262674A1 (en) | 2002-08-13 | 2004-02-25 | Medtronic, Inc. | Active agent delivery system including a poly(ethylene-co-(meth)acrylate), medical device, and method |
CA2494187A1 (en) * | 2002-08-13 | 2004-02-19 | Medtronic, Inc. | Active agent delivery system including a polyurethane, medical device, and method |
WO2004014451A1 (en) | 2002-08-13 | 2004-02-19 | Medtronic, Inc. | Active agent delivery systems, medical devices, and methods |
DE60333566D1 (de) | 2002-08-13 | 2010-09-09 | Medtronic Inc | Medizinische vorrichtung mit verbesserter haftung zwischen einem polymeren berzug und einem substrat |
WO2004014448A1 (en) | 2002-08-13 | 2004-02-19 | Medtronic, Inc. | Active agent delivery system including a hydrophilic polymer, medical device, and method |
DE60316579T2 (de) | 2002-08-13 | 2008-07-03 | Medtronic, Inc., Minneapolis | System zur abgabe von wirkstoffen mit einem hydrophoben cellulose-derivat |
US6991617B2 (en) | 2002-08-21 | 2006-01-31 | Hektner Thomas R | Vascular treatment method and device |
US20040044404A1 (en) | 2002-08-30 | 2004-03-04 | Stucke Sean M. | Retention coatings for delivery systems |
WO2004022124A1 (en) | 2002-09-06 | 2004-03-18 | Abbott Laboratories | Medical device having hydration inhibitor |
JP2006501887A (ja) | 2002-09-13 | 2006-01-19 | ザ ユニバーシティ オブ ブリティッシュ コロンビア | リン酸カルシウムで被覆された埋込型医用デバイスおよびその製作方法 |
US7060051B2 (en) | 2002-09-24 | 2006-06-13 | Scimed Life Systems, Inc. | Multi-balloon catheter with hydrogel coating |
US6971813B2 (en) | 2002-09-27 | 2005-12-06 | Labcoat, Ltd. | Contact coating of prostheses |
US7037319B2 (en) | 2002-10-15 | 2006-05-02 | Scimed Life Systems, Inc. | Nanotube paper-based medical device |
WO2004037310A2 (en) | 2002-10-21 | 2004-05-06 | Allvivo, Inc. | Surface coating comprising bioactive compound |
US7048714B2 (en) | 2002-10-30 | 2006-05-23 | Biorest Ltd. | Drug eluting medical device with an expandable portion for drug release |
US20060121080A1 (en) | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
DE10253634A1 (de) | 2002-11-13 | 2004-05-27 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Endoprothese |
US7491234B2 (en) | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents |
US20040111144A1 (en) | 2002-12-06 | 2004-06-10 | Lawin Laurie R. | Barriers for polymeric coatings |
US20040117222A1 (en) | 2002-12-14 | 2004-06-17 | International Business Machines Corporation | System and method for evaluating information aggregates by generation of knowledge capital |
US20060002968A1 (en) * | 2004-06-30 | 2006-01-05 | Gordon Stewart | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders |
ATE457716T1 (de) | 2002-12-30 | 2010-03-15 | Angiotech Int Ag | Wirkstofffreisetzung von schnell gelierender polymerzusammensetzung |
US20040219214A1 (en) | 2002-12-30 | 2004-11-04 | Angiotech International Ag | Tissue reactive compounds and compositions and uses thereof |
AU2003300202A1 (en) | 2003-01-02 | 2004-07-29 | Novoste Corporation | Drug delivery balloon catheter |
US7494497B2 (en) * | 2003-01-02 | 2009-02-24 | Boston Scientific Scimed, Inc. | Medical devices |
US7686824B2 (en) | 2003-01-21 | 2010-03-30 | Angioscore, Inc. | Apparatus and methods for treating hardened vascular lesions |
EP1610752B1 (en) | 2003-01-31 | 2013-01-02 | Boston Scientific Limited | Localized drug delivery using drug-loaded nanocapsules and implantable device coated with the same |
US20040224003A1 (en) | 2003-02-07 | 2004-11-11 | Schultz Robert K. | Drug formulations for coating medical devices |
US8313759B2 (en) | 2003-03-06 | 2012-11-20 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing miscible polymer blends for controlled delivery of a therapeutic agent |
US8281737B2 (en) | 2003-03-10 | 2012-10-09 | Boston Scientific Scimed, Inc. | Coated medical device and method for manufacturing the same |
US7232486B2 (en) | 2003-03-31 | 2007-06-19 | TEVA Gyógyszergyár Zártkörűen Működő Részvénytársaság | Crystallization and purification of macrolides |
US7241455B2 (en) | 2003-04-08 | 2007-07-10 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing radiation-crosslinked polymer for controlled delivery of a therapeutic agent |
DE10318803B4 (de) | 2003-04-17 | 2005-07-28 | Translumina Gmbh | Vorrichtung zum Aufbringen von Wirkstoffen auf Oberflächen von medizinischen Implantaten, insbesondere Stents |
US20040230176A1 (en) | 2003-04-23 | 2004-11-18 | Medtronic Vascular, Inc. | System for treating a vascular condition that inhibits restenosis at stent ends |
US7279002B2 (en) | 2003-04-25 | 2007-10-09 | Boston Scientific Scimed, Inc. | Cutting stent and balloon |
US7288084B2 (en) | 2003-04-28 | 2007-10-30 | Boston Scientific Scimed, Inc. | Drug-loaded medical device |
US7473242B2 (en) * | 2003-04-30 | 2009-01-06 | Medtronic Vascular, Inc. | Method and systems for treating vulnerable plaque |
US6923996B2 (en) | 2003-05-06 | 2005-08-02 | Scimed Life Systems, Inc. | Processes for producing polymer coatings for release of therapeutic agent |
US7632288B2 (en) | 2003-05-12 | 2009-12-15 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved pushability |
US7060062B2 (en) | 2003-06-04 | 2006-06-13 | Cryo Vascular Systems, Inc. | Controllable pressure cryogenic balloon treatment system and method |
JP2005022590A (ja) * | 2003-07-01 | 2005-01-27 | Nissan Motor Co Ltd | 車両用表示装置 |
US8025637B2 (en) * | 2003-07-18 | 2011-09-27 | Boston Scientific Scimed, Inc. | Medical balloons and processes for preparing same |
US20050025848A1 (en) * | 2003-07-30 | 2005-02-03 | Ruey-Fa Huang | Air filter shaping mold |
US8870814B2 (en) * | 2003-07-31 | 2014-10-28 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing silicone copolymer for controlled delivery of therapeutic agent |
US9114199B2 (en) * | 2003-07-31 | 2015-08-25 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing acrylic copolymer for controlled delivery of therapeutic agent |
US7357940B2 (en) * | 2003-07-31 | 2008-04-15 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing graft copolymer for controlled delivery of therapeutic agents |
US7914805B2 (en) * | 2003-07-31 | 2011-03-29 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing radiation-treated polymer for improved delivery of therapeutic agent |
WO2005011561A2 (en) | 2003-08-04 | 2005-02-10 | Labcoat, Ltd. | Stent coating apparatus and method |
US20050037048A1 (en) * | 2003-08-11 | 2005-02-17 | Young-Ho Song | Medical devices containing antioxidant and therapeutic agent |
US7364585B2 (en) * | 2003-08-11 | 2008-04-29 | Boston Scientific Scimed, Inc. | Medical devices comprising drug-loaded capsules for localized drug delivery |
CA2535345A1 (en) | 2003-08-13 | 2005-03-03 | Medtronic, Inc. | Active agent delivery systems including a miscible polymer blend, medical devices, and methods |
CA2535346A1 (en) | 2003-08-13 | 2005-03-03 | Medtronic, Inc. | Active agent delivery systems, including a single layer of a miscible polymer blend, medical devices, and methods |
US8740844B2 (en) * | 2003-08-20 | 2014-06-03 | Boston Scientific Scimed, Inc. | Medical device with drug delivery member |
US20050048194A1 (en) | 2003-09-02 | 2005-03-03 | Labcoat Ltd. | Prosthesis coating decision support system |
US20050055077A1 (en) | 2003-09-05 | 2005-03-10 | Doron Marco | Very low profile medical device system having an adjustable balloon |
US8021331B2 (en) | 2003-09-15 | 2011-09-20 | Atrium Medical Corporation | Method of coating a folded medical device |
WO2005027994A2 (en) | 2003-09-15 | 2005-03-31 | Atrium Medical Corporation | Application of a therapeutic substance to a tissue location using a porous medical device |
EP1663343B8 (en) | 2003-09-15 | 2019-12-04 | Atrium Medical Corporation | Application of a therapeutic substance to a tissue location using an expandable medical device |
DE102004020856A1 (de) | 2003-09-29 | 2005-04-14 | Hemoteq Gmbh | Biokompatible, biostabile Beschichtung von medizinischen Oberflächen |
CA2540382C (en) | 2003-09-29 | 2012-03-06 | Hemoteq Gmbh | Biocompatible, biostable coating of medical surfaces |
WO2005032642A2 (en) | 2003-10-03 | 2005-04-14 | Acumen Medical, Inc. | Expandable guide sheath and apparatus and methods for making them |
EP1691856A2 (en) | 2003-10-14 | 2006-08-23 | Cube Medical A/S | Medical device with electrospun nanofibers |
US20050129731A1 (en) | 2003-11-03 | 2005-06-16 | Roland Horres | Biocompatible, biostable coating of medical surfaces |
EP1535952B1 (en) | 2003-11-28 | 2013-01-16 | Universite Louis Pasteur | Method for preparing crosslinked polyelectrolyte multilayer films |
US20060286141A1 (en) | 2003-12-15 | 2006-12-21 | Campbell Todd D | Systems for gel-based medical implants |
US7771447B2 (en) | 2003-12-19 | 2010-08-10 | Boston Scientific Scimed, Inc. | Balloon refolding device |
US7563324B1 (en) | 2003-12-29 | 2009-07-21 | Advanced Cardiovascular Systems Inc. | System and method for coating an implantable medical device |
US7407684B2 (en) | 2004-01-28 | 2008-08-05 | Boston Scientific Scimed, Inc. | Multi-step method of manufacturing a medical device |
US20050181015A1 (en) | 2004-02-12 | 2005-08-18 | Sheng-Ping (Samuel) Zhong | Layered silicate nanoparticles for controlled delivery of therapeutic agents from medical articles |
AU2005216592B8 (en) | 2004-02-28 | 2009-06-04 | Hemoteq Ag | Biocompatible coating, method, and use of medical surfaces |
US8568794B2 (en) | 2004-03-12 | 2013-10-29 | Life Science Investments, Ltd. | Topical and intravaginal microbicidal and antiparasitic compositions comprising quassinoids or quassinoid-containing plant extracts |
ATE534424T1 (de) | 2004-03-19 | 2011-12-15 | Abbott Lab | Mehrfache arzneiabgabe aus einem ballon und eine prothese |
US20100030183A1 (en) * | 2004-03-19 | 2010-02-04 | Toner John L | Method of treating vascular disease at a bifurcated vessel using a coated balloon |
US20070027523A1 (en) | 2004-03-19 | 2007-02-01 | Toner John L | Method of treating vascular disease at a bifurcated vessel using coated balloon |
US8431145B2 (en) * | 2004-03-19 | 2013-04-30 | Abbott Laboratories | Multiple drug delivery from a balloon and a prosthesis |
US7744644B2 (en) | 2004-03-19 | 2010-06-29 | Boston Scientific Scimed, Inc. | Medical articles having regions with polyelectrolyte multilayer coatings for regulating drug release |
US20050209548A1 (en) | 2004-03-19 | 2005-09-22 | Dev Sukhendu B | Electroporation-mediated intravascular delivery |
US9555223B2 (en) | 2004-03-23 | 2017-01-31 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US8003122B2 (en) | 2004-03-31 | 2011-08-23 | Cordis Corporation | Device for local and/or regional delivery employing liquid formulations of therapeutic agents |
US20050220853A1 (en) | 2004-04-02 | 2005-10-06 | Kinh-Luan Dao | Controlled delivery of therapeutic agents from medical articles |
CA2563150A1 (en) | 2004-04-06 | 2005-10-20 | Surmodics, Inc. | Coating compositions for bioactive agents |
US20050226991A1 (en) | 2004-04-07 | 2005-10-13 | Hossainy Syed F | Methods for modifying balloon of a catheter assembly |
US7371424B2 (en) | 2004-04-14 | 2008-05-13 | Boston Scientific Scimed, Inc. | Method and apparatus for coating a medical device using a coating head |
WO2005118020A1 (en) | 2004-04-21 | 2005-12-15 | Allvivo, Inc. | Surface coating comprising bioactive compound |
WO2005105171A1 (en) | 2004-04-29 | 2005-11-10 | Cube Medical A/S | A balloon for use in angioplasty with an outer layer of nanofibers |
US7070576B2 (en) | 2004-04-30 | 2006-07-04 | Boston Scientific Scimed, Inc. | Directional cutting balloon |
US20060240065A1 (en) * | 2005-04-26 | 2006-10-26 | Yung-Ming Chen | Compositions for medical devices containing agent combinations in controlled volumes |
US7753876B2 (en) | 2004-05-10 | 2010-07-13 | Medtronic Vascular, Inc. | Expandable jaw drug delivery catheter |
US7758892B1 (en) | 2004-05-20 | 2010-07-20 | Boston Scientific Scimed, Inc. | Medical devices having multiple layers |
US20050273075A1 (en) | 2004-06-08 | 2005-12-08 | Peter Krulevitch | Method for delivering drugs to the adventitia using device having microprojections |
US20050273049A1 (en) | 2004-06-08 | 2005-12-08 | Peter Krulevitch | Drug delivery device using microprojections |
US7976557B2 (en) | 2004-06-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Cutting balloon and process |
CA2574013A1 (en) | 2004-07-14 | 2006-01-19 | By-Pass, Inc. | Material delivery system |
US20060013853A1 (en) * | 2004-07-19 | 2006-01-19 | Richard Robert E | Medical devices having conductive substrate and covalently bonded coating layer |
US7771740B2 (en) * | 2004-07-19 | 2010-08-10 | Boston Scientific Scimed, Inc. | Medical devices containing copolymers with graft copolymer endblocks for drug delivery |
US20060025848A1 (en) * | 2004-07-29 | 2006-02-02 | Jan Weber | Medical device having a coating layer with structural elements therein and method of making the same |
US7758541B2 (en) * | 2004-08-17 | 2010-07-20 | Boston Scientific Scimed, Inc. | Targeted drug delivery device and method |
WO2006024488A2 (en) | 2004-08-30 | 2006-03-09 | Interstitial Therapeutics | Medical stent provided with inhibitors of atp synthesis |
US20060051390A1 (en) | 2004-09-03 | 2006-03-09 | Schwarz Marlene C | Medical devices having self-forming rate-controlling barrier for drug release |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8361490B2 (en) | 2004-09-16 | 2013-01-29 | Theracoat Ltd. | Biocompatible drug delivery apparatus and methods |
US7470252B2 (en) | 2004-09-16 | 2008-12-30 | Boston Scientific Scimed, Inc. | Expandable multi-port therapeutic delivery system |
EP1804717A4 (en) | 2004-09-28 | 2015-11-18 | Atrium Medical Corp | DRUG DELIVERY COATING FOR USE WITH ONE STENT |
US8312836B2 (en) * | 2004-09-28 | 2012-11-20 | Atrium Medical Corporation | Method and apparatus for application of a fresh coating on a medical device |
WO2006036970A2 (en) | 2004-09-28 | 2006-04-06 | Atrium Medical Corporation | Method of thickening a coating using a drug |
US20060069385A1 (en) | 2004-09-28 | 2006-03-30 | Scimed Life Systems, Inc. | Methods and apparatus for tissue cryotherapy |
EP1809247A1 (en) | 2004-09-29 | 2007-07-25 | Cordis Corporation | Pharmaceutical dosage forms of stable amorphous rapamycin like compounds |
US7491188B2 (en) * | 2004-10-12 | 2009-02-17 | Boston Scientific Scimed, Inc. | Reinforced and drug-eluting balloon catheters and methods for making same |
US7402172B2 (en) | 2004-10-13 | 2008-07-22 | Boston Scientific Scimed, Inc. | Intraluminal therapeutic patch |
US20060085058A1 (en) | 2004-10-20 | 2006-04-20 | Rosenthal Arthur L | System and method for delivering a biologically active material to a body lumen |
US20060088566A1 (en) | 2004-10-27 | 2006-04-27 | Scimed Life Systems, Inc.,A Corporation | Method of controlling drug release from a coated medical device through the use of nucleating agents |
US7588642B1 (en) | 2004-11-29 | 2009-09-15 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method using a brush assembly |
EP1817315A1 (en) | 2004-12-01 | 2007-08-15 | Teva Gyógyszergyár Zártköruen Muködo Részvenytarsaság | Processes for producing crystalline macrolides |
US7658744B2 (en) | 2004-12-03 | 2010-02-09 | Boston Scientific Scimed, Inc. | Multiple balloon catheter |
CA2589761A1 (en) | 2004-12-07 | 2006-06-15 | Surmodics, Inc. | Coatings with crystallized active agent(s) and methods |
US7604631B2 (en) | 2004-12-15 | 2009-10-20 | Boston Scientific Scimed, Inc. | Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices |
US7698270B2 (en) | 2004-12-29 | 2010-04-13 | Baynote, Inc. | Method and apparatus for identifying, extracting, capturing, and leveraging expertise and knowledge |
CA2585639C (en) | 2004-12-30 | 2012-12-04 | Cook Incorporated | Catheter assembly with plaque cutting balloon |
US20060147491A1 (en) | 2005-01-05 | 2006-07-06 | Dewitt David M | Biodegradable coating compositions including multiple layers |
US7988987B2 (en) | 2005-01-25 | 2011-08-02 | Boston Scientific Scimed, Inc. | Medical devices containing crazed polymeric release regions for drug delivery |
US8202245B2 (en) | 2005-01-26 | 2012-06-19 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US7749553B2 (en) | 2005-01-31 | 2010-07-06 | Boston Scientific Scimed, Inc. | Method and system for coating a medical device using optical drop volume verification |
US8535702B2 (en) | 2005-02-01 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility |
US8221824B2 (en) | 2005-02-03 | 2012-07-17 | Boston Scientific Scimed, Inc. | Deforming surface of drug eluting coating to alter drug release profile of a medical device |
US20060184191A1 (en) | 2005-02-11 | 2006-08-17 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
JP2008535534A (ja) | 2005-02-17 | 2008-09-04 | ナイキャスト リミテッド | 膨張可能な医療装置 |
US8048028B2 (en) | 2005-02-17 | 2011-11-01 | Boston Scientific Scimed, Inc. | Reinforced medical balloon |
US20060193891A1 (en) | 2005-02-25 | 2006-08-31 | Robert Richard | Medical devices and therapeutic delivery devices composed of bioabsorbable polymers produced at room temperature, method of making the devices, and a system for making the devices |
US20060200048A1 (en) | 2005-03-03 | 2006-09-07 | Icon Medical Corp. | Removable sheath for device protection |
US7527604B2 (en) | 2005-03-09 | 2009-05-05 | Boston Scientific Scimed, Inc. | Rotatable multi-port therapeutic delivery device |
US20060212106A1 (en) | 2005-03-21 | 2006-09-21 | Jan Weber | Coatings for use on medical devices |
JP5271697B2 (ja) | 2005-03-23 | 2013-08-21 | アボット ラボラトリーズ | 医療装置を介する高親油性薬剤の送達 |
US7998195B2 (en) | 2005-03-25 | 2011-08-16 | Boston Scientific Scimed, Inc. | Device with engineered surface architecture coating for controlled drug release |
US20060224115A1 (en) | 2005-03-30 | 2006-10-05 | Boston Scientific Scimed, Inc. | Balloon catheter with expandable wire lumen |
WO2006108420A1 (en) | 2005-04-12 | 2006-10-19 | Millimed A/S | Inflatable medical device comprising a permeable membrane |
KR20080008364A (ko) | 2005-05-05 | 2008-01-23 | 헤모텍 아게 | 관 스텐트의 전면 코팅 |
US8460357B2 (en) | 2005-05-31 | 2013-06-11 | J.W. Medical Systems Ltd. | In situ stent formation |
CN1317920C (zh) * | 2005-06-15 | 2007-05-23 | 华为技术有限公司 | 一种睡眠模式下业务指示消息发送方法 |
US20060286071A1 (en) | 2005-06-21 | 2006-12-21 | Epstein Samuel J | Therapeutic pastes for medical device coating |
EP1909973B1 (en) | 2005-07-15 | 2018-08-22 | Micell Technologies, Inc. | Polymer coatings containing drug powder of controlled morphology |
US8722074B2 (en) * | 2005-07-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Medical devices containing radiation resistant polymers |
US20070078413A1 (en) | 2005-08-25 | 2007-04-05 | Stenzel Eric B | Medical device having a lubricant |
US7599727B2 (en) | 2005-09-15 | 2009-10-06 | Labcoat, Ltd. | Lighting and imaging system including a flat light source with LED illumination |
US20070067882A1 (en) | 2005-09-21 | 2007-03-22 | Liliana Atanasoska | Internal medical devices having polyelectrolyte-containing extruded regions |
US7342670B2 (en) | 2005-10-19 | 2008-03-11 | Labcoat, Ltd. | In-flight drop location verification system |
US9440003B2 (en) | 2005-11-04 | 2016-09-13 | Boston Scientific Scimed, Inc. | Medical devices having particle-containing regions with diamond-like coatings |
US8051797B1 (en) | 2005-11-07 | 2011-11-08 | Boston Scientific Scimed, Inc. | Device to stabilize and align a pre-mounted stent |
US8137735B2 (en) | 2005-11-10 | 2012-03-20 | Allegiance Corporation | Elastomeric article with antimicrobial coating |
JP5153340B2 (ja) | 2005-11-16 | 2013-02-27 | 学校法人東海大学 | 薬剤放出制御組成物および薬剤放出性医療器具 |
CA2632572C (en) | 2005-12-07 | 2014-07-22 | Rochal Industries, Llp | Conformable bandage and coating material |
US7580930B2 (en) | 2005-12-27 | 2009-08-25 | Baynote, Inc. | Method and apparatus for predicting destinations in a navigation context based upon observed usage patterns |
KR100673023B1 (ko) | 2005-12-28 | 2007-01-24 | 삼성전자주식회사 | 파이프라인-버퍼 방식으로 프로그램되는 반도체 메모리장치 |
US7842312B2 (en) | 2005-12-29 | 2010-11-30 | Cordis Corporation | Polymeric compositions comprising therapeutic agents in crystalline phases, and methods of forming the same |
US7919108B2 (en) | 2006-03-10 | 2011-04-05 | Cook Incorporated | Taxane coatings for implantable medical devices |
JPWO2007083797A1 (ja) | 2006-01-23 | 2009-06-18 | テルモ株式会社 | ステント |
US8440214B2 (en) | 2006-01-31 | 2013-05-14 | Boston Scientific Scimed, Inc. | Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments |
US8431060B2 (en) | 2006-01-31 | 2013-04-30 | Abbott Cardiovascular Systems Inc. | Method of fabricating an implantable medical device using gel extrusion and charge induced orientation |
JP5508720B2 (ja) | 2006-02-07 | 2014-06-04 | テファ, インコーポレイテッド | 重合体分解性薬物溶出ステントおよび被膜 |
PL3150236T3 (pl) | 2006-02-09 | 2019-06-28 | B. Braun Melsungen Ag | Sposób powlekania zwijanego balonu |
EP1982341B1 (de) | 2006-02-10 | 2017-11-15 | Marquardt GmbH | Elektrischer schalter |
US7718213B1 (en) | 2006-02-24 | 2010-05-18 | Ingo Werner Scheer | Holding device and method for coating a substrate |
US20070244548A1 (en) | 2006-02-27 | 2007-10-18 | Cook Incorporated | Sugar-and drug-coated medical device |
US20070212386A1 (en) | 2006-03-08 | 2007-09-13 | Sahajanand Medical Technologies Pvt. Ltd. | Coatings for implantable medical devices |
US7875284B2 (en) | 2006-03-10 | 2011-01-25 | Cook Incorporated | Methods of manufacturing and modifying taxane coatings for implantable medical devices |
JP2009530493A (ja) | 2006-03-17 | 2009-08-27 | トライアンフ,オペレーティング アズ ア ジョイント ヴェンチャー バイ ザ ガバナーズ オブ ザ ユニバーシティ オブ アルバータ,ザ ユニバーシティ オブ ブリティッシュ コロンビア,カールトン | ダイヤモンド状炭素層を有する自己支持多層フィルム |
US20070224234A1 (en) | 2006-03-22 | 2007-09-27 | Mark Steckel | Medical devices having biodegradable polymeric regions |
US20070225800A1 (en) | 2006-03-24 | 2007-09-27 | Sahatjian Ronald A | Methods and devices having electrically actuatable surfaces |
US8518105B2 (en) * | 2006-03-24 | 2013-08-27 | Abbott Cardiovascular System Inc. | Methods and apparatuses for coating a lesion |
EP2043704B2 (en) | 2006-06-30 | 2017-04-19 | Cook Medical Technologies LLC | Methods of manufacturing and modifying taxane coatings for implantable medical devices |
NZ574597A (en) | 2006-07-03 | 2011-11-25 | Hemoteq Ag | Stent coated with a biodegradable polymer and rapamycin |
CA2658896A1 (en) | 2006-07-25 | 2008-01-31 | Abbott Laboratories | Crystalline forms of rapamycin analogs |
US7820812B2 (en) | 2006-07-25 | 2010-10-26 | Abbott Laboratories | Methods of manufacturing crystalline forms of rapamycin analogs |
US20080027421A1 (en) * | 2006-07-27 | 2008-01-31 | Vancelette David W | CryoBalloon Treatment for Postpartum Hemorrhage |
US9248121B2 (en) | 2006-08-21 | 2016-02-02 | Abbott Laboratories | Medical devices for controlled drug release |
US20080050415A1 (en) * | 2006-08-25 | 2008-02-28 | Boston Scientic Scimed, Inc. | Polymeric/ceramic composite materials for use in medical devices |
US7897170B2 (en) * | 2006-08-25 | 2011-03-01 | Boston Scientific Scimed, Inc. | Medical devices having improved mechanical performance |
US20100004593A1 (en) | 2006-09-13 | 2010-01-07 | Boston Scientific Scimed, Inc. | Balloon catheter |
US20080071358A1 (en) | 2006-09-18 | 2008-03-20 | Boston Scientific Scimed, Inc. | Endoprostheses |
EP2068962B1 (en) | 2006-09-18 | 2013-01-30 | Boston Scientific Limited | Endoprostheses |
US7666179B2 (en) | 2006-10-10 | 2010-02-23 | Boston Scientific Scimed, Inc. | Medical devices having porous regions for controlled therapeutic agent exposure or delivery |
US20080095847A1 (en) | 2006-10-18 | 2008-04-24 | Thierry Glauser | Stimulus-release carrier, methods of manufacture and methods of treatment |
JP4191219B2 (ja) | 2006-10-30 | 2008-12-03 | エルピーダメモリ株式会社 | メモリ回路、半導体装置及びメモリ回路の制御方法 |
US8153181B2 (en) | 2006-11-14 | 2012-04-10 | Boston Scientific Scimed, Inc. | Medical devices and related methods |
US8430055B2 (en) | 2008-08-29 | 2013-04-30 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters |
US8414526B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids |
US20080276935A1 (en) | 2006-11-20 | 2008-11-13 | Lixiao Wang | Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs |
US8414909B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8414525B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8425459B2 (en) | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent |
US8414910B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US20080140002A1 (en) | 2006-12-06 | 2008-06-12 | Kamal Ramzipoor | System for delivery of biologically active substances with actuating three dimensional surface |
US7641844B2 (en) | 2006-12-11 | 2010-01-05 | Cook Incorporated | Method of making a fiber-reinforced medical balloon |
WO2008070996A1 (en) | 2006-12-13 | 2008-06-19 | Angiotech Pharmaceuticals Inc. | Medical implants with a combination of compounds |
US20080171129A1 (en) | 2007-01-16 | 2008-07-17 | Cappella, Inc. | Drug eluting medical device using polymeric therapeutics with patterned coating |
NZ578341A (en) | 2007-01-21 | 2011-06-30 | Hemoteq Ag | Method for producing a coated catheter balloon |
DE102007003184A1 (de) | 2007-01-22 | 2008-07-24 | Orlowski, Michael, Dr. | Verfahren zur Beladung von strukturierten Oberflächen |
WO2008097511A2 (en) | 2007-02-07 | 2008-08-14 | Cook Incorporated | Medical device coatings for releasing a therapeutic agent at multiple rates |
DE102007008479A1 (de) | 2007-02-21 | 2008-09-04 | Orlowski, Michael, Dr. | Beschichtetes Expandierbares System |
US7887830B2 (en) | 2007-02-27 | 2011-02-15 | Boston Scientific Scimed, Inc. | Medical devices having polymeric regions based on styrene-isobutylene copolymers |
US7914807B2 (en) | 2007-03-05 | 2011-03-29 | Boston Scientific Scimed, Inc. | Medical devices having improved performance |
WO2008109114A1 (en) | 2007-03-06 | 2008-09-12 | Cook Incorporated | Therapeutic agent delivery system |
US7896840B2 (en) | 2007-04-05 | 2011-03-01 | Boston Scientific Scimed, Inc. | Catheter having internal mechanisms to encourage balloon re-folding |
GR20070100224A (el) | 2007-04-13 | 2008-11-14 | Κωνστατινος Σπαργιας | Μπαλονι βαλβιδοπλαστικης για την στενωση αορτικησβαλβιδας που φερει επιστρωση εκλυομενης φαρμακευτικης ουσιας η οποια επιδρα προληπτικα κατα της επαναστενωσης. |
US20080268018A1 (en) | 2007-04-30 | 2008-10-30 | Pacetti Stephen D | Method for forming crystallized therapeutic agents on a medical device |
US20080287984A1 (en) | 2007-05-18 | 2008-11-20 | Jan Weber | Medical balloons and methods of making the same |
EP2124855A4 (en) | 2007-06-22 | 2010-06-09 | Icon Medical Corp | HEATABLE DELIVERY DEVICE |
US9370642B2 (en) | 2007-06-29 | 2016-06-21 | J.W. Medical Systems Ltd. | Adjustable-length drug delivery balloon |
US9192697B2 (en) | 2007-07-03 | 2015-11-24 | Hemoteq Ag | Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis |
US8617114B2 (en) | 2007-07-13 | 2013-12-31 | Abbott Cardiovascular Systems Inc. | Drug coated balloon catheter |
US8690823B2 (en) * | 2007-07-13 | 2014-04-08 | Abbott Cardiovascular Systems Inc. | Drug coated balloon catheter |
US8070798B2 (en) * | 2007-07-20 | 2011-12-06 | Josiah Wilcox | Drug eluting medical device and method |
US20090157172A1 (en) | 2007-07-24 | 2009-06-18 | Boston Scientific Scrimed, Inc. | Stents with polymer-free coatings for delivering a therapeutic agent |
DE102007036685A1 (de) | 2007-08-03 | 2009-02-05 | Innora Gmbh | Verbesserte arzneimittelbeschichtete Medizinprodukte deren Herstellung und Verwendung |
DE102007040868A1 (de) | 2007-08-29 | 2009-04-16 | Innora Gmbh | Ballonkatheter mit Schutz vor Auffaltung |
EP2200674A2 (en) | 2007-09-10 | 2010-06-30 | Boston Scientific Scimed, Inc. | Medical devices with triggerable bioadhesive material |
US8211055B2 (en) | 2007-09-12 | 2012-07-03 | Cook Medical Technologies Llc | Drug eluting balloon |
EP2195068B1 (en) | 2007-09-12 | 2017-07-26 | Cook Medical Technologies LLC | Balloon catheter for delivering a therapeutic agent |
US8100855B2 (en) | 2007-09-17 | 2012-01-24 | Abbott Cardiovascular Systems, Inc. | Methods and devices for eluting agents to a vessel |
US20090105687A1 (en) | 2007-10-05 | 2009-04-23 | Angioscore, Inc. | Scoring catheter with drug delivery membrane |
US7863387B2 (en) | 2007-10-25 | 2011-01-04 | Boston Scientific Scimed, Inc. | Dehydrofluorination and surface modification of fluoropolymers for drug delivery applications |
US20090112239A1 (en) | 2007-10-31 | 2009-04-30 | Specialized Vascular Technologies, Inc. | Sticky dilatation balloon and methods of using |
MX2010005550A (es) | 2007-11-21 | 2010-09-09 | Invatec Spa | Globo para el tratamiento de estenosis y metodo para fabricar el globo. |
US20110004148A1 (en) | 2008-02-08 | 2011-01-06 | Terumo Kabushiki Kaisha | Device for local intraluminal transport of a biologically and physiologically active agent |
DE102008008925A1 (de) | 2008-02-13 | 2009-08-20 | Biotronik Vi Patent Ag | Katheter, System zum Einbringen einer intraluminalen Endoprothese sowie Verfahren zur Herstellung derselben |
EP2262566A1 (en) | 2008-03-06 | 2010-12-22 | Boston Scientific Scimed, Inc. | Balloon catheter devices with folded balloons |
US20090227980A1 (en) | 2008-03-06 | 2009-09-10 | Boston Scientific Scimed, Inc. | Triggered drug release |
WO2009113605A1 (ja) | 2008-03-12 | 2009-09-17 | アンジェスMg株式会社 | 薬剤溶出型カテーテル及びその製造方法 |
JP5667559B2 (ja) | 2008-03-28 | 2015-02-12 | サーモディクス,インコーポレイティド | 微粒子が配置された弾性基質を有する挿入可能な医療機器、および薬物送達方法 |
EP2106820A1 (en) | 2008-03-31 | 2009-10-07 | Torsten Heilmann | Expansible biocompatible coats comprising a biologically active substance |
US8420110B2 (en) | 2008-03-31 | 2013-04-16 | Cordis Corporation | Drug coated expandable devices |
US8409601B2 (en) | 2008-03-31 | 2013-04-02 | Cordis Corporation | Rapamycin coated expandable devices |
US9114125B2 (en) | 2008-04-11 | 2015-08-25 | Celonova Biosciences, Inc. | Drug eluting expandable devices |
EP2285443B1 (en) | 2008-05-01 | 2016-11-23 | Bayer Intellectual Property GmbH | Catheter balloon drug adherence techniques and methods |
US8128617B2 (en) | 2008-05-27 | 2012-03-06 | Boston Scientific Scimed, Inc. | Electrical mapping and cryo ablating with a balloon catheter |
US8187261B2 (en) | 2008-05-29 | 2012-05-29 | Boston Scientific Scimed, Inc. | Regulating internal pressure of a cryotherapy balloon catheter |
EP2323595B1 (en) * | 2008-06-04 | 2019-07-31 | W.L. Gore & Associates, Inc. | Controlled deployable medical device |
WO2009155405A1 (en) | 2008-06-20 | 2009-12-23 | Boston Scientific Scimed, Inc. | Medical devices employing conductive polymers for delivery of therapeutic agents |
US8187221B2 (en) * | 2008-07-11 | 2012-05-29 | Nexeon Medsystems, Inc. | Nanotube-reinforced balloons for delivering therapeutic agents within or beyond the wall of blood vessels, and methods of making and using same |
US9510856B2 (en) | 2008-07-17 | 2016-12-06 | Micell Technologies, Inc. | Drug delivery medical device |
US9486431B2 (en) * | 2008-07-17 | 2016-11-08 | Micell Technologies, Inc. | Drug delivery medical device |
US7774125B2 (en) * | 2008-08-06 | 2010-08-10 | Fluid Control Products, Inc. | Programmable fuel pump control |
US8642063B2 (en) | 2008-08-22 | 2014-02-04 | Cook Medical Technologies Llc | Implantable medical device coatings with biodegradable elastomer and releasable taxane agent |
US8133199B2 (en) | 2008-08-27 | 2012-03-13 | Boston Scientific Scimed, Inc. | Electroactive polymer activation system for a medical device |
US20110160575A1 (en) | 2008-09-02 | 2011-06-30 | By-Pass, Inc. | Microporous balloon catheter |
US8187222B2 (en) | 2008-09-12 | 2012-05-29 | Boston Scientific Scimed, Inc. | Devices and systems for delivery of therapeutic agents to body lumens |
US8128951B2 (en) | 2008-09-15 | 2012-03-06 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
EP2172242A1 (en) | 2008-10-03 | 2010-04-07 | National University of Ireland Galway | Intravascular Treatment Device |
EP2349371B1 (en) | 2008-10-07 | 2013-12-04 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents to body lumens |
US20100131043A1 (en) | 2008-11-26 | 2010-05-27 | Casas Jesus W | Endoluminal Implants For Bioactive Material Delivery |
WO2010080575A2 (en) | 2008-12-18 | 2010-07-15 | Michal Konstantino | Method and apparatus for transport of substances into body tissue |
IT1394522B1 (it) | 2009-01-09 | 2012-07-05 | Invatec Technology Ct Gmbh | Dispositivo medicale con rilascio di farmaco |
EP2391401A2 (en) | 2009-02-02 | 2011-12-07 | Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. | Crystalline drug-containing coatings |
US8734829B2 (en) | 2009-02-13 | 2014-05-27 | Boston Scientific Scimed, Inc. | Medical devices having polymeric nanoporous coatings for controlled therapeutic agent delivery and a nonpolymeric macroporous protective layer |
US20100228333A1 (en) | 2009-03-04 | 2010-09-09 | William Joseph Drasler | Drug eluting surface covering |
US20100233228A1 (en) | 2009-03-12 | 2010-09-16 | Invatec Technology Center Gmbh | Drug-Eluting Medical Device |
CA2756386C (en) | 2009-03-23 | 2019-01-15 | Micell Technologies, Inc. | Drug delivery medical device |
US20100249702A1 (en) | 2009-03-24 | 2010-09-30 | Abbott Cardiovascular Systems Inc. | Porous catheter balloon and method of making same |
CN102481195B (zh) | 2009-04-01 | 2015-03-25 | 米歇尔技术公司 | 涂覆支架 |
US20100261662A1 (en) | 2009-04-09 | 2010-10-14 | Endologix, Inc. | Utilization of mural thrombus for local drug delivery into vascular tissue |
WO2010120620A1 (en) | 2009-04-13 | 2010-10-21 | Cook Incorporated | Coated balloon catheter |
CA2759015C (en) | 2009-04-17 | 2017-06-20 | James B. Mcclain | Stents having controlled elution |
US20100268191A1 (en) | 2009-04-21 | 2010-10-21 | Medtronic Vascular, Inc. | Drug Delivery Catheter using Frangible Microcapsules and Delivery Method |
EP2421571A2 (en) | 2009-04-24 | 2012-02-29 | Boston Scientific Scimed, Inc. | Use of drug polymorphs to achieve controlled drug delivery from a coated medical device |
US20100285085A1 (en) | 2009-05-07 | 2010-11-11 | Abbott Cardiovascular Systems Inc. | Balloon coating with drug transfer control via coating thickness |
US20100292641A1 (en) | 2009-05-15 | 2010-11-18 | Bandula Wijay | Targeted drug delivery device and method |
WO2010135418A2 (en) | 2009-05-21 | 2010-11-25 | Boston Scientific Scimed, Inc. | Implantable medical devices for therapeutic agent delivery |
EP2258439B1 (de) | 2009-06-04 | 2020-04-29 | Biotronik Ag | Strukturierter Wirkstoff-freisetzender Ballonkatheter |
WO2010144266A2 (en) | 2009-06-10 | 2010-12-16 | Boston Scientific Scimed, Inc. | Electrochemical therapeutic agent delivery device |
US20100324645A1 (en) | 2009-06-17 | 2010-12-23 | John Stankus | Drug coated balloon catheter and pharmacokinetic profile |
DE102010030191A1 (de) * | 2009-06-17 | 2011-03-03 | Dot Gmbh | Verfahren und Vorrichtung zur Beschichtung von Kathetern oder Ballonkathetern |
EP2944332B1 (en) * | 2009-07-10 | 2016-08-17 | Boston Scientific Scimed, Inc. | Use of nanocrystals for a drug delivery balloon |
WO2011008393A2 (en) * | 2009-07-17 | 2011-01-20 | Boston Scientific Scimed, Inc. | Nucleation of drug delivery balloons to provide improved crystal size and density |
WO2011011433A1 (en) | 2009-07-20 | 2011-01-27 | Boston Scientific Scimed, Inc. | Medical device coating system |
US8424498B2 (en) * | 2009-07-23 | 2013-04-23 | Briggs & Stratton Corporation | Engine blower scroll |
WO2011028419A1 (en) | 2009-08-27 | 2011-03-10 | Boston Scientific Scimed, Inc. | Balloon catheter devices with drug-coated sheath |
US8617136B2 (en) | 2009-08-31 | 2013-12-31 | Boston Scientific Scimed, Inc. | Balloon catheter devices with drug delivery extensions |
US20110087191A1 (en) | 2009-10-14 | 2011-04-14 | Boston Scientific Scimed, Inc. | Balloon catheter with shape memory sheath for delivery of therapeutic agent |
US8366661B2 (en) | 2009-12-18 | 2013-02-05 | Boston Scientific Scimed, Inc. | Medical device with expandable body for drug delivery by capsules |
EP2519269A1 (en) | 2009-12-30 | 2012-11-07 | Boston Scientific Scimed, Inc. | Drug-delivery balloons |
US20110160645A1 (en) | 2009-12-31 | 2011-06-30 | Boston Scientific Scimed, Inc. | Cryo Activated Drug Delivery and Cutting Balloons |
EP2525860B1 (en) | 2010-01-21 | 2015-04-08 | Boston Scientific Scimed, Inc. | Balloon catheters with therapeutic agent in balloon folds and methods of making the same |
WO2011097103A1 (en) | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
US9227041B2 (en) | 2010-04-09 | 2016-01-05 | Boston Scientific Scimed, Inc. | Balloon catheters with fibers for delivery of therapeutic agent and methods of making the same |
US8768451B2 (en) | 2010-04-30 | 2014-07-01 | Boston Scientific Scimed, Inc. | Therapeutic agent delivery device for delivery of a neurotoxin |
WO2011140319A1 (en) | 2010-05-07 | 2011-11-10 | Boston Scientific Scimed, Inc. | Medical devices employing electroactive polymers for delivery of particulate therapeutic agents |
US20110301565A1 (en) | 2010-06-07 | 2011-12-08 | Boston Scientific Scimed, Inc. | Medical balloons having a sheath designed to facilitate release of therapeutic agent |
US8889211B2 (en) | 2010-09-02 | 2014-11-18 | Boston Scientific Scimed, Inc. | Coating process for drug delivery balloons using heat-induced rewrap memory |
EP2629832A1 (en) | 2010-10-18 | 2013-08-28 | Boston Scientific Scimed, Inc. | Drug eluting medical device utilizing bioadhesives |
US8669360B2 (en) | 2011-08-05 | 2014-03-11 | Boston Scientific Scimed, Inc. | Methods of converting amorphous drug substance into crystalline form |
WO2013028208A1 (en) | 2011-08-25 | 2013-02-28 | Boston Scientific Scimed, Inc. | Medical device with crystalline drug coating |
-
2008
- 2008-01-21 NZ NZ578341A patent/NZ578341A/en unknown
- 2008-01-21 PL PL10075582T patent/PL2269664T3/pl unknown
- 2008-01-21 RU RU2010141846/15A patent/RU2458710C2/ru active
- 2008-01-21 RU RU2009131598/15A patent/RU2447901C2/ru active
- 2008-01-21 DE DE112008000881T patent/DE112008000881A5/de not_active Withdrawn
- 2008-01-21 WO PCT/DE2008/000096 patent/WO2008086794A2/de active Application Filing
- 2008-01-21 MX MX2009007663A patent/MX2009007663A/es active IP Right Grant
- 2008-01-21 PL PL08706776T patent/PL2136853T3/pl unknown
- 2008-01-21 KR KR1020097017556A patent/KR101144984B1/ko active IP Right Grant
- 2008-01-21 BR BRPI0823269A patent/BRPI0823269B8/pt active IP Right Grant
- 2008-01-21 EP EP12168911A patent/EP2491962A1/de not_active Withdrawn
- 2008-01-21 CN CN201010532053.XA patent/CN101972492B/zh active Active
- 2008-01-21 MX MX2010012513A patent/MX336844B/es unknown
- 2008-01-21 KR KR1020127020326A patent/KR20120106880A/ko not_active Application Discontinuation
- 2008-01-21 CA CA2743022A patent/CA2743022C/en active Active
- 2008-01-21 EP EP10075582A patent/EP2269664B1/de active Active
- 2008-01-21 NZ NZ588816A patent/NZ588816A/en unknown
- 2008-01-21 ES ES08706776T patent/ES2409759T3/es active Active
- 2008-01-21 EP EP08706776.5A patent/EP2136853B1/de active Active
- 2008-01-21 JP JP2009545818A patent/JP4906926B2/ja active Active
- 2008-01-21 US US12/521,863 patent/US8597720B2/en active Active
- 2008-01-21 CA CA2673991A patent/CA2673991C/en active Active
- 2008-01-21 BR BRPI0806727A patent/BRPI0806727B8/pt active IP Right Grant
- 2008-01-21 KR KR1020107023575A patent/KR101198980B1/ko active IP Right Grant
- 2008-01-21 AU AU2008207191A patent/AU2008207191B2/en active Active
- 2008-01-21 ES ES10075582T patent/ES2393639T3/es active Active
- 2008-01-21 CN CN2008800024704A patent/CN101687066B/zh active Active
-
2009
- 2009-06-25 IL IL199568A patent/IL199568A/en active IP Right Revival
-
2010
- 2010-10-13 IL IL208682A patent/IL208682A/en active IP Right Grant
- 2010-10-22 AU AU2010235980A patent/AU2010235980B2/en active Active
- 2010-10-25 ZA ZA2010/07601A patent/ZA201007601B/en unknown
-
2011
- 2011-01-26 JP JP2011014296A patent/JP4908639B2/ja active Active
- 2011-05-25 US US13/115,782 patent/US20110287169A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029732A (en) * | 1974-08-02 | 1977-06-14 | Produits Chimiques Ugine Kuhlmann | Preparation of bromine |
EP0770401A2 (de) * | 1995-10-24 | 1997-05-02 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Verfahren zur Herstellung intraluminaler Stents aus bioresorbierbarem Polymermaterial |
CN1688350A (zh) * | 2002-09-20 | 2005-10-26 | 乌尔里希·施佩克 | 用于递送药物的医用装置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101972492B (zh) | 治疗体通道狭窄和预防危险的再狭窄的医学产品 | |
CN102258811B (zh) | 持久使血管开的活性物释放医药产品的制造、方法和使用 | |
US9192697B2 (en) | Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis | |
CN101636187A (zh) | 生物可降解性血管支持器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |