CN101138663A - Fabrication method of biological microelectrode array based on flexible substrate - Google Patents
Fabrication method of biological microelectrode array based on flexible substrate Download PDFInfo
- Publication number
- CN101138663A CN101138663A CNA2007100474008A CN200710047400A CN101138663A CN 101138663 A CN101138663 A CN 101138663A CN A2007100474008 A CNA2007100474008 A CN A2007100474008A CN 200710047400 A CN200710047400 A CN 200710047400A CN 101138663 A CN101138663 A CN 101138663A
- Authority
- CN
- China
- Prior art keywords
- polyimide
- flexible substrate
- electrode
- polydimethylsiloxane
- microelectrode array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title abstract description 26
- 238000004519 manufacturing process Methods 0.000 title description 8
- 229920001721 polyimide Polymers 0.000 claims abstract description 70
- 239000004642 Polyimide Substances 0.000 claims abstract description 68
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 43
- 239000002253 acid Substances 0.000 claims abstract description 28
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 25
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 25
- -1 polydimethylsiloxane Polymers 0.000 claims abstract description 23
- 238000005323 electroforming Methods 0.000 claims abstract description 17
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 238000004544 sputter deposition Methods 0.000 claims abstract description 4
- 239000010931 gold Substances 0.000 claims description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 15
- 229910052737 gold Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 14
- 229920002120 photoresistant polymer Polymers 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 9
- 238000013007 heat curing Methods 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims 2
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 claims 1
- 238000000206 photolithography Methods 0.000 abstract description 14
- 238000001029 thermal curing Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 abstract description 3
- 238000004070 electrodeposition Methods 0.000 abstract description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 101100460147 Sarcophaga bullata NEMS gene Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种基于柔性基底的生物微电极阵列的制备方法,采用二次光刻和电铸工艺,在基片表面依次涂覆聚二甲基硅氧烷牺牲层和聚酰亚胺酸,热固化形成聚酰亚胺柔性基底,在柔性基底上通过溅射、光刻和电铸工艺制备金属电路,然后刻蚀金属底膜,涂覆聚酰亚胺酸,光刻并刻蚀聚酰亚胺酸,电铸金属电极,热固化形成聚酰亚胺,将制备好的基于聚酰亚胺柔性基底的生物微电极阵列从聚二甲基硅氧烷上剥离下来。电极位于金属电路的两端,并按照应用要求排布电极阵列,电极一头与生物组织相连,另一头与刺激器或测量仪器相连,电极底端的金属电路将两边电极相连。本发明制造的生物微电极阵列具有成品率高,电极位置可控,阻抗小,生物相容等优点。
The invention relates to a preparation method of a biological microelectrode array based on a flexible substrate, which adopts secondary photolithography and electroforming technology, and sequentially coats polydimethylsiloxane sacrificial layer and polyimide acid on the substrate surface, Thermal curing forms a polyimide flexible substrate, and prepares metal circuits on the flexible substrate by sputtering, photolithography and electroforming processes, then etches the metal base film, coats polyimide acid, photolithography and etch polyimide Imino acid, electroformed metal electrodes, thermally cured to form polyimide, and the prepared biomicroelectrode array based on polyimide flexible substrate was peeled off from polydimethylsiloxane. The electrodes are located at both ends of the metal circuit, and the electrode array is arranged according to the application requirements. One end of the electrode is connected to the biological tissue, and the other end is connected to the stimulator or measuring instrument. The metal circuit at the bottom of the electrode connects the electrodes on both sides. The biological microelectrode array manufactured by the invention has the advantages of high yield, controllable electrode position, small impedance, biocompatibility and the like.
Description
技术领域 technical field
本发明涉及一种基于柔性基底的生物微电极阵列的制备方法,制备的生物微电极阵列用于人造视网膜、脑刺激和测量电极等,属于生物医学工程领域。The invention relates to a method for preparing a biological microelectrode array based on a flexible substrate. The prepared biological microelectrode array is used for artificial retina, brain stimulation and measurement electrodes, etc., and belongs to the field of biomedical engineering.
背景技术 Background technique
植入式生物电极主要用于脑的刺激和脑电流的测量,可应用于癫痫或帕金森病的治疗,也可应用于人工耳蜗或人造视网膜中,使盲人看到图像,聋子听到声音,生物电极制备技术的发展,将大大改善和提高人们的生活水平。生物电极要求柔性,生物相容,阻抗小,电极可根据需要进行排布。A.Hung在Microtechnologies in Medicine & Biology 2nd Annual InternationalIEEE-EMB Special Topic Conference on 2-4May 2002:76-79中介绍了一种柔性基底生物微电极阵列制备方法,该方法采用双层聚酰亚胺工艺,电极采用电铸工艺制备,但用该方法制备的生物微电极阵列相互之间没有绝缘,在使用中会发生短路。N.MacCarthy在Sensors and Actuators A,2006,132:296-301中采用激光将柔性基底生物微电极阵列从基底上释放,用该工艺制备的微电极阵列未进行第二次电铸,其电极低于封装平面8μm,阻抗较大,需要较大的刺激电流,释放微电极阵列需要光敏聚酰亚胺和激光设备。D.C.Rodger在Nano/Micro Engineered and Molecular System,2006.NEMS 06.1st IEEEInternational Conference on Jan.2006:743-746中采用光刻胶作为牺牲层,在聚对二甲苯(parylene)上制备柔性基底生物微电极阵列,用该工艺制备的微电极阵列未进行第二次电铸,其电极低于封装平面,阻抗较大,需要较大的刺激电流。对于基于柔性衬底聚酰亚胺的器件的释放,Tayfun Akin等人在Transactions on biomedical engineering,1999,46:471-480中报道了采用Ti作为牺牲层,最后用20%HF和80%的去离子水腐蚀牺牲层,释放器件;肖素艳等人在《光学精密工程》,2005,13:674-680中则采用SiO2作为牺牲层,释放前在器件表面旋涂一层光刻胶以保护Pt电阻和Au电极,然后采用体积比为1∶1的HF(49%)和HCl(36%)混合液腐蚀牺牲层。采用金属或SiO2作牺牲层,所用腐蚀液存在毒性,并且不利于器件的生物相容性。Implantable bioelectrodes are mainly used for brain stimulation and brain current measurement. They can be used in the treatment of epilepsy or Parkinson's disease, and can also be used in cochlear implants or artificial retinas, so that the blind can see images and the deaf can hear sounds. The development of bioelectrode preparation technology will greatly improve and enhance people's living standards. Bioelectrodes require flexibility, biocompatibility, and low impedance, and the electrodes can be arranged according to needs. A. Hung introduced a flexible substrate biological microelectrode array preparation method in Microtechnologies in Medicine & Biology 2nd Annual InternationalIEEE-EMB Special Topic Conference on 2-4May 2002: 76-79, which uses a double-layer polyimide process , the electrode is prepared by electroforming process, but the biological microelectrode array prepared by this method is not insulated from each other, and short circuit will occur in use. N.MacCarthy in Sensors and Actuators A, 2006, 132: 296-301, used laser to release the flexible substrate biological microelectrode array from the substrate. The microelectrode array prepared by this process did not undergo a second electroforming, and its electrode was low The package plane is 8 μm, the impedance is large, and a large stimulation current is required. The release of the microelectrode array requires photosensitive polyimide and laser equipment. DCRodger used photoresist as a sacrificial layer in Nano/Micro Engineered and Molecular System, 2006.NEMS 06.1st IEEEInternational Conference on Jan.2006: 743-746, and prepared flexible substrate biological microelectrode arrays on parylene , the microelectrode array prepared by this process is not electroformed for the second time, and its electrodes are lower than the packaging plane, the impedance is large, and a large stimulation current is required. For the release of devices based on polyimide on flexible substrates, Tayfun Akin et al. reported in Transactions on biomedical engineering, 1999, 46: 471-480 that Ti was used as a sacrificial layer, and finally 20% HF and 80% Go Ionized water corrodes the sacrificial layer to release the device; Xiao Suyan and others used SiO 2 as the sacrificial layer in "Optical Precision Engineering", 2005, 13: 674-680, and spin-coated a layer of photoresist on the device surface before releasing to protect the Pt resistor and Au electrodes, and then use a 1:1 volume ratio of HF (49%) and HCl (36%) mixture to etch the sacrificial layer. Metal or SiO2 is used as the sacrificial layer, and the corrosion solution used is toxic and is not conducive to the biocompatibility of the device.
利用微电子机械系统(MEMS,Micro Electro Mechanical Systems)加工工艺制备出具有优良生物相容性以及电学参数的生物电极阵列成为生物医学工程的一大趋势。It has become a major trend in biomedical engineering to prepare bioelectrode arrays with excellent biocompatibility and electrical parameters by using Micro Electro Mechanical Systems (MEMS) processing technology.
发明内容 Contents of the invention
本发明的目的在于针对现有技术的不足,提供一种基于柔性基底的生物微电极阵列的制备方法,具有工艺简单,成品率高,电极位置可按需排布,阻抗小,生物相容等优点。The purpose of the present invention is to address the deficiencies of the prior art, to provide a method for preparing a biological microelectrode array based on a flexible substrate, which has the advantages of simple process, high yield, electrode positions can be arranged as required, low impedance, biocompatibility, etc. advantage.
为实现这一目的,本发明采用二次光刻和电铸工艺,在玻璃或硅片基片表面依次涂覆聚二甲基硅氧烷(PDMS:Polydimethylsiloxane)牺牲层和聚酰亚胺酸,热固化形成聚酰亚胺柔性基底,在柔性基底上通过溅射、光刻和电铸工艺制备金属电路,然后刻蚀金属底膜,涂覆聚酰亚胺酸,光刻并刻蚀聚酰亚胺酸,电铸金属电极,电极位于金属电路的两端,并按照应用要求排布电极阵列,电极一头与生物组织相连,另一头与刺激器或测量仪器相连,电极底端的金属电路将两边电极相连,最后热固化聚酰亚胺,将制备好的基于聚酰亚胺柔性基底的生物微电极阵列从聚二甲基硅氧烷上剥离下来。In order to achieve this purpose, the present invention adopts secondary photolithography and electroforming process to coat polydimethylsiloxane (PDMS: Polydimethylsiloxane) sacrificial layer and polyimide acid successively on the surface of glass or silicon wafer substrate, Thermal curing forms a polyimide flexible substrate, and prepares metal circuits on the flexible substrate by sputtering, photolithography and electroforming processes, then etches the metal base film, coats polyimide acid, photolithography and etch polyimide Amino acid, electroformed metal electrodes, the electrodes are located at both ends of the metal circuit, and the electrode array is arranged according to the application requirements. One end of the electrode is connected to the biological tissue, and the other end is connected to the stimulator or measuring instrument. The metal circuit at the bottom of the electrode connects the two sides The electrodes are connected, and finally the polyimide is thermally cured, and the prepared biomicroelectrode array based on the polyimide flexible substrate is peeled off from the polydimethylsiloxane.
本发明的方法通过如下步骤实现:Method of the present invention realizes through following steps:
1、采用玻璃或者硅片为基片,用去离子水清洗基片,烘干;然后在基片表面涂覆100-500μm牺牲层聚二甲基硅氧烷,再在聚二甲基硅氧烷上涂覆20-100μm厚的聚酰亚胺酸,热固化形成聚酰亚胺柔性基底。1. Use glass or silicon wafers as the substrate, wash the substrate with deionized water, and dry it; then coat the surface of the substrate with a 100-500 μm sacrificial layer of polydimethylsiloxane, and then coat it with polydimethylsiloxane Coating 20-100 μm thick polyimide acid on the alkane, heat curing to form polyimide flexible substrate.
2、在柔性基底聚酰亚胺表面溅射50-150nm的Cr/Cu金属底膜,然后光刻、电铸金或铜,制备高度1-10μm、线宽5-100μm的金属电路。2. Sputter a 50-150nm Cr/Cu metal base film on the surface of the flexible polyimide substrate, then photolithography, electroform gold or copper, and prepare a metal circuit with a height of 1-10 μm and a line width of 5-100 μm.
3、去除光刻胶,去除底部的Cr/Cu金属底膜,涂覆1-5μm厚的聚酰亚胺酸,然后光刻、刻蚀聚酰亚胺酸、电铸金,最后热固化形成聚酰亚胺层膜,制备出高度1-5μm、直径5-200μm的生物电极阵列。3. Remove the photoresist, remove the Cr/Cu metal base film at the bottom, coat polyimide acid with a thickness of 1-5μm, then photolithography, etch polyimide acid, electroform gold, and finally heat-cure to form The polyimide film is used to prepare a biological electrode array with a height of 1-5 μm and a diameter of 5-200 μm.
4、将制备好的基于柔性基底的生物微电极阵列从聚二甲基硅氧烷上剥离下来。4. Peel off the prepared biological microelectrode array based on the flexible substrate from the polydimethylsiloxane.
利用本发明制造的基于柔性基底的生物微电极阵列优点在于:(1)工艺简单,成品率高,只采用二次光刻电铸工艺;(2)电极位置可控,可以根据应用要求排布电极阵列;(3)本制备方法采用先封装、后电铸的方法,电极高度高于封装平面,具有较小的阻抗;(4)采用聚酰亚胺和金、铂等生物相容材料,生物相容性好。The advantages of the biological microelectrode array based on the flexible substrate manufactured by the present invention are: (1) the process is simple, the yield is high, and only the secondary photolithography electroforming process is used; (2) the position of the electrodes is controllable and can be arranged according to application requirements Electrode array; (3) This preparation method adopts the method of encapsulation first and then electroforming, and the electrode height is higher than the encapsulation plane, which has small impedance; (4) Biocompatible materials such as polyimide and gold and platinum are used, Good biocompatibility.
附图说明 Description of drawings
图1为本发明提供的基于柔性基底的生物微电极阵列结构示意图。Fig. 1 is a schematic diagram of the structure of a biological microelectrode array based on a flexible substrate provided by the present invention.
图1中,3为聚酰亚胺(PI),4为金属底膜,5为金属电路,6为电极。In Fig. 1, 3 is polyimide (PI), 4 is a metal base film, 5 is a metal circuit, and 6 is an electrode.
图2为本发明的基于柔性基底的生物微电极阵列制作工艺流程。Fig. 2 is the fabrication process of the biological microelectrode array based on the flexible substrate of the present invention.
图2中,1为基片,2为聚二甲基硅氧烷(PDMS),3为聚酰亚胺(PI),4为金属底膜,5为金属电路,6为电极。In Fig. 2, 1 is a substrate, 2 is polydimethylsiloxane (PDMS), 3 is polyimide (PI), 4 is a metal base film, 5 is a metal circuit, and 6 is an electrode.
具体实施方式 Detailed ways
以下结合附图和具体的实施例对本发明的技术方案作进一步描述。以下实施例不构成对本发明的限定。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. The following examples are not intended to limit the present invention.
本发明提供的基于柔性基底的生物微电极阵列结构如图1所示,柔性基底采用聚酰亚胺3,在聚酰亚胺表面溅射金属底膜4,金属底膜4上布置金属电路5,电极6位于金属电路5的两端,并按照应用要求排布电极阵列。The biological microelectrode array structure based on the flexible substrate provided by the present invention is shown in Figure 1. The flexible substrate uses polyimide 3, and a metal base film 4 is sputtered on the surface of the polyimide, and a metal circuit 5 is arranged on the metal base film 4. , the electrodes 6 are located at both ends of the metal circuit 5, and the electrode arrays are arranged according to application requirements.
本发明方法的工艺流程如图2所示,步骤1:在基片1上依次涂覆聚二甲基硅氧烷2和聚酰亚胺酸,热固化形成柔性基底聚酰亚胺3;步骤2:在柔性基底聚酰亚胺3表面溅射金属底膜4,光刻、电铸金属电路5;步骤3:去除光刻胶和金属底膜,涂覆聚酰亚胺酸,光刻、刻蚀聚酰亚胺酸,电铸金属电极6,热固化形成聚酰亚胺;步骤4:将制备好的生物微电极阵列从聚二甲基硅氧烷2上剥离下来,获得柔性基底生物微电极阵列样品。The process flow of the method of the present invention is shown in Figure 2, step 1: coating polydimethylsiloxane 2 and polyimide acid successively on the substrate 1, thermal curing forms flexible base polyimide 3; 2: sputtering metal base film 4 on the surface of flexible substrate polyimide 3, photolithography, electroforming metal circuit 5; step 3: removing photoresist and metal base film, coating polyimide acid, photolithography, Etch polyimide acid, electroform metal electrode 6, and heat-cure to form polyimide; Step 4: Peel off the prepared biological microelectrode array from polydimethylsiloxane 2 to obtain a flexible substrate biological Microelectrode array samples.
实施例1Example 1
生物微电极阵列结构参数:玻璃基片,聚二甲基硅氧烷厚度100μm,聚酰亚胺厚度50μm,金电路高度2μm,金电极高度5μm。Structural parameters of biological microelectrode array: glass substrate, polydimethylsiloxane thickness 100 μm, polyimide thickness 50 μm, gold circuit height 2 μm, gold electrode height 5 μm.
(1)柔性基底制备(1) Preparation of flexible substrate
采用厚度为2mm的玻璃片为基片1,首先进行基片处理:用丙酮、酒精和去离子水超声清洗干净,在180℃真空炉中烘干3小时。然后在基片上旋涂厚度为100μm厚的聚二甲基硅氧烷2,转速为1000rpm,在80℃下2小时进行固化,然后旋涂厚度为50μm的聚酰亚胺酸,转速为1000rpm,在采用阶梯升温法(从80℃--120℃--180℃--280℃)热固化形成柔性基底聚酰亚胺3。A glass sheet with a thickness of 2 mm was used as the substrate 1, and the substrate was firstly treated by ultrasonic cleaning with acetone, alcohol and deionized water, and dried in a vacuum oven at 180° C. for 3 hours. Then spin-coat polydimethylsiloxane 2 with a thickness of 100 μm on the substrate at a speed of 1000 rpm, and cure at 80° C. for 2 hours, then spin-coat polyimide acid with a thickness of 50 μm at a speed of 1000 rpm. The flexible base polyimide 3 is formed by thermal curing using a stepwise heating method (from 80° C. to 120° C. to 180° C. to 280° C.).
(2)金属金属电路制作(2) Fabrication of metal metal circuits
首先在柔性基底聚酰亚胺3表面溅射50nm的Cr/Cu金属底膜4,旋涂4μm厚的正胶AZ4620,采用德国Karl Suss公司MA6光刻机曝光,曝光时间为40秒,显影时间为40秒,电铸厚度2μm、宽度20-100μm的金电路5,电流密度4.4mA/cm2,电铸时间6分钟。First, sputter 50nm Cr/Cu metal base film 4 on the surface of flexible substrate polyimide 3, spin-coat positive resist AZ4620 with a thickness of 4 μm, and expose it with MA6 photolithography machine of Karl Suss Company in Germany. The exposure time is 40 seconds, and the developing time is 40 seconds. The gold circuit 5 with a thickness of 2 μm and a width of 20-100 μm was electroformed for 40 seconds, the current density was 4.4 mA/cm 2 , and the electroforming time was 6 minutes.
(3)金属电极制作(3) Fabrication of metal electrodes
在5.5mW/cm2曝光机下曝光5分钟,然后在显影液中显影10分钟,去除光刻胶。聚酰亚胺表面的Cr/Cu金属底膜4采用氩气等离子体刻蚀的方法去除,刻蚀功率20kW,气体流量40sccm,刻蚀时间5分钟。然后涂覆5μm厚的聚酰亚胺酸,转速为4000rpm,在聚酰亚胺酸上旋涂5μm厚的正胶AZ4620,曝光时间为50秒,显影时间为60秒,用显影液刻蚀聚酰亚胺酸,刻蚀时间为5分钟,用丙酮去除光刻胶,然后电铸5μm厚的金电极6,电流密度4.4mA/cm2,电铸时间为15分钟,采用阶梯升温法(从80℃--120℃--180℃--280℃)热固化形成聚酰亚胺层膜。Expose for 5 minutes under a 5.5mW/cm 2 exposure machine, and then develop in a developer for 10 minutes to remove the photoresist. The Cr/Cu metal base film 4 on the surface of the polyimide was removed by argon plasma etching, the etching power was 20kW, the gas flow rate was 40sccm, and the etching time was 5 minutes. Then apply 5 μm thick polyimide acid at a rotational speed of 4000 rpm, spin-coat 5 μm thick positive resist AZ4620 on the polyimide acid, exposure time is 50 seconds, development time is 60 seconds, and the polyimide acid is etched with a developer. imidic acid, the etching time is 5 minutes, the photoresist is removed with acetone, and then a 5 μm thick gold electrode 6 is electroformed, the current density is 4.4mA/cm 2 , the electroforming time is 15 minutes, and the step temperature method (from 80°C--120°C--180°C--280°C) heat curing to form a polyimide layer film.
(4)剥离(4) Stripping
将制备好的基于柔性基底的生物微电极阵列从聚二甲基硅氧烷上剥离下来。The prepared biological microelectrode array based on the flexible substrate was peeled off from the polydimethylsiloxane.
实施例2Example 2
生物微电极阵列结构参数:玻璃基片,聚二甲基硅氧烷厚度300μm,聚酰亚胺厚度20μm,金电路高度1μm,金电极高度3μm。Structural parameters of biological microelectrode array: glass substrate, polydimethylsiloxane thickness 300 μm, polyimide thickness 20 μm, gold circuit height 1 μm, gold electrode height 3 μm.
(1)柔性基底制备(1) Preparation of flexible substrate
采用厚度为2mm的玻璃片为基片1,首先进行基片处理:用丙酮、酒精和去离子水超声清洗干净,在180℃真空炉中烘干3小时。然后在基片上旋涂厚度为300μm厚的聚二甲基硅氧烷2,转速为700rpm,在90℃下2小时进行固化,然后旋涂厚度为20μm的聚酰亚胺酸,转速为2000rpm,采用阶梯升温法(从80℃--120℃--180℃--280℃)热固化形成柔性基底聚酰亚胺3。A glass sheet with a thickness of 2 mm was used as the substrate 1, and the substrate was firstly treated by ultrasonic cleaning with acetone, alcohol and deionized water, and dried in a vacuum oven at 180° C. for 3 hours. Then spin-coat polydimethylsiloxane 2 with a thickness of 300 μm on the substrate at a speed of 700 rpm, and cure at 90° C. for 2 hours, then spin-coat polyimide acid with a thickness of 20 μm at a speed of 2000 rpm. The flexible base polyimide 3 is formed by thermal curing by a stepwise heating method (from 80° C. to 120° C. to 180° C. to 280° C.).
(2)金属电路制作(2) Fabrication of metal circuits
首先在柔性基底聚酰亚胺3表面溅射100nm的Cr/Cu金属底膜4,旋涂2μm厚的正胶AZ4620,采用德国Karl Suss公司MA6光刻机曝光,曝光时间为30秒,显影时间为30秒,电铸厚度1μm、宽度20-100μm的金电路5,电流密度4.4mA/cm2,电铸时间3分钟。First, sputter 100nm Cr/Cu metal base film 4 on the surface of flexible substrate polyimide 3, spin-coat 2 μm thick positive resist AZ4620, and use MA6 photolithography machine of German Karl Suss company to expose, the exposure time is 30 seconds, and the developing time The gold circuit 5 with a thickness of 1 μm and a width of 20-100 μm was electroformed for 30 seconds, the current density was 4.4 mA/cm 2 , and the electroforming time was 3 minutes.
(3)金属电极制作(3) Fabrication of metal electrodes
在5.5mW/cm2曝光机下曝光5分钟,然后在显影液中显影10分钟,去除光刻胶。聚酰亚胺表面的Cr/Cu金属底膜4采用氩气等离子体刻蚀的方法去除,刻蚀功率20kW,气体流量40sccm,刻蚀时间10分钟。然后涂覆3μm厚的聚酰亚胺酸,转速为4500rpm,在聚酰亚胺酸上旋涂4μm厚的正胶,曝光时间为50秒,显影时间为40秒,用显影液刻蚀聚酰亚胺酸,刻蚀时间3分钟,用丙酮去除光刻胶,然后电铸3μm厚的金电极6,电流密度4.4mA/cm2,电铸时间为9分钟。采用阶梯升温法(从80℃--120℃--180℃--280℃)热固化形成聚酰亚胺层膜。Expose for 5 minutes under a 5.5mW/cm 2 exposure machine, and then develop in a developer for 10 minutes to remove the photoresist. The Cr/Cu metal base film 4 on the polyimide surface was removed by argon plasma etching, with an etching power of 20 kW, a gas flow rate of 40 sccm, and an etching time of 10 minutes. Then apply a 3 μm thick polyimide acid at a speed of 4500 rpm, spin coat a 4 μm thick positive resist on the polyimide acid, expose for 50 seconds, develop for 40 seconds, and etch the polyimide with a developer. Imino acid, etching time is 3 minutes, remove photoresist with acetone, and then electroform gold electrode 6 with a thickness of 3 μm, current density is 4.4 mA/cm 2 , electroforming time is 9 minutes. The polyimide film is formed by thermal curing by step-wise heating method (from 80°C to 120°C to 180°C to 280°C).
(4)剥离(4) Stripping
将制备好的基于柔性基底的生物微电极阵列从聚二甲基硅氧烷上剥离下来。The prepared biological microelectrode array based on the flexible substrate was peeled off from the polydimethylsiloxane.
实施例3Example 3
生物微电极阵列结构参数:玻璃基片,聚二甲基硅氧烷厚度500μm,聚酰亚胺厚度100μm,铜电路高度10μm,金电极高度1μm。Structural parameters of biological microelectrode array: glass substrate, polydimethylsiloxane thickness 500 μm, polyimide thickness 100 μm, copper circuit height 10 μm, gold electrode height 1 μm.
(1)柔性基底制备(1) Preparation of flexible substrate
采用厚度为2mm的玻璃片为基片1,首先进行基片处理:用丙酮、酒精和去离子水超声清洗干净,在180℃真空炉中烘干3小时。然后在基片上旋涂厚度为500μm厚的聚二甲基硅氧烷2,转速为500rpm,在90℃下3小时进行固化,然后旋涂厚度为100μm的聚酰亚胺酸,转速为500rpm,采用阶梯升温法(从80℃--120℃--180℃--280℃)热固化形成柔性基底聚酰亚胺3。A glass sheet with a thickness of 2 mm was used as the substrate 1, and the substrate was firstly treated by ultrasonic cleaning with acetone, alcohol and deionized water, and dried in a vacuum oven at 180° C. for 3 hours. Then spin-coat polydimethylsiloxane 2 with a thickness of 500 μm on the substrate at a speed of 500 rpm, and cure at 90° C. for 3 hours, then spin-coat polyimide acid with a thickness of 100 μm at a speed of 500 rpm. The flexible base polyimide 3 is formed by thermal curing by a stepwise heating method (from 80° C. to 120° C. to 180° C. to 280° C.).
(2)金属电路制作(2) Fabrication of metal circuits
首先在柔性基底聚酰亚胺3表面溅射150nm的Cr/Cu金属底膜4,旋涂12μm厚的正胶AZ4620,采用德国Karl Suss公司MA6光刻机曝光,曝光时间为120秒,显影时间为120秒,电铸厚度10μm、宽度20-100μm的铜电路5,电流密度4.4mA/cm2,电铸时间30分钟。First, sputter 150nm Cr/Cu metal base film 4 on the surface of flexible substrate polyimide 3, spin-coat positive resist AZ4620 with a thickness of 12 μm, and use MA6 photolithography machine of German Karl Suss company to expose, the exposure time is 120 seconds, and the developing time The copper circuit 5 with a thickness of 10 μm and a width of 20-100 μm was electroformed for 120 seconds, the current density was 4.4 mA/cm 2 , and the electroforming time was 30 minutes.
(3)金属电极制作(3) Fabrication of metal electrodes
在5.5mW/cm2曝光机下曝光5分钟,然后在显影液中显影10分钟,去除光刻胶。聚酰亚胺表面的Cr/Cu金属底膜4采用氩气等离子体刻蚀的方法去除,刻蚀功率20kW,气体流量40sccm,刻蚀时间15分钟。然后涂覆1μm厚的聚酰亚胺酸,转速为6000rpm,在聚酰亚胺酸上旋涂2μm厚的正胶,曝光时间为30秒,显影时间为40秒,用显影液刻蚀聚酰亚胺酸,刻蚀时间为1分钟,用丙酮去除光刻胶,然后电铸1μm厚的金电极6,电流密度4.4mA/cm2,电铸时间为3分钟。在采用阶梯升温法(从80℃--120℃--180℃--280℃)热固化形成聚酰亚胺层膜。Expose for 5 minutes under a 5.5mW/cm 2 exposure machine, and then develop in a developer for 10 minutes to remove the photoresist. The Cr/Cu metal bottom film 4 on the surface of the polyimide was removed by argon plasma etching, the etching power was 20kW, the gas flow rate was 40sccm, and the etching time was 15 minutes. Then coat 1 μm thick polyimide acid at a rotational speed of 6000 rpm, spin-coat 2 μm thick positive resist on the polyimide acid, exposure time is 30 seconds, development time is 40 seconds, and the polyimide acid is etched with developer. Imino acid, the etching time is 1 minute, the photoresist is removed with acetone, and then a 1 μm thick gold electrode 6 is electroformed, the current density is 4.4 mA/cm 2 , and the electroforming time is 3 minutes. The polyimide layer film is formed by thermal curing using a stepwise heating method (from 80°C to 120°C to 180°C to 280°C).
(4)剥离(4) Stripping
将制备好的基于柔性基底的生物微电极阵列从聚二甲基硅氧烷上剥离下来。The prepared biological microelectrode array based on the flexible substrate was peeled off from the polydimethylsiloxane.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100474008A CN100551462C (en) | 2007-10-25 | 2007-10-25 | Fabrication method of biological microelectrode array based on flexible substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100474008A CN100551462C (en) | 2007-10-25 | 2007-10-25 | Fabrication method of biological microelectrode array based on flexible substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101138663A true CN101138663A (en) | 2008-03-12 |
CN100551462C CN100551462C (en) | 2009-10-21 |
Family
ID=39190870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100474008A Expired - Fee Related CN100551462C (en) | 2007-10-25 | 2007-10-25 | Fabrication method of biological microelectrode array based on flexible substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100551462C (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101884530A (en) * | 2010-07-14 | 2010-11-17 | 中国科学院半导体研究所 | Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity |
CN101973508A (en) * | 2010-09-17 | 2011-02-16 | 上海交通大学 | Flexible substrate MEMS technology-based electroencephalogram dry electrode array and preparation method thereof |
CN101700869B (en) * | 2009-11-12 | 2011-06-01 | 上海交通大学 | Fabrication method of biological microelectrode array on flexible substrate based on substrate patterning |
CN102320549A (en) * | 2011-07-28 | 2012-01-18 | 北京大学 | Method for improving stress linearity of film |
CN102336394A (en) * | 2011-10-26 | 2012-02-01 | 清华大学 | Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering |
CN101430300B (en) * | 2008-12-19 | 2012-05-16 | 清华大学 | Three-dimensional microelectrode for biomedical electrochemical detection and manufacturing method thereof |
CN102500055A (en) * | 2011-10-25 | 2012-06-20 | 上海交通大学 | Auxiliary implantable flexible microelectrode of non-absorbable suture line and production method thereof |
CN102867907A (en) * | 2012-10-11 | 2013-01-09 | 南京大学 | Method for manufacturing soft superconducting thin film |
CN101666776B (en) * | 2009-09-25 | 2013-02-13 | 南京大学 | Multi-channel chip electrophoresis integrated nanometer micro-strip electrode array and production method and application thereof |
CN103385699A (en) * | 2013-07-30 | 2013-11-13 | 上海交通大学 | Flexible resistance-type MEMS (micro-electro-mechanical systems) temperature sensor array and preparation method thereof |
CN105428488A (en) * | 2015-12-28 | 2016-03-23 | 上海交通大学 | Light-stimulated neural electrode device based on golden wire ball bonding method and manufacturing method thereof |
CN106469676A (en) * | 2015-08-21 | 2017-03-01 | 韩国电子通信研究院 | Manufacture the method for stretchable wire and the method manufacturing stretchable integrated circuit |
CN106562767A (en) * | 2016-11-04 | 2017-04-19 | 深圳大学 | Sweat detection system and manufacturing method therefor |
CN108254414A (en) * | 2018-03-09 | 2018-07-06 | 国家纳米科学中心 | A kind of flexible in vitro micro- raceway groove microelectrode array integrated chip and its preparation method and application |
CN108939287A (en) * | 2018-06-04 | 2018-12-07 | 清华大学 | The manufacturing method and nerve tract of flexible screw electrode detect therapeutic device |
CN109157310A (en) * | 2018-10-29 | 2019-01-08 | 北京大学第三医院 | A kind of knee-joint prosthesis surface pressure measurement system and method |
CN109231149A (en) * | 2018-08-24 | 2019-01-18 | 华中科技大学 | A kind of preparation method and product of fatigue durability flexible electronic device |
CN109663208A (en) * | 2019-02-15 | 2019-04-23 | 上海交通大学 | A kind of flexible nerve electrode and manufacturing method based on multilayer lamination structure substrate |
CN111346680A (en) * | 2020-03-23 | 2020-06-30 | 上海市第一人民医院 | Rapid preparation method of three-dimensional electrode for micro-scale flow-type electrotransfection |
CN112244848A (en) * | 2020-09-29 | 2021-01-22 | 哈尔滨工业大学 | Preparation of multi-channel MEAs based on cortical EEG |
CN116139398A (en) * | 2021-11-22 | 2023-05-23 | 深圳硅基传感科技有限公司 | Pad structure of flexible stimulating electrode and preparation method thereof |
CN117976294A (en) * | 2024-02-26 | 2024-05-03 | 首都医科大学附属北京天坛医院 | An array microelectrode device for mapping the path of the tumor-bearing nerve during schwannoma surgery |
-
2007
- 2007-10-25 CN CNB2007100474008A patent/CN100551462C/en not_active Expired - Fee Related
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101430300B (en) * | 2008-12-19 | 2012-05-16 | 清华大学 | Three-dimensional microelectrode for biomedical electrochemical detection and manufacturing method thereof |
CN101666776B (en) * | 2009-09-25 | 2013-02-13 | 南京大学 | Multi-channel chip electrophoresis integrated nanometer micro-strip electrode array and production method and application thereof |
CN101700869B (en) * | 2009-11-12 | 2011-06-01 | 上海交通大学 | Fabrication method of biological microelectrode array on flexible substrate based on substrate patterning |
CN101884530A (en) * | 2010-07-14 | 2010-11-17 | 中国科学院半导体研究所 | Flexible Probe Electrode and Its Implantation Tool for Recording Electrical Signals of Neural Activity |
CN101973508B (en) * | 2010-09-17 | 2012-09-05 | 上海交通大学 | Flexible substrate MEMS technology-based electroencephalogram dry electrode array and preparation method thereof |
CN101973508A (en) * | 2010-09-17 | 2011-02-16 | 上海交通大学 | Flexible substrate MEMS technology-based electroencephalogram dry electrode array and preparation method thereof |
CN102320549A (en) * | 2011-07-28 | 2012-01-18 | 北京大学 | Method for improving stress linearity of film |
CN102320549B (en) * | 2011-07-28 | 2014-05-28 | 北京大学 | Method for improving stress linearity of film |
CN102500055A (en) * | 2011-10-25 | 2012-06-20 | 上海交通大学 | Auxiliary implantable flexible microelectrode of non-absorbable suture line and production method thereof |
CN102500055B (en) * | 2011-10-25 | 2014-02-26 | 上海交通大学 | Non-absorbable suture-assisted implantable flexible microelectrode and preparation method thereof |
CN102336394A (en) * | 2011-10-26 | 2012-02-01 | 清华大学 | Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering |
CN102336394B (en) * | 2011-10-26 | 2014-05-28 | 清华大学 | Method for manufacturing flexible micro electro mechanical system (MEMS) resistance reducing covering |
CN102867907A (en) * | 2012-10-11 | 2013-01-09 | 南京大学 | Method for manufacturing soft superconducting thin film |
CN102867907B (en) * | 2012-10-11 | 2016-09-21 | 南京大学 | A kind of method preparing flexible superconducting thin film |
CN103385699A (en) * | 2013-07-30 | 2013-11-13 | 上海交通大学 | Flexible resistance-type MEMS (micro-electro-mechanical systems) temperature sensor array and preparation method thereof |
CN106469676A (en) * | 2015-08-21 | 2017-03-01 | 韩国电子通信研究院 | Manufacture the method for stretchable wire and the method manufacturing stretchable integrated circuit |
CN106469676B (en) * | 2015-08-21 | 2018-11-06 | 韩国电子通信研究院 | The method for manufacturing the method for stretchable conducting wire and manufacturing stretchable integrated circuit |
CN105428488B (en) * | 2015-12-28 | 2018-04-17 | 上海交通大学 | A kind of light stimulus nerve electrode device based on gold wire ball welding method and preparation method thereof |
CN105428488A (en) * | 2015-12-28 | 2016-03-23 | 上海交通大学 | Light-stimulated neural electrode device based on golden wire ball bonding method and manufacturing method thereof |
CN106562767A (en) * | 2016-11-04 | 2017-04-19 | 深圳大学 | Sweat detection system and manufacturing method therefor |
CN108254414A (en) * | 2018-03-09 | 2018-07-06 | 国家纳米科学中心 | A kind of flexible in vitro micro- raceway groove microelectrode array integrated chip and its preparation method and application |
CN108254414B (en) * | 2018-03-09 | 2024-02-02 | 国家纳米科学中心 | Flexible in-vitro micro-channel microelectrode array integrated chip and preparation method and application thereof |
CN108939287B (en) * | 2018-06-04 | 2020-09-04 | 清华大学 | Manufacturing method of flexible spiral electrode and nerve bundle detection and treatment device |
CN108939287A (en) * | 2018-06-04 | 2018-12-07 | 清华大学 | The manufacturing method and nerve tract of flexible screw electrode detect therapeutic device |
CN109231149A (en) * | 2018-08-24 | 2019-01-18 | 华中科技大学 | A kind of preparation method and product of fatigue durability flexible electronic device |
CN109231149B (en) * | 2018-08-24 | 2020-08-14 | 华中科技大学 | A kind of preparation method and product of fatigue-resistant flexible electronic device |
CN109157310A (en) * | 2018-10-29 | 2019-01-08 | 北京大学第三医院 | A kind of knee-joint prosthesis surface pressure measurement system and method |
CN109663208A (en) * | 2019-02-15 | 2019-04-23 | 上海交通大学 | A kind of flexible nerve electrode and manufacturing method based on multilayer lamination structure substrate |
CN109663208B (en) * | 2019-02-15 | 2022-04-26 | 上海交通大学 | A kind of flexible neural electrode based on multilayer stack structure substrate and its manufacturing method |
CN111346680A (en) * | 2020-03-23 | 2020-06-30 | 上海市第一人民医院 | Rapid preparation method of three-dimensional electrode for micro-scale flow-type electrotransfection |
CN112244848A (en) * | 2020-09-29 | 2021-01-22 | 哈尔滨工业大学 | Preparation of multi-channel MEAs based on cortical EEG |
CN112244848B (en) * | 2020-09-29 | 2023-11-28 | 哈尔滨工业大学 | Preparation method of multichannel MEAs (membrane-associated systems) based on cortex electroencephalogram |
CN116139398A (en) * | 2021-11-22 | 2023-05-23 | 深圳硅基传感科技有限公司 | Pad structure of flexible stimulating electrode and preparation method thereof |
CN117976294A (en) * | 2024-02-26 | 2024-05-03 | 首都医科大学附属北京天坛医院 | An array microelectrode device for mapping the path of the tumor-bearing nerve during schwannoma surgery |
Also Published As
Publication number | Publication date |
---|---|
CN100551462C (en) | 2009-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101138663A (en) | Fabrication method of biological microelectrode array based on flexible substrate | |
CN101700869B (en) | Fabrication method of biological microelectrode array on flexible substrate based on substrate patterning | |
CN101380257B (en) | Flexible retinal bump microelectrode chip and manufacturing method thereof | |
CN101973508B (en) | Flexible substrate MEMS technology-based electroencephalogram dry electrode array and preparation method thereof | |
CN104340956B (en) | Implantable multichannel flexible micro-pipe electrode and preparation method thereof | |
JP2009514602A (en) | Implantable microelectronic device and manufacturing method thereof | |
CN110980631B (en) | A kind of flexible electrode and preparation method thereof | |
CN110763256B (en) | Polydimethylsiloxane film, flexible capacitive sensor and preparation method thereof | |
CN108751116A (en) | Warpage type flexible electrode and preparation method thereof for biological electrographic recording or electro photoluminescence | |
CN101006920A (en) | Processing method of three-dimensional implantable microelectrode array | |
CN101172185A (en) | A kind of preparation method of implantable double-sided flexible microarray electrode | |
CN114795224A (en) | Rigid-flexible combined nerve probe and preparation method thereof | |
CN110061715B (en) | A method for fabricating piezoelectric thin-film resonators on non-silicon substrates | |
WO2023240686A1 (en) | Flexible electrode apparatus for bonding with seeg electrode, and manufacturing method therefor | |
CN102289148A (en) | Embedded micro-pinpoint electrode and manufacturing method thereof | |
CN114634151B (en) | An easily releasable ultra-thin flexible neural electrode array and preparation method thereof | |
Bhandari et al. | A novel masking method for high aspect ratio penetrating microelectrode arrays | |
CN109273367B (en) | Manufacturing method of metal thin film wire | |
CN101973509A (en) | Silicon micro needle surface coating process method based on micro-electromechanical system (MEMS) technology | |
US11970391B2 (en) | Flexible electrode and preparation method thereof | |
CN111017870B (en) | Flexible electrode and preparation method thereof | |
CN101950741B (en) | Method for producing chip electrode multilevel interconnection structure | |
Kim et al. | Fabrication of polydimethylsiloxane (PDMS)-based multielectrode array for neural interface | |
EP4304859A1 (en) | Fluorinated elastomers for brain probes and other applications | |
Ong et al. | Processing of platinum electrodes for parylene-C based neural probes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20091021 Termination date: 20121025 |