CN101884530A - Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity - Google Patents
Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity Download PDFInfo
- Publication number
- CN101884530A CN101884530A CN 201010231148 CN201010231148A CN101884530A CN 101884530 A CN101884530 A CN 101884530A CN 201010231148 CN201010231148 CN 201010231148 CN 201010231148 A CN201010231148 A CN 201010231148A CN 101884530 A CN101884530 A CN 101884530A
- Authority
- CN
- China
- Prior art keywords
- electrode
- flexible
- carrier
- metal
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrotherapy Devices (AREA)
Abstract
本发明公开了一种用于记录神经活动电信号的柔性探针电极,包括:柔性基底、电极位点、金属连线、引线焊点和柔性绝缘层,其中,电极位点和金属连线均设置在柔性基底上,每个电极位点由引出的金属连线连接到对应的引线焊点上,金属连线表面有柔性绝缘层,电极位点和金属焊点处没有柔性绝缘层。本发明还公开了一种将该柔性探针电极刺入组织内的植入工具。利用本发明,使电极具有很好的柔性和生物相容性,减小组织损伤,从而保证了电极工作的长期稳定性,解决了柔性电极自身硬度无法满足植入硬度的问题,改善了现有的探针式电极容易造成组织损伤及电极长期记录电信号不稳定的不足。
The invention discloses a flexible probe electrode for recording nerve activity electrical signals, which comprises: a flexible substrate, electrode sites, metal wiring, lead welding points and a flexible insulating layer, wherein the electrode sites and the metal wiring are both It is arranged on a flexible substrate, and each electrode site is connected to the corresponding lead soldering point by a metal connection wire drawn out. There is a flexible insulating layer on the surface of the metal connecting wire, and there is no flexible insulating layer at the electrode site and the metal soldering point. The invention also discloses an implant tool for piercing the flexible probe electrode into tissue. Utilizing the present invention, the electrode has good flexibility and biocompatibility, reduces tissue damage, thus ensures the long-term stability of the electrode work, solves the problem that the hardness of the flexible electrode itself cannot meet the hardness of implantation, and improves the existing The probe-type electrode is easy to cause tissue damage and the long-term recording of the electrode is unstable.
Description
技术领域technical field
本发明涉及神经生物学、材料科学与微电子学技术领域,尤其涉及一种用于记录神经活动电信号的柔性探针电极,以及将该柔性探针电极刺入组织内的植入工具。The invention relates to the technical fields of neurobiology, material science and microelectronics, in particular to a flexible probe electrode for recording nerve activity electrical signals and an implant tool for piercing the flexible probe electrode into tissue.
背景技术Background technique
电极,作为提取电生理活动信号的关键器件,用于对生物组织进行功能性电刺激或记录生物活动电信号,在许多情况下,需要将电极刺入生物组织中以达到记录的目的。目前用于记录神经活动电信号的电极都是基于硅、金属或玻璃等有一定强度的材料,这些材料的电极因其具有很好的强度和硬度可以很容易的被刺入生物组织内并保证刺入位置的精确性。但是,处于柔软组织之间的高硬度的电极在生物相容性方面表现极差,会造成植入失败或一段时间后探针电极工作失效。这是由于被刺入的电极由于硬度很高,长期放在生物体内会损伤其周围的神经细胞,令其退化甚至死亡,使探针电极丧失记录的对象,从而导致植入失败。即使探针电极被刺入很长一段时间内,神经细胞完全没有被损伤,但由于探针式电极长期植入后会引发机体的排斥反应,使得在其周围会形成一层鞘状纤维层组织,影响电极的记录效果,导致电极长期工作的稳定性受到影响。并且生物体的移动还会造成电极记录位置的轻微改变,而电极的高硬度无法使其变形以适应这种改变,也会导致记录电信号的长期不稳定性。Electrodes, as a key device for extracting electrophysiological activity signals, are used to perform functional electrical stimulation on biological tissues or record biological activity electrical signals. In many cases, electrodes need to be inserted into biological tissues to achieve the purpose of recording. The electrodes currently used to record electrical signals of nerve activity are based on materials with certain strength such as silicon, metal or glass. The electrodes of these materials can be easily penetrated into biological tissues due to their good strength and hardness and ensure Accuracy of penetration position. However, electrodes with high hardness between soft tissues have extremely poor biocompatibility, which may cause implantation failure or probe electrode failure after a period of time. This is due to the high hardness of the pierced electrodes, long-term placement in the living body will damage the surrounding nerve cells, causing them to degenerate or even die, causing the probe electrodes to lose their recording objects, resulting in implantation failure. Even if the probe electrode is pierced for a long period of time, the nerve cells are not damaged at all, but because the body's rejection reaction will be triggered after the probe electrode is implanted for a long time, a layer of sheath-like fibrous layer tissue will be formed around it. , affect the recording effect of the electrode, and cause the long-term stability of the electrode to be affected. Moreover, the movement of the organism will also cause a slight change in the recording position of the electrode, and the high hardness of the electrode cannot deform it to adapt to this change, which will also lead to long-term instability of the recorded electrical signal.
为了保持记录的电信号的长期稳定性且不损伤神经组织和细胞,本发明提出了一种基于聚合物衬底的柔性探针电极。这种电极由于采用生物相容性好的聚合物材料作为柔性衬底,能够弯曲变形以适应记录位置的改变,因此不容易引起神经细胞损伤,但由于其硬度很低,不容易甚至无法被刺入柔软的生物组织内,更不可能保证刺入位置的精确性。因此,在柔性探针电极的基础上,本发明又提出了帮助其刺入组织的植入工具。两者结合可以既保持了现有的探针式电极的优点又弥补了其不足。In order to maintain the long-term stability of the recorded electrical signal without damaging nerve tissue and cells, the present invention proposes a flexible probe electrode based on a polymer substrate. Because this kind of electrode uses a biocompatible polymer material as a flexible substrate, it can be bent and deformed to adapt to the change of the recording position, so it is not easy to cause nerve cell damage, but because of its low hardness, it is not easy or even impossible to be stabbed. Into the soft biological tissue, it is impossible to guarantee the accuracy of the puncture position. Therefore, on the basis of the flexible probe electrode, the present invention proposes an implant tool to help it penetrate into the tissue. The combination of the two can not only maintain the advantages of the existing probe-type electrodes but also make up for their shortcomings.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的主要目的在于提供一种用于记录神经活动电信号的柔性探针电极及其植入工具,以保证电极工作的长期稳定性,解决柔性电极自身硬度无法满足植入硬度的问题。In view of this, the main purpose of the present invention is to provide a flexible probe electrode and its implantation tool for recording nerve activity electrical signals, so as to ensure the long-term stability of the electrode work and solve the problem that the hardness of the flexible electrode itself cannot meet the implantation hardness. The problem.
(二)技术方案(2) Technical solution
为达到上述目的,本发明提供了一种用于记录神经活动电信号的柔性探针电极,包括:柔性基底、电极位点、金属连线、引线焊点和柔性绝缘层,其中,电极位点和金属连线均设置在柔性基底上,每个电极位点由引出的金属连线连接到对应的引线焊点上,金属连线表面有柔性绝缘层,电极位点和金属焊点处没有柔性绝缘层。In order to achieve the above object, the present invention provides a flexible probe electrode for recording nerve activity electrical signals, including: a flexible substrate, electrode sites, metal wiring, lead solder joints and flexible insulating layers, wherein the electrode sites and the metal wires are set on the flexible substrate, and each electrode site is connected to the corresponding lead soldering point by the metal wire drawn out, the surface of the metal wire has a flexible insulating layer, and there is no flexibility at the electrode site and the metal soldering point Insulation.
上述方案中,所述金属连线采用能够与生物相容的金、铂、氮化钛或氧化铱。In the above solution, the metal wires are biocompatible gold, platinum, titanium nitride or iridium oxide.
上述方案中,所述柔性基底和柔性绝缘层均采用能够与生物相容的聚酰亚胺或聚对二甲苯。In the above solution, both the flexible substrate and the flexible insulating layer are made of biocompatible polyimide or parylene.
为达到上述目的,本发明还提供了一种植入工具,包括载体和载体的表面修饰,载体是采用能够与生物相容且有一定硬度的材料制作而成的,载体的表面修饰是采用聚乙二醇制作而成的。In order to achieve the above object, the present invention also provides an implant tool, including a carrier and a surface modification of the carrier. The carrier is made of a material that is biocompatible and has a certain hardness. The surface modification of the carrier is made of polyethylene made from diol.
上述方案中,所述制作载体的能够与生物相容且有一定硬度的材料是硅或玻璃。In the above solution, the biocompatible material with a certain hardness for making the carrier is silicon or glass.
上述方案中,所述载体的表面修饰是采用在高温下热熔的聚乙二醇涂覆在载体上实现的。In the above scheme, the surface modification of the carrier is achieved by coating the carrier with hot-melt polyethylene glycol at high temperature.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
1、本发明提供的这种用于记录神经活动电信号的柔性探针电极及其植入工具,通过采用生物相容性好的聚合物材料作为探针式电极的绝缘材料,可以使电极具有很好的柔性和生物相容性,减小组织损伤,从而保证了电极工作的长期稳定性;采用硬度高且生物相容性好的材料来制作植入工具,利用生物相容性好的材料聚乙二醇(PEG)使二者结合,使柔性探针电极容易被精确的刺入到记录位置,解决了柔性电极自身硬度无法满足植入硬度的问题。1. The flexible probe electrode and its implantation tool for recording nerve activity electrical signals provided by the present invention can make the electrode have Very good flexibility and biocompatibility, reducing tissue damage, thus ensuring the long-term stability of the electrode work; using materials with high hardness and good biocompatibility to make implant tools, and using materials with good biocompatibility Polyethylene glycol (PEG) combines the two, making it easy for the flexible probe electrode to be accurately inserted into the recording position, which solves the problem that the hardness of the flexible electrode itself cannot meet the hardness of the implant.
2、本发明与目前使用的硬度较高的基于硅、金属丝或玻璃的探针式电极相比,既保留了能够容易的精确刺入要记录位置的优点,又改善了现有的探针式电极容易造成组织损伤及电极长期记录电信号不稳定的不足。2. Compared with the currently used probe-type electrodes based on silicon, metal wire or glass with higher hardness, the present invention not only retains the advantages of being able to easily and accurately penetrate into the position to be recorded, but also improves the existing probe Type electrodes are easy to cause tissue damage and the electrode is not stable enough for long-term recording of electrical signals.
附图说明Description of drawings
图1为本发明中柔性探针电极制作方法的工艺流程图;Fig. 1 is the process flow chart of flexible probe electrode manufacturing method among the present invention;
图2为本发明中柔性探针电极未盖上层绝缘层的结构示意图;Fig. 2 is the schematic structural view that flexible probe electrode is not covered upper layer insulating layer among the present invention;
图3为本发明中柔性探针电极整体形貌的结构示意图;Fig. 3 is a structural schematic diagram of the overall appearance of the flexible probe electrode in the present invention;
图4为本发明中载体制作方法的工艺流程图;Fig. 4 is the process flow chart of carrier production method in the present invention;
图5为本发明中载体整体形貌的结构示意图;Fig. 5 is a structural schematic diagram of the overall appearance of the carrier in the present invention;
图6为本发明实施例在图2电极与图4载体相粘接后整体结构的结构示意图;Fig. 6 is a schematic structural view of the overall structure after the electrode in Fig. 2 is bonded to the carrier in Fig. 4 according to the embodiment of the present invention;
图7为本发明实施例在图5整体结构刺入生物体内的结构示意图;Fig. 7 is a schematic diagram of the embodiment of the present invention in which the overall structure of Fig. 5 penetrates into a living body;
图8为本发明实施例在图4载体从生物体内拔出的结构示意图。Fig. 8 is a schematic diagram of the structure of the embodiment of the present invention when the carrier in Fig. 4 is pulled out from the living body.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明提供的这种用于记录神经活动电信号的柔性探针电极,包括柔性基底、电极位点、金属连线、引线焊点和柔性绝缘层,其中,电极位点和金属连线均设置在柔性基底上,每个电极位点由引出的金属连线连接到对应的引线焊点上,金属连线表面有柔性绝缘层,电极位点和金属焊点处没有柔性绝缘层。金属连线采用能够与生物相容的金、铂、氮化钛或氧化铱等材料。柔性基底和柔性绝缘层均采用能够与生物相容的聚酰亚胺或聚对二甲苯等材料。The flexible probe electrode for recording neural activity electrical signals provided by the present invention includes a flexible substrate, electrode sites, metal wiring, lead welding points and a flexible insulating layer, wherein the electrode sites and metal wiring are all set On the flexible substrate, each electrode site is connected to the corresponding lead soldering point by a metal connection wire drawn out. There is a flexible insulating layer on the surface of the metal connecting wire, and there is no flexible insulating layer at the electrode site and the metal soldering point. The metal connection is made of biocompatible materials such as gold, platinum, titanium nitride or iridium oxide. Both the flexible base and the flexible insulating layer are made of biocompatible materials such as polyimide or parylene.
本发明提供的这种用于记录神经活动电信号的柔性探针电极,还可以被分为三个区域,即一个功能区域、一个连线区域和一个焊盘区域。其中功能区域包含可实现记录神经活动电信号或进行刺激的电极位点,连线区域包含可实现使功能区域和焊盘区域形成一一对应电连接的连线结构,焊盘区域包含可实现探针电极与与外部设备仪器进行电连接的金属焊盘结构。功能区域中的电极位点和焊盘区域中的金属焊盘结构都是在生物相容性好的柔性聚合物衬底上沉积金属膜形成,两者之间的连线区域则是一种两层聚合物材料中包夹一层金属膜的三明治结构。The flexible probe electrode for recording nerve activity electrical signals provided by the present invention can also be divided into three areas, namely a functional area, a wiring area and a pad area. The functional area includes electrode sites that can record nerve activity electrical signals or perform stimulation, the wiring area includes a wiring structure that enables the functional area and the pad area to form a one-to-one electrical connection, and the pad area includes a probe that can realize Needle electrode and metal pad structure for electrical connection with external equipment and instruments. The electrode sites in the functional area and the metal pad structure in the pad area are formed by depositing a metal film on a flexible polymer substrate with good biocompatibility, and the connection area between the two is a two-way structure. A sandwich structure in which a metal film is sandwiched between layers of polymer material.
本发明提供的这种植入工具,包括载体和载体的表面修饰,载体是采用能够与生物相容且有一定硬度的材料制作而成的,用于承载柔性探针电极。载体的表面修饰是采用聚乙二醇制作而成的,用于使柔性探针电极和载体粘接在一起。制作载体的能够与生物相容且有一定硬度的材料是硅或玻璃。载体的表面修饰是采用在高温下热熔的聚乙二醇涂覆在载体上实现的。The implant tool provided by the present invention includes a carrier and a surface modification of the carrier. The carrier is made of a biocompatible material with a certain hardness, and is used for carrying flexible probe electrodes. The surface modification of the carrier is made of polyethylene glycol, which is used to bond the flexible probe electrode and the carrier together. The biocompatible and rigid material used to make the carrier is silicon or glass. The surface modification of the carrier is achieved by coating the carrier with hot-melt polyethylene glycol at high temperature.
本发明所述的PEG具有在高于50度的条件下是液体,室温下会凝结成固体,凝结成固体的PEG会被生物体液溶解的性质。因此把热熔的PEG涂覆在载体区域,使柔性探针电极通过热熔PEG和载体吸附在一起,把它们放在室温下,PEG凝结成固体,使得柔性探针电极和载体粘接在一起形成一个具有很高硬度的整体,这个整体很容易被精确的刺入神经组织中要记录的位置。当这个整体被刺入生物组织后,用于粘接柔性探针电极和载体固体PEG遇到生物体液后被溶解掉,柔性探针电极和载体分离,此时,可以把载体拔离生物组织,只留下柔性探针电极在生物组织内用来记录神经活动电信号。当载体拔离生物组织时,并不会连带柔性探针电极使其偏离刺入位置,这是因为,以聚酰亚胺基底和硅为例,聚酰亚胺基底和硅都是疏水的,而在体内溶解掉的PEG溶液是亲水的,由于表面能的作用两疏水材料界面在水溶液中有很强的粘附力,而疏水材料界面和亲水材料界面在水溶液中没有粘附力,很容易被分开。The PEG described in the present invention is liquid at a temperature higher than 50°C, but condenses into a solid at room temperature, and the PEG condensed into a solid can be dissolved by biological fluids. Therefore, the hot-melt PEG is coated on the carrier area, so that the flexible probe electrode is adsorbed by the hot-melt PEG and the carrier, and they are placed at room temperature, and the PEG condenses into a solid, so that the flexible probe electrode and the carrier are bonded together Forming a whole with high hardness, this whole is easy to be accurately inserted into the position to be recorded in the nerve tissue. When the whole body is pierced into the biological tissue, the solid PEG used to bond the flexible probe electrode and the carrier is dissolved when it encounters the biological fluid, and the flexible probe electrode is separated from the carrier. At this time, the carrier can be pulled out of the biological tissue. Only the flexible probe electrodes are left in the biological tissue to record the electrical signals of neural activity. When the carrier is pulled out of the biological tissue, it will not deviate from the insertion position with the flexible probe electrode. This is because, taking the polyimide substrate and silicon as examples, the polyimide substrate and silicon are both hydrophobic. The PEG solution dissolved in the body is hydrophilic. Due to the effect of surface energy, the interface of the two hydrophobic materials has strong adhesion in the aqueous solution, while the interface of the hydrophobic material and the interface of the hydrophilic material has no adhesion in the aqueous solution. It is easy to be separated.
实施例1Example 1
下面结合附图以聚酰亚胺聚合物为例进一步说明本发明基于聚合物基底的柔性探针式电极的制备方法The preparation method of the flexible probe-type electrode based on the polymer substrate of the present invention is further described below in conjunction with the accompanying drawings by taking polyimide polymer as an example
1、浸泡硅片1于浓硫酸和双氧水的混合液中(5∶1)煮沸,用大量去离子水冲洗干净,吹干,250°烘箱内热烘,除去硅片表面水分。蒸发300nm厚的金属铝2作为牺牲层,(如图1(a)所示)。1. Soak the silicon wafer 1 in a mixture of concentrated sulfuric acid and hydrogen peroxide (5:1), boil it, rinse it with a large amount of deionized water, blow dry, and dry it in a 250° oven to remove the surface moisture of the silicon wafer. Evaporate 300nm
2、旋涂聚酰亚胺光刻胶3,前烘,形成底层的聚酰亚胺薄膜,光刻出电极形貌,最后用阶梯升温的方法进行固化,得到厚约5微米的聚酰亚胺薄膜被用作微电极的底层绝缘材料,(如图1(b)所示)。2. Spin-
3、使用金属溅射和带胶剥离(lift-off)工艺,形成图形化的钛金金属薄膜4。此Ti/Au金属层4用以形成电极的电极点,连接线以及外部引线的焊点,(如图1(c)所示)。3. A patterned titanium-gold metal film 4 is formed by metal sputtering and lift-off with adhesive. The Ti/Au metal layer 4 is used to form the electrode point of the electrode, the soldering point of the connection wire and the external lead wire, (as shown in FIG. 1( c )).
4、在金属层4上再次通过甩胶,前烘的方法形成上层聚酰亚胺薄膜3,光刻出电极形貌以及电极位点和焊点,最后固化,得到厚约5微米的聚酰亚胺薄膜被用作微电极的上层绝缘材料,(如图1(d)所示)。4. On the metal layer 4, the
5、采用酸腐蚀或电化学腐蚀的方法刻腐蚀掉Al牺牲层2,使电极10从硅基片1上释放下来,(如图1(e)所示)。5. The Al
实施例2Example 2
下面结合附图以硅材料为例进一步说明载体的制作方法The method of making the carrier will be further described by taking silicon material as an example in conjunction with the accompanying drawings.
1、准备SOI基片7并清洗,(如图4(a)所示)。1. Prepare and clean the SOI substrate 7 (as shown in FIG. 4( a )).
2、旋涂光刻胶,前烘后光刻出载体11形貌,(如图4(b)所示)。2. The photoresist is spin-coated, and the shape of the
3、用HF腐蚀掉SOI基片7中的SiO2层6,使载体11释放下来,(如图4(c)所示)。3. Etching away the SiO 2 layer 6 in the
实施例3Example 3
下面结合附图进一步说明在植入工具的帮助下,柔性探针电极刺入生物组织内的方法。The method of penetrating the flexible probe electrode into the biological tissue with the help of the implant tool will be further described below in conjunction with the accompanying drawings.
1、将热熔的PEG涂覆在载体11上,用镊子9夹住柔性探针电极10,把它放在载体11上,然后冷却,PEG固化,此时载体11、电极10和固体PEG 8形成一个坚硬的整体,(如图6所示)。1. Coat the hot-melt PEG on the
2、用镊子9把探针电极10刺入生物组织12内要记录的位置,固体PEG 8遇体液溶解,(如图7所示)。2. Use
3、把载体11用镊子9从体内拔出,只留柔性探针电极10在体12内,(如图8所示)。3. Use
利用该方法具有容易精确刺入记录位置,不会造成组织损伤以及长期记录的电信号可靠性好等优点。Using this method has the advantages of easy and precise penetration into the recording position, no tissue damage, and good reliability of long-term recorded electrical signals.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010231148 CN101884530A (en) | 2010-07-14 | 2010-07-14 | Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010231148 CN101884530A (en) | 2010-07-14 | 2010-07-14 | Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101884530A true CN101884530A (en) | 2010-11-17 |
Family
ID=43070743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010231148 Pending CN101884530A (en) | 2010-07-14 | 2010-07-14 | Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101884530A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102499667A (en) * | 2011-10-20 | 2012-06-20 | 中国科学院半导体研究所 | Flexible skin surface dry electrode and preparation method thereof |
CN103385699A (en) * | 2013-07-30 | 2013-11-13 | 上海交通大学 | Flexible resistance-type MEMS (micro-electro-mechanical systems) temperature sensor array and preparation method thereof |
CN103989467A (en) * | 2014-05-22 | 2014-08-20 | 侯月梅 | Animal neck neural signal continuous recording model and recording method |
CN104807569A (en) * | 2015-05-08 | 2015-07-29 | 大连理工大学 | A kind of flexible microprobe based on photoelastic principle and its application method |
CN104055598B (en) * | 2014-06-25 | 2016-09-07 | 上海交通大学 | Implantable flexible nervus of piscine organism robot and preparation method thereof |
CN106291813A (en) * | 2016-09-07 | 2017-01-04 | 中国科学院半导体研究所 | Many measuring points transparent optical electrode based on optical fiber |
CN107434239A (en) * | 2017-07-25 | 2017-12-05 | 清华大学 | A kind of MEMS thin film electrode arrays that can be applied to artificial cochlea and processing method |
CN107473175A (en) * | 2017-08-15 | 2017-12-15 | 薛宁 | A kind of nerve electrode and its manufacture craft and application based on porous silicon and polymer |
CN107485386A (en) * | 2017-09-21 | 2017-12-19 | 中国科学院电子学研究所 | Encephalic cortex neural infomation detection electrode, electrod-array and preparation method thereof |
CN107814865A (en) * | 2017-10-27 | 2018-03-20 | 浙江大学 | The intrusive mood brain-computer interface buried is planted for low temperature |
CN108903916A (en) * | 2018-07-31 | 2018-11-30 | 浙江大学 | The implant needle and method for implantation of flexible implanted biosensor and photoelectric device |
CN109567786A (en) * | 2019-01-23 | 2019-04-05 | 国家纳米科学中心 | A kind of processing method of implanted flexible nervus comb |
CN109793502A (en) * | 2019-03-15 | 2019-05-24 | 中国科学院半导体研究所 | Neuron activity detection method and detection system |
WO2019140816A1 (en) * | 2018-01-17 | 2019-07-25 | 杭州暖芯迦电子科技有限公司 | Neurostimulator and manufacturing method thereof |
CN110840431A (en) * | 2019-11-28 | 2020-02-28 | 中国科学院电子学研究所 | Flexible micro-nano electrode array implantable chip and preparation method thereof |
CN111839511A (en) * | 2020-07-21 | 2020-10-30 | 浙江大学 | Magnetic compatible nerve probe and preparation method thereof |
CN111870238A (en) * | 2019-05-03 | 2020-11-03 | 乌宁 | Implanted biosensor and manufacturing method thereof |
CN111956218A (en) * | 2020-08-10 | 2020-11-20 | 中国科学院上海微系统与信息技术研究所 | Flexible brain electrode with electrochemical and electrophysiological detection functions and preparation method thereof |
CN111990995A (en) * | 2020-09-10 | 2020-11-27 | 中国科学院半导体研究所 | Flexible electrode implantation system |
CN112022154A (en) * | 2020-09-10 | 2020-12-04 | 中国科学院半导体研究所 | Flexible neural electrode implantation system for multi-dimensional extraction of neuronal signals |
CN112386262A (en) * | 2020-11-18 | 2021-02-23 | 中国科学院半导体研究所 | U-shaped flexible electrode implantation system and preparation method thereof |
WO2021104149A1 (en) * | 2019-11-29 | 2021-06-03 | 清华大学 | Microelectrode and methods for manufacturing and using same, plug device, and microelectrode system |
CN112999511A (en) * | 2021-03-10 | 2021-06-22 | 中国科学院半导体研究所 | Flexible electrode lead-in device |
CN113041496A (en) * | 2021-03-19 | 2021-06-29 | 国家纳米科学中心 | Nerve electrical stimulation electrode, preparation method and implantation method thereof |
CN114847955A (en) * | 2022-07-05 | 2022-08-05 | 诺尔医疗(深圳)有限公司 | Method for manufacturing electroencephalogram and electroencephalogram |
CN114948232A (en) * | 2021-02-22 | 2022-08-30 | 哈尔滨工业大学 | Flexible nerve electrode implantation surgical robot and control method |
CN115153568A (en) * | 2022-07-19 | 2022-10-11 | 中国科学院半导体研究所 | Implanted flexible neural microelectrode reinforced by gas-liquid column |
CN115227254A (en) * | 2022-07-25 | 2022-10-25 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and nerve microelectrode |
CN115251931A (en) * | 2022-07-25 | 2022-11-01 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and preparation method thereof |
CN115339097A (en) * | 2021-05-13 | 2022-11-15 | 深脑科技有限公司 | 3D printing nerve probe and manufacturing method thereof |
CN115500832A (en) * | 2022-08-24 | 2022-12-23 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure |
CN115500831A (en) * | 2022-08-24 | 2022-12-23 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure based on integrated circuit chip |
WO2023186053A1 (en) * | 2022-04-02 | 2023-10-05 | 北京智冉医疗科技有限公司 | Flexible neural electrode composite structure and manufacturing and implantation method therefor, and auxiliary implantation assembly |
WO2023240688A1 (en) * | 2022-06-17 | 2023-12-21 | 中国科学院脑科学与智能技术卓越创新中心 | Flexible electrode and manufacturing method therefor |
WO2024021326A1 (en) * | 2022-07-25 | 2024-02-01 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and neural microelectrode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101138663A (en) * | 2007-10-25 | 2008-03-12 | 上海交通大学 | Fabrication method of biological microelectrode array based on flexible substrate |
CN101149559A (en) * | 2007-10-18 | 2008-03-26 | 上海交通大学 | Method for preparing spherical convex biological microelectrode array by photoresist hot-melt method |
CN101172185A (en) * | 2007-09-21 | 2008-05-07 | 中国科学院上海微系统与信息技术研究所 | A kind of preparation method of implantable double-sided flexible microarray electrode |
CN101172184A (en) * | 2007-10-10 | 2008-05-07 | 中国科学院上海微系统与信息技术研究所 | A three-dimensional flexible neural microelectrode and its manufacturing method |
CN101380257A (en) * | 2008-10-09 | 2009-03-11 | 上海交通大学 | Flexible retinal bump microelectrode chip and manufacturing method thereof |
WO2009075625A1 (en) * | 2007-12-10 | 2009-06-18 | Neuronano Ab | Medical electrode, electrode bundle and electrode bundle array |
-
2010
- 2010-07-14 CN CN 201010231148 patent/CN101884530A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172185A (en) * | 2007-09-21 | 2008-05-07 | 中国科学院上海微系统与信息技术研究所 | A kind of preparation method of implantable double-sided flexible microarray electrode |
CN101172184A (en) * | 2007-10-10 | 2008-05-07 | 中国科学院上海微系统与信息技术研究所 | A three-dimensional flexible neural microelectrode and its manufacturing method |
CN101149559A (en) * | 2007-10-18 | 2008-03-26 | 上海交通大学 | Method for preparing spherical convex biological microelectrode array by photoresist hot-melt method |
CN101138663A (en) * | 2007-10-25 | 2008-03-12 | 上海交通大学 | Fabrication method of biological microelectrode array based on flexible substrate |
WO2009075625A1 (en) * | 2007-12-10 | 2009-06-18 | Neuronano Ab | Medical electrode, electrode bundle and electrode bundle array |
CN101380257A (en) * | 2008-10-09 | 2009-03-11 | 上海交通大学 | Flexible retinal bump microelectrode chip and manufacturing method thereof |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102499667A (en) * | 2011-10-20 | 2012-06-20 | 中国科学院半导体研究所 | Flexible skin surface dry electrode and preparation method thereof |
CN103385699A (en) * | 2013-07-30 | 2013-11-13 | 上海交通大学 | Flexible resistance-type MEMS (micro-electro-mechanical systems) temperature sensor array and preparation method thereof |
CN103989467A (en) * | 2014-05-22 | 2014-08-20 | 侯月梅 | Animal neck neural signal continuous recording model and recording method |
CN104055598B (en) * | 2014-06-25 | 2016-09-07 | 上海交通大学 | Implantable flexible nervus of piscine organism robot and preparation method thereof |
CN104807569A (en) * | 2015-05-08 | 2015-07-29 | 大连理工大学 | A kind of flexible microprobe based on photoelastic principle and its application method |
CN106291813A (en) * | 2016-09-07 | 2017-01-04 | 中国科学院半导体研究所 | Many measuring points transparent optical electrode based on optical fiber |
CN107434239A (en) * | 2017-07-25 | 2017-12-05 | 清华大学 | A kind of MEMS thin film electrode arrays that can be applied to artificial cochlea and processing method |
CN107473175B (en) * | 2017-08-15 | 2019-09-06 | 薛宁 | A kind of nerve electrode and its manufacture craft and application based on porous silicon and polymer |
CN107473175A (en) * | 2017-08-15 | 2017-12-15 | 薛宁 | A kind of nerve electrode and its manufacture craft and application based on porous silicon and polymer |
CN107485386A (en) * | 2017-09-21 | 2017-12-19 | 中国科学院电子学研究所 | Encephalic cortex neural infomation detection electrode, electrod-array and preparation method thereof |
CN107485386B (en) * | 2017-09-21 | 2021-03-19 | 中国科学院电子学研究所 | Intracranial cortex nerve information detection electrode, electrode array and preparation method thereof |
CN107814865A (en) * | 2017-10-27 | 2018-03-20 | 浙江大学 | The intrusive mood brain-computer interface buried is planted for low temperature |
WO2019140816A1 (en) * | 2018-01-17 | 2019-07-25 | 杭州暖芯迦电子科技有限公司 | Neurostimulator and manufacturing method thereof |
CN108903916B (en) * | 2018-07-31 | 2024-04-02 | 浙江大学 | Implantation needle and implantation method of flexible implantation type biosensor and photoelectric device |
CN108903916A (en) * | 2018-07-31 | 2018-11-30 | 浙江大学 | The implant needle and method for implantation of flexible implanted biosensor and photoelectric device |
CN109567786A (en) * | 2019-01-23 | 2019-04-05 | 国家纳米科学中心 | A kind of processing method of implanted flexible nervus comb |
CN109793502A (en) * | 2019-03-15 | 2019-05-24 | 中国科学院半导体研究所 | Neuron activity detection method and detection system |
CN111870238A (en) * | 2019-05-03 | 2020-11-03 | 乌宁 | Implanted biosensor and manufacturing method thereof |
CN110840431A (en) * | 2019-11-28 | 2020-02-28 | 中国科学院电子学研究所 | Flexible micro-nano electrode array implantable chip and preparation method thereof |
WO2021104149A1 (en) * | 2019-11-29 | 2021-06-03 | 清华大学 | Microelectrode and methods for manufacturing and using same, plug device, and microelectrode system |
CN113545790B (en) * | 2020-07-21 | 2022-04-26 | 浙江大学 | A kind of preparation method of magnetic compatibility nerve probe |
CN111839511B (en) * | 2020-07-21 | 2021-08-10 | 浙江大学 | Magnetic compatible nerve probe and preparation method thereof |
CN111839511A (en) * | 2020-07-21 | 2020-10-30 | 浙江大学 | Magnetic compatible nerve probe and preparation method thereof |
CN113545790A (en) * | 2020-07-21 | 2021-10-26 | 浙江大学 | A kind of preparation method of magnetic compatibility nerve probe |
CN111956218B (en) * | 2020-08-10 | 2024-04-16 | 中国科学院上海微系统与信息技术研究所 | Flexible brain electrode with electrochemical and electrophysiological detection functions and preparation method thereof |
CN111956218A (en) * | 2020-08-10 | 2020-11-20 | 中国科学院上海微系统与信息技术研究所 | Flexible brain electrode with electrochemical and electrophysiological detection functions and preparation method thereof |
CN112022154A (en) * | 2020-09-10 | 2020-12-04 | 中国科学院半导体研究所 | Flexible neural electrode implantation system for multi-dimensional extraction of neuronal signals |
CN111990995B (en) * | 2020-09-10 | 2024-06-14 | 中国科学院半导体研究所 | Flexible electrode implantation system |
CN111990995A (en) * | 2020-09-10 | 2020-11-27 | 中国科学院半导体研究所 | Flexible electrode implantation system |
CN112386262A (en) * | 2020-11-18 | 2021-02-23 | 中国科学院半导体研究所 | U-shaped flexible electrode implantation system and preparation method thereof |
CN114948232B (en) * | 2021-02-22 | 2023-08-29 | 哈尔滨工业大学 | Flexible nerve electrode implantation surgical robot and control method |
CN114948232A (en) * | 2021-02-22 | 2022-08-30 | 哈尔滨工业大学 | Flexible nerve electrode implantation surgical robot and control method |
CN112999511A (en) * | 2021-03-10 | 2021-06-22 | 中国科学院半导体研究所 | Flexible electrode lead-in device |
CN112999511B (en) * | 2021-03-10 | 2024-03-19 | 中国科学院半导体研究所 | Flexible electrode lead-in device |
CN113041496A (en) * | 2021-03-19 | 2021-06-29 | 国家纳米科学中心 | Nerve electrical stimulation electrode, preparation method and implantation method thereof |
CN115339097A (en) * | 2021-05-13 | 2022-11-15 | 深脑科技有限公司 | 3D printing nerve probe and manufacturing method thereof |
WO2023186053A1 (en) * | 2022-04-02 | 2023-10-05 | 北京智冉医疗科技有限公司 | Flexible neural electrode composite structure and manufacturing and implantation method therefor, and auxiliary implantation assembly |
WO2023240688A1 (en) * | 2022-06-17 | 2023-12-21 | 中国科学院脑科学与智能技术卓越创新中心 | Flexible electrode and manufacturing method therefor |
CN114847955B (en) * | 2022-07-05 | 2022-10-11 | 诺尔医疗(深圳)有限公司 | Method for manufacturing electroencephalogram and electroencephalogram |
CN114847955A (en) * | 2022-07-05 | 2022-08-05 | 诺尔医疗(深圳)有限公司 | Method for manufacturing electroencephalogram and electroencephalogram |
CN115153568A (en) * | 2022-07-19 | 2022-10-11 | 中国科学院半导体研究所 | Implanted flexible neural microelectrode reinforced by gas-liquid column |
CN115227254A (en) * | 2022-07-25 | 2022-10-25 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and nerve microelectrode |
WO2024021323A1 (en) * | 2022-07-25 | 2024-02-01 | 武汉衷华脑机融合科技发展有限公司 | Combined microneedle structure and neural microelectrode |
WO2024021325A1 (en) * | 2022-07-25 | 2024-02-01 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and preparation method therefor |
WO2024021326A1 (en) * | 2022-07-25 | 2024-02-01 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and neural microelectrode |
CN115251931A (en) * | 2022-07-25 | 2022-11-01 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure and preparation method thereof |
CN115500831A (en) * | 2022-08-24 | 2022-12-23 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure based on integrated circuit chip |
CN115500832B (en) * | 2022-08-24 | 2024-04-02 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure |
CN115500831B (en) * | 2022-08-24 | 2024-01-12 | 武汉衷华脑机融合科技发展有限公司 | A composite microneedle structure based on integrated circuit chips |
CN115500832A (en) * | 2022-08-24 | 2022-12-23 | 武汉衷华脑机融合科技发展有限公司 | Composite microneedle structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101884530A (en) | Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity | |
US12220239B2 (en) | Long-term implantable electronic devices | |
CN101912666A (en) | A flexible implantable neural microelectrode based on PDMS and its manufacturing method | |
CN108751116B (en) | Warp-type flexible electrode for bioelectric recording or electrical stimulation and preparation method thereof | |
ES2391417T3 (en) | Device with flexible multilayer system designed to contact or electrostimulate living tissue cells or nerves | |
TWI328441B (en) | ||
Gwon et al. | Mechanical interlocking to improve metal–polymer adhesion in polymer-based neural electrodes and its impact on device reliability | |
US20160120472A1 (en) | Low Dissolution Rate Device and Method | |
TW201639525A (en) | High-speed, high-resolution electrophysiology using conformal electronics | |
CN101380257A (en) | Flexible retinal bump microelectrode chip and manufacturing method thereof | |
CN104523227A (en) | Flexible and extendable electronic device based on biocompatible films and manufacturing method | |
US10856764B2 (en) | Method for forming a multielectrode conformal penetrating array | |
Byun et al. | Fabrication of a flexible penetrating microelectrode array for use on curved surfaces of neural tissues | |
CN110558993A (en) | Prussian blue microneedle electrode for blood glucose monitoring, preparation method of prussian blue microneedle electrode, blood glucose monitoring patch and preparation method of blood glucose monitoring patch | |
CN101204603A (en) | An implantable MEMS bioelectrode and its preparation process | |
US20130211485A1 (en) | Probe Device and a Method of Fabricating the Same | |
CN106646048A (en) | Preparation method of microelectrode array | |
Poppendieck et al. | Development, manufacturing and application of double-sided flexible implantable microelectrodes | |
CN112869747B (en) | Microelectrodes, methods of making and using same, plug-like devices and microelectrode systems | |
CN102336386B (en) | Three-dimensional solid needle tip flexible micro-electrode array and making method thereof | |
CN102178999B (en) | Implanted neural electrode array system and manufacturing method thereof | |
CN105428488A (en) | Light-stimulated neural electrode device based on golden wire ball bonding method and manufacturing method thereof | |
CN114795224A (en) | Rigid-flexible combined nerve probe and preparation method thereof | |
WO2016202021A1 (en) | Flexible neural microelectrode array | |
CN113663141A (en) | A kind of preparation method of single-sided hardened coating of soft nerve probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20101117 |