[go: up one dir, main page]

CN101882696B - Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof - Google Patents

Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof Download PDF

Info

Publication number
CN101882696B
CN101882696B CN200910083453.4A CN200910083453A CN101882696B CN 101882696 B CN101882696 B CN 101882696B CN 200910083453 A CN200910083453 A CN 200910083453A CN 101882696 B CN101882696 B CN 101882696B
Authority
CN
China
Prior art keywords
aqueous electrolyte
electrolyte material
phosphate
fsi
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910083453.4A
Other languages
Chinese (zh)
Other versions
CN101882696A (en
Inventor
李立飞
周思思
李泓
黄学杰
韩鸿波
周志彬
聂进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN200910083453.4A priority Critical patent/CN101882696B/en
Publication of CN101882696A publication Critical patent/CN101882696A/en
Application granted granted Critical
Publication of CN101882696B publication Critical patent/CN101882696B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明提供一种非水电解质材料,其包括含氟磺酰亚胺锂盐和介电常数小于30的有机溶剂,该有机溶剂选自链状碳酸酯类、磷酸酯类、硅氧烷类、硼氧烷类、乙酸酯类、丙酸酯类、丁酸酯类、CF3OCH2CH2OCF3、C2H5OCH2CH2OCH3、C2F5OCH2CH2OCF3、1,3-二氧环戊烷以及碳原子数大于2的脂肪腈类有机溶剂中的一种或几种。所述非水电解质材料的离子电导率为0.01-18mS/cm,锂离子迁移数为tLi+=0.2-0.8,适用的温度范围为-80℃-60℃。本发明还提供了上述非水电解质材料在制备锂电池和超级电容器中的应用。本发明进一步提供了包含上述含氟磺酰亚胺基锂的非水电解质材料的锂电池和超级电容器。

The invention provides a non-aqueous electrolyte material, which comprises fluorine-containing sulfonylimide lithium salt and an organic solvent with a dielectric constant less than 30, and the organic solvent is selected from chain carbonates, phosphoric acid esters, siloxanes, Boroxanes, acetates, propionates, butyrates, CF 3 OCH 2 CH 2 OCF 3 , C 2 H 5 OCH 2 CH 2 OCH 3 , C 2 F 5 OCH 2 CH 2 OCF 3 , One or more of 1,3-dioxolane and aliphatic nitrile organic solvents with more than 2 carbon atoms. The ion conductivity of the non-aqueous electrolyte material is 0.01-18mS/cm, the lithium ion migration number is t Li+ =0.2-0.8, and the applicable temperature range is -80°C-60°C. The present invention also provides the application of the above-mentioned non-aqueous electrolyte material in the preparation of lithium batteries and supercapacitors. The present invention further provides a lithium battery and a supercapacitor comprising the above-mentioned non-aqueous electrolyte material containing fluorine-containing lithium sulfonylimide.

Description

一种含氟磺酰亚胺基锂盐的非水电解质材料及其应用A kind of non-aqueous electrolyte material and application thereof containing fluorine-containing sulfonylimide lithium salt

技术领域 technical field

本发明涉及先进能源及材料技术领域。具体地,本发明涉及一种作为导电盐的含氟磺酰亚胺基锂盐的非水电解质材料及其在锂电池、超级电容器中的应用。The invention relates to the technical field of advanced energy and materials. Specifically, the present invention relates to a non-aqueous electrolyte material of a fluorine-containing sulfonimide-based lithium salt as a conductive salt and its application in lithium batteries and supercapacitors.

背景技术 Background technique

自二十世纪七十年代初期提出可充放锂电池的概念,至九十年代初期由索尼(SONY)公司首先实现其商业化应用以来,可充放电锂电池的基础研究和产业应用迅速成为先进能源、材料、及电化学等多学科的研究热点。非水电解质是锂电池的关键材料之一,其综合性能(如化学和电化学稳定性,高低温性能等)直接影响二次锂电池的使用。目前,商业化二次锂电池电解质主要由有机碳酸酯(如碳酸二甲酯(DMC),碳酸二乙酯(DEC),乙烯碳酸酯(EC)等)和导电盐(主要是LiPF6)组成。有机碳酸酯非水电解质溶液的优化和选择是提高可充放电锂(离子)电池综合性能的重要研究方向之一。应用于可充放电锂(离子)电池的非水电解质溶液,一般应满足以下要求:(1)离子电导率高,一般应达到10-3S/cm;(2)锂离子迁移数高,以获得高的锂离子电导率;(3)电化学窗口宽,即满足锂离子在正、负极的可逆嵌入和脱出,而电解质不发生化学或电化学分解;(4)热稳定性高,在较宽的工作温度范围内不发生化学或电化学分解;(5)化学稳定性高,即与电池体系的电极材料如正极、负极、集流体、粘结剂、导电剂和隔膜等不发生化学反应;(6)具有较低的界面转移电阻;(7)与目前主要使用的正负极材料兼容性好;(8)无毒、无污染、使用安全,最好能生物降解;(9)容易制备,成本低。Since the concept of a rechargeable lithium battery was proposed in the early 1970s, and its commercial application was first realized by Sony (SONY) in the early 1990s, the basic research and industrial application of rechargeable lithium batteries have rapidly become advanced. Multidisciplinary research hotspots such as energy, materials, and electrochemistry. Non-aqueous electrolyte is one of the key materials of lithium batteries, and its comprehensive properties (such as chemical and electrochemical stability, high and low temperature performance, etc.) directly affect the use of secondary lithium batteries. At present, the commercial secondary lithium battery electrolyte is mainly composed of organic carbonates (such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylene carbonate (EC), etc.) and conductive salts (mainly LiPF 6 ). . The optimization and selection of organic carbonate non-aqueous electrolyte solutions is one of the important research directions to improve the comprehensive performance of rechargeable lithium (ion) batteries. The non-aqueous electrolyte solutions used in rechargeable lithium (ion) batteries should generally meet the following requirements: (1) high ion conductivity, generally should reach 10 -3 S/cm; (2) high lithium ion migration number, with Obtain high lithium ion conductivity; (3) wide electrochemical window, that is, to meet the reversible intercalation and extraction of lithium ions in the positive and negative electrodes, and the electrolyte does not undergo chemical or electrochemical decomposition; (4) high thermal stability, in relatively No chemical or electrochemical decomposition occurs within a wide operating temperature range; (5) High chemical stability, that is, no chemical reaction occurs with electrode materials of the battery system such as positive electrodes, negative electrodes, current collectors, binders, conductive agents, and separators (6) has a low interfacial transfer resistance; (7) has good compatibility with the positive and negative materials mainly used at present; (8) is non-toxic, non-polluting, safe to use, and preferably biodegradable; (9) easy Preparation, low cost.

经过几十年的研究和实践,目前应用于商业化二次锂电池的非水电解液一般选择六氟磷酸锂(LiPF6)作为导电盐,溶剂多为高粘度、高介电常数的碳酸乙烯酯(EC)、碳酸丙烯酯(PC)与低粘度、低介电常数的碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、或甲基乙基碳酸酯(EMC)构成的混合溶剂。此类体系最终能够大规模使用,并非其各项指标具有突出的特性,而是其综合指标基本能满足现有二次锂电池的产业应用要求。After decades of research and practice, lithium hexafluorophosphate (LiPF 6 ) is generally selected as the conductive salt for non-aqueous electrolytes currently used in commercial secondary lithium batteries, and the solvent is mostly ethylene carbonate (EC) with high viscosity and high dielectric constant. ), propylene carbonate (PC) and low viscosity, low dielectric constant dimethyl carbonate (DMC), diethyl carbonate (DEC), or a mixed solvent of methyl ethyl carbonate (EMC). This kind of system can be used on a large scale in the end, not because its various indicators have outstanding characteristics, but because its comprehensive indicators can basically meet the industrial application requirements of existing secondary lithium batteries.

尽管以LiPF6作为导电盐的非水电解液在锂离子电池产业上获得了巨大成功,但是LiPF6自身固有的缺陷限制了其电解液在极限条件下的应用(如极低温度)。这主要是由于PF6 -阴离子对称性高,其锂盐LiPF6晶格能大,熔点高。由于晶格能大、熔点高的化合物在有机溶剂中溶解度小,因而,LiPF6导电盐在低温下易从有机电解液中结晶析出。另外,其电解液中采用了高熔点的环状碳酸酯溶剂(如EC,mp37℃),这类有机溶剂自身在低温下也易结晶。所以,以LiPF6为导电盐、且含有EC的电解液一般凝固点较高(约-20至0℃)。电解液中之所以必须使用EC,是由于LiPF6在DMC(介电常数为3)、DEC(介电常数为3)等具有低介电常数、低粘度的链状碳酸酯中具有较低的溶解度,因此必须添加一定比例的具有高介电常数、高粘度的EC(介电常数为90)、PC(介电常数为65)等环状碳酸酯,以促进LiPF6的解离。这样一种通过混合高介电常数、高粘度的环状脂类溶剂以及低介电常数、低粘度的链状脂类溶剂的方法,是目前制备二次锂电池商用电解质最常见的做法,参见《Chemical Review》2004年,104期,4303至4417页上关于非水电解质的综述。Although the non-aqueous electrolyte using LiPF 6 as the conductive salt has achieved great success in the lithium-ion battery industry, the inherent defects of LiPF 6 limit its application under extreme conditions (such as extremely low temperature). This is mainly due to the high symmetry of the PF 6 -anion , the large lattice energy and high melting point of its lithium salt LiPF 6 . Because compounds with large lattice energy and high melting point have low solubility in organic solvents, LiPF 6 conductive salts are easy to crystallize and precipitate from organic electrolytes at low temperatures. In addition, a high melting point cyclic carbonate solvent (such as EC, mp37°C) is used in the electrolyte, and this type of organic solvent itself is easy to crystallize at low temperature. Therefore, the electrolyte containing LiPF 6 as the conductive salt and containing EC generally has a higher freezing point (about -20 to 0°C). The reason why EC must be used in the electrolyte is that LiPF 6 has a lower dielectric constant in chain carbonates with low dielectric constant and low viscosity, such as DMC (dielectric constant 3), DEC (dielectric constant 3), etc. Therefore, a certain proportion of cyclic carbonates such as EC (dielectric constant 90) and PC (dielectric constant 65) with high dielectric constant and high viscosity must be added to promote the dissociation of LiPF 6 . Such a method of mixing a high dielectric constant, high viscosity cyclic lipid solvent and a low dielectric constant, low viscosity chain lipid solvent is currently the most common way to prepare a secondary lithium battery commercial electrolyte, see "Chemical Review" 2004, 104, page 4303 to 4417, a review on non-aqueous electrolytes.

综上所述,采用LiPF6为导电盐的二次锂电池低温性能很难满足实际需要。当环境温度低至零下40度,甚至更低时,电池无法完全释放其全部容量,甚至无法正常工作,从而限制了二次锂电池在极端温度条件下的应用。当温度降低时,目前以LiPF6作为导电盐的商用电解质溶液部分会发生晶析或固化,黏度增加,电导率急剧下降,电解质与电极的界面阻抗大大增加,导致电池性能急剧下降,甚至导致电池不能工作。In summary, the low-temperature performance of secondary lithium batteries using LiPF 6 as the conductive salt is difficult to meet actual needs. When the ambient temperature is as low as minus 40 degrees or even lower, the battery cannot fully release its full capacity, or even fail to work normally, thus limiting the application of secondary lithium batteries under extreme temperature conditions. When the temperature is lowered, the current commercial electrolyte solution using LiPF 6 as the conductive salt will crystallize or solidify partly, the viscosity will increase, the conductivity will drop sharply, and the interface impedance between the electrolyte and the electrode will increase greatly, resulting in a sharp decline in battery performance, and even lead to battery failure. can not work.

在其他储能器件,如超级电容器等,所用非水电解质在低温下的性能同样也很难满足实际需要。In other energy storage devices, such as supercapacitors, the performance of non-aqueous electrolytes at low temperatures is also difficult to meet actual needs.

此外,在电化学杂志(《J.Electrochem.Soc》)2001年,148期,第1100页和化学评述(《Chemical Review》2004年,104期,4303至4417页公开阐述了以LiPF6作为锂盐的电解液存在着两个显著不足之处:In addition, in Electrochemical Journal ("J.Electrochem.Soc") 2001, No. 148, page 1100 and Chemical Review ("Chemical Review" 2004, No. 104, pages 4303 to 4417), it is publicly stated that LiPF 6 is used as lithium Salt electrolytes have two significant disadvantages:

(1)热不稳定性,其原因在于:在溶液中,阴离子PF6存在一个平衡:LiPF6→LiF+PF5(1),这主要是由于Li+为硬酸,F-为硬碱,倾向于形成LiF而导致LiPF6分解,从而导致平衡向右进行。(1) Thermal instability, the reason is that in the solution, there is an equilibrium in the anion PF 6 : LiPF 6 → LiF+PF 5 (1), this is mainly because Li + is a hard acid, F - is a hard base, The tendency to form LiF leads to the decomposition of LiPF 6 , causing the equilibrium to proceed to the right.

(2)在由有机碳酸酯等极性非质子溶剂(dipolar aprotic solvent)电解液体系中,LiPF6导电盐处于高度溶剂化状态,而PF6 -溶剂化程度极低,反应活性高;电解液中微量水作为亲核试剂,与作为底物PF6 -发生亲核取代反应:LiPF6+H2O→POF3+LiF+2HF(2),PF5+H2O→POF3+2HF(3)。此反应也就是人们常说的P-F键对水非常敏感根本原因所在。更为严重的是式(2)和式(3)产生的HF对正极材料危害极大,将促进正极材料的溶解,使其储锂容量逐渐衰减。(2) In the electrolyte system composed of organic carbonate and other polar aprotic solvents (dipolar aprotic solvent), the LiPF 6 conductive salt is in a highly solvated state, while the PF 6 -solvation degree is extremely low and the reactivity is high; the electrolyte A small amount of water acts as a nucleophile and undergoes a nucleophilic substitution reaction with PF 6 - as a substrate: LiPF 6 +H 2 O→POF 3 +LiF+2HF(2), PF 5 +H 2 O→POF 3 +2HF( 3). This reaction is also the root cause of the PF bond that is often said to be very sensitive to water. What's more serious is that the HF produced by formula (2) and formula (3) is extremely harmful to the positive electrode material, which will promote the dissolution of the positive electrode material and gradually reduce its lithium storage capacity.

另外,以LiPF6、LiClO4、LiF、LiBF4、Li[CF3SO3]、Li[N(CF3SO2)2]、Li[BOB](BOB:双(草酰)硼酸酯)等常见锂盐作为导电盐的电解质溶液,还普遍存在锂离子迁移数低的缺点,一般这些电解质的锂离子迁移数小于0.3。在电解质溶液中,锂离子与阴离子均可以传导。锂离子的迁移数是指锂离子的电导率除以总的离子电导率。对于二次锂电池而言,电解质溶液中,能实现有效电荷转移的活性离子是锂离子,而非阴离子。因此低的锂离子迁移数将降低电解质溶液中有效的锂离子的电导率,增大电池内部的极化。这些电解质迁移数低的原因是锂离子发生溶剂化后,溶剂化离子的半径相对于阴离子反而更大。In addition, LiPF 6 , LiClO 4 , LiF, LiBF 4 , Li[CF 3 SO 3 ], Li[N(CF 3 SO 2 ) 2 ], Li[BOB] (BOB: bis(oxalyl) borate) Electrolyte solutions such as common lithium salts used as conductive salts generally have the disadvantage of low lithium ion migration numbers. Generally, the lithium ion migration numbers of these electrolytes are less than 0.3. In the electrolyte solution, both lithium ions and anions can conduct. The transfer number of lithium ions is the conductivity of lithium ions divided by the total ionic conductivity. For secondary lithium batteries, in the electrolyte solution, the active ions that can achieve effective charge transfer are lithium ions, not anions. Therefore, a low lithium ion migration number will reduce the conductivity of the effective lithium ions in the electrolyte solution and increase the polarization inside the battery. The reason for the low migration number of these electrolytes is that after the lithium ion is solvated, the radius of the solvated ion is larger than that of the anion.

1994年,加拿大Hydro-Quebec公司的Christophe Michot与MichelArmand等科学家,提出包括通式为[R1SO2NSO2R2]M的盐,其中R1,R2包括F,CF3,C2F5,C3F7等基团,M包括Li、Na、K等.例如将[FSO2NSO2F]H与LiF反应,生成[FSO2NSO2F]Li盐(LiFSI)。在该系列发明中,该锂盐或者作为聚合物电解质的锂盐,或者作为含PC的聚合物电解质的锂盐,或者在含环状碳酸酯等非水溶剂中使用,用于二次锂电池,参见FR94/03276,WO95/26056、US5916475、US6254797B1、US6682855B2的发明专利。其中专利US6682855B2对通式为Li[(ZSO2)2N]的化合物申请了发明专利,Z包括F以及氟化有机官能团。在这些发明专利中,作为实施例,LiFSI与LiTFSI的浓度为1M,在-40℃电导率小于1×10-4S/cm。2003年,日本的Kumiko Mie等申请了采用将LiFSI溶于丁内酯(BL)(介电常数为39)形成的电解质的锂离子电池的发明专利(参见US2004106047A1),在该发明专利中还可以包含第二种锂盐,如LiPF6、LiAsF6、LiBF4以及用于负极SEI膜成膜的添加剂VEC,以及在丁内酯中混合环状碳酸酯溶剂如PC、EC。在该专利中,电池测试的最低温度为0℃,为提供电导率的数据。In 1994, scientists such as Christophe Michot and Michel Armand of Hydro-Quebec Corporation in Canada proposed a salt with the general formula [R 1 SO 2 NSO 2 R 2 ]M, where R 1 and R 2 include F, CF 3 , C 2 F 5 , C 3 F 7 and other groups, M includes Li, Na, K, etc. For example, [FSO 2 NSO 2 F]H reacts with LiF to generate [FSO 2 NSO 2 F]Li salt (LiFSI). In this series of inventions, the lithium salt is either used as a lithium salt of a polymer electrolyte, or as a lithium salt of a polymer electrolyte containing PC, or used in a non-aqueous solvent containing cyclic carbonate, etc., for secondary lithium batteries , refer to the invention patents of FR94/03276, WO95/26056, US5916475, US6254797B1, US6682855B2. Among them, the patent US6682855B2 applied for an invention patent on the compound with the general formula Li[(ZSO 2 ) 2 N], where Z includes F and fluorinated organic functional groups. In these invention patents, as an example, the concentration of LiFSI and LiTFSI is 1M, and the conductivity at -40°C is less than 1×10 -4 S/cm. In 2003, Japan's Kumiko Mie et al. applied for an invention patent (see US2004106047A1) for a lithium-ion battery using an electrolyte formed by dissolving LiFSI in butyrolactone (BL) (dielectric constant 39). Contains the second lithium salt, such as LiPF 6 , LiAsF 6 , LiBF 4 and the additive VEC for negative electrode SEI film formation, and mixed cyclic carbonate solvents such as PC and EC in butyrolactone. In this patent, the lowest temperature of the battery test is 0°C to provide conductivity data.

2004年,Hydro-Quebec公司的Karim Zaghib等申请了可充放锂电池的发明专利(参见US20070111105A1、WO2004/068610A2),在该专利中采用金属锂作为负极,该电池可以在-20-60℃工作,该电池中电解质优选的为含增塑剂的聚合物电解质。其中锂盐包括LiFSI与LiTFSI盐,增塑剂溶剂优选为丁内酯,以及混含PC、EC的丁内酯,在这个发明专利中,盐在聚合物电解质的浓度为0.2-2.5M.In 2004, Karim Zaghib of Hydro-Quebec applied for a patent for the invention of a rechargeable lithium battery (see US20070111105A1, WO2004/068610A2). In this patent, metal lithium is used as the negative electrode, and the battery can work at -20-60°C , the electrolyte in the battery is preferably a plasticizer-containing polymer electrolyte. The lithium salts include LiFSI and LiTFSI salts, the plasticizer solvent is preferably butyrolactone, and butyrolactone mixed with PC and EC. In this invention patent, the concentration of the salt in the polymer electrolyte is 0.2-2.5M.

2005年,Hydro-Quebec公司的Christophe Michot在发明专利CA2527802A1中,进一步公开了LiFSI的制备方法。In 2005, Christophe Michot of Hydro-Quebec Company further disclosed the preparation method of LiFSI in the invention patent CA2527802A1.

2006年3月10日,美国Hammami Ama等申请了以[R1SO2NSO2R2]-为阴离子的离子液体的发明专利,参见WO2007/104144A1。该类离子液体的熔点为0℃以上。2006年11月12日日本的Ishiko Eriko等申请了采用包含FSI-的离子液体的锂离子电池的发明专利。该专利未对电池的低温性能报导。参见EP1995817A1。2007年7月18日,日本的Kashima Mari等申请了采用包含FSI-的离子液体的锂离子电池的发明专利,参见WO2009/011249A1。该发明的目的是利用离子液体的难燃性、低挥发性提高锂离子电池的安全性。On March 10, 2006, Hammami Ama et al. of the United States applied for a patent for the invention of an ionic liquid with [R 1 SO 2 NSO 2 R 2 ] - as anion, see WO2007/104144A1. The melting point of the ionic liquid is above 0°C. On November 12, 2006, Japan's Ishiko Eriko et al. applied for a patent for the invention of a lithium-ion battery using an ionic liquid containing FSI- . This patent does not report on the low temperature performance of the battery. See EP1995817A1. On July 18, 2007, Kashima Mari et al. of Japan applied for an invention patent for a lithium-ion battery using an ionic liquid containing FSI- , see WO2009/011249A1. The purpose of this invention is to utilize the flame retardancy and low volatility of ionic liquids to improve the safety of lithium ion batteries.

在公开发表的论文中,LiFSI有关的工作也得到了相应报导,下面简述如下。2005年,Karim Zaghib等在Journal of Power Sources 134(2004)124-129上报导了天然石墨,LiFePO4在1.5M LiFSI-EC/GBL或LiFSI-EC/PC/DMC或含PEO的聚合物电解质中室温的电化学行为。2005年他们继续在Journal of Power Sources 146(2005)380-385报导了LiFePO4在1.5M LiFSI-EC/GBL、或LiFSI-EC/PC/DMC、或含PEO的聚合物电解质中20℃的电化学行为。2006年,日本的Ishiko Eriko等在2006年2月13日投稿并发表在Journal of Power Sources 162(2006)658-662上的文章报导了石墨负极在EMI-FSI离子液体中室温下的电化学行为。此后,以FSI为阴离子的离子液体分别在Electrochimica Acta 52(2007)6346-6352、J.Phys.Chem.B 2007,111,12829-12833、Journal of Molecular Liquids 143(2008)64-69、J.Phys.Chem.B 2008,112,13577-13580、Journal of Power Sources 185(2008)1585-1588、Journal of Power Sources 183(2008)436-440、Journal of PowerSources 175(2008)866-873由不同的作者进行了报导。目前关于FSI-基的研究主要关注在离子液体,这些离子液体由于具有较高的熔点,粘度,均不适合在低温二次锂电池中使用。In published papers, the work related to LiFSI has also been reported accordingly, as follows. In 2005, Karim Zaghib et al. reported natural graphite in Journal of Power Sources 134(2004) 124-129, LiFePO 4 in 1.5M LiFSI-EC/GBL or LiFSI-EC/PC/DMC or PEO-containing polymer electrolyte Electrochemical behavior at room temperature. In 2005, they continued to report LiFePO 4 in 1.5M LiFSI-EC/GBL, or LiFSI-EC/PC/DMC, or PEO-containing polymer electrolyte at 20°C in Journal of Power Sources 146 (2005) 380-385. chemical behavior. In 2006, Japan's Ishiko Eriko et al reported the electrochemical behavior of graphite negative electrode at room temperature in EMI-FSI ionic liquids on February 13, 2006 and published in Journal of Power Sources 162 (2006) 658-662. . Thereafter, the ionic liquids with FSI as anion were respectively in Electrochimica Acta 52 (2007) 6346-6352, J.Phys.Chem.B 2007, 111, 12829-12833, Journal of Molecular Liquids 143 (2008) 64-69, J. Phys.Chem.B 2008, 112, 13577-13580, Journal of Power Sources 185(2008) 1585-1588, Journal of Power Sources 183(2008) 436-440, Journal of Power Sources 175(2008) 866-873 by different The author reported. The current research on FSI - based mainly focuses on ionic liquids, which are not suitable for use in low-temperature secondary lithium batteries due to their high melting point and viscosity.

在目前公开发表的锂电池或超级电容器用非水电解质中,一般以碳酸酯混合溶剂为主,通常包含一个高粘度、高介电常数的环状碳酸酯溶剂(一般介电常数大于30),如EC、PC、BL,主要用于促进如LiPF6、LiBF4等锂盐的解离,还包括一个或多个低粘度、低介电常数的链状碳酸酯溶剂,如DEC、DMC、EMC等。参见《Chemical Review》2004年,104期,4303至4417页关于非水电解质的综述。由于高粘度溶剂的存在,一般此类电解质的适用范围在-20至55℃。In the currently published non-aqueous electrolytes for lithium batteries or supercapacitors, carbonate mixed solvents are generally used, usually comprising a high viscosity, high dielectric constant cyclic carbonate solvent (general dielectric constant greater than 30), Such as EC, PC, BL, which are mainly used to promote the dissociation of lithium salts such as LiPF 6 and LiBF 4 , and also include one or more chain carbonate solvents with low viscosity and low dielectric constant, such as DEC, DMC, EMC wait. See "Chemical Review" 2004, No. 104, pages 4303 to 4417 for a review on non-aqueous electrolytes. Due to the presence of high-viscosity solvents, the applicable range of such electrolytes is generally -20 to 55°C.

在使用非水电解质的锂电池与超级电容器中,为了提高安全性,通常还添加各类阻燃剂,如磷酸酯、硅氧烷等。在非水电解质中添加磷酸酯的发明专利参见CN97194924.7、ZL98119237.8、ZL03827181.8、CN200580039032.1、ZL200580023980.6、CN200710129716.1;在非水电解质中添加硅氧烷的发明专利参见CN01121452.x、ZL200410034171.2,、CN200610004543.6、CN200610172944.2、CN200610151899.2,CN200710005782.8、CN200710147198.6)。在非水电解质中添加硼氧烷的发明专利参见ZL02142463.2、JP10223258A、JP11121033A。由于现有的大多数锂盐在这些低介电常数的添加剂中的溶解度较低,一般磷酸酯、硅氧烷与硼氧烷均作为添加剂添加在非水有机溶剂中,特别是包含环状碳酸酯与链状碳酸酯并存的有机溶剂中。在电池实际应用时,作为添加剂的阻燃剂的存在可以在一定程度上提高电池的安全性,但由于易燃、易挥发的有机溶剂的存在,阻燃的效果并不理想。In lithium batteries and supercapacitors using non-aqueous electrolytes, in order to improve safety, various flame retardants, such as phosphate esters and siloxanes, are usually added. For invention patents of adding phosphate ester to non-aqueous electrolyte, see CN97194924.7, ZL98119237.8, ZL03827181.8, CN200580039032.1, ZL200580023980.6, CN200710129716.1; for invention patent of adding siloxane to non-aqueous electrolyte, see CN01121452 .x, ZL200410034171.2, CN200610004543.6, CN200610172944.2, CN200610151899.2, CN200710005782.8, CN200710147198.6). For invention patents on adding boroxane to non-aqueous electrolytes, see ZL02142463.2, JP10223258A, and JP11121033A. Due to the low solubility of most existing lithium salts in these low dielectric constant additives, generally phosphate esters, siloxanes and boroxanes are added as additives in non-aqueous organic solvents, especially those containing cyclic carbonic acid In organic solvents where esters and chain carbonates coexist. In the actual application of batteries, the presence of flame retardants as additives can improve the safety of batteries to a certain extent, but due to the presence of flammable and volatile organic solvents, the flame retardant effect is not ideal.

发明内容 Contents of the invention

本发明的一个目的在于提供一种新型的非水电解质材料,这种非水电解质材料采用新型含氟磺酰亚胺锂盐作为导电盐,代替目前广泛应用,但存在诸多缺点的六氟磷酸锂(如热稳定性及化学稳定性差,低温导电率低)。这种锂盐由于具有其阴离子对称性低,因而具有较低的熔点和结合能,本发明发现,这类锂盐可以在仅含低介电常数的溶剂中溶解较高的浓度(如DMC,介电常数3,锂盐溶解度可达5M),这一发现,改变了目前锂盐类非水电解质必须溶解在含具有较高介电常数溶剂的电解质中或者离子液体中的现状。由于具有低介电常数的链状碳酸酯类、磷酸酯类、硅氧烷类或硼氧烷类溶剂通常具有较低的熔点,不易结晶固化,因此,本发明的采用此类低熔点溶剂制备的电解质在低温具有较高的离子电导率,特别适合储能器件如锂电池、超级电容器在低温使用。本发明还发现,新型含氟磺酰亚胺锂盐作为导电盐也可以在过去主要作为阻燃添加剂的溶剂,如磷酸酯、硅氧烷中,具有较高的溶解度(1-2M),改变了过去阻燃剂不能作为主要溶剂的现状。因此,可以产生一类新的基于原来作为阻燃剂添加剂,而在本发明中作为主要溶剂的新型电解质,这样的电解质既具有高度安全的优点,也适用于宽的温度范围。采用这种含氟磺酰亚胺锂作为导电盐,按一定摩尔浓度溶于仅含有特定有机溶剂配制的电解质溶液,在-80℃至60℃的温度范围内,能实现高的离子电导率和锂离子迁移数。从而,使得这类采用含氟磺酰亚胺锂作为导电盐的电解质溶液可在很宽的温度范围内使用,并具有较高的安全性。同时,本发明还发现,本发明提出的非水电解质溶液在储能器件,如锂电池、超级电容器中具有很好的电极匹配性。An object of the present invention is to provide a kind of novel non-aqueous electrolyte material, this non-aqueous electrolyte material adopts novel fluorine-containing sulfonylimide lithium salt as conductive salt, replaces the lithium hexafluorophosphate (such as lithium hexafluorophosphate, which is widely used at present, but has many disadvantages) Poor stability and chemical stability, low temperature conductivity). This lithium salt has lower melting point and binding energy owing to having its anionic symmetry low, and the present invention finds that this type of lithium salt can be dissolved in a solvent containing only a low dielectric constant at a higher concentration (such as DMC, The dielectric constant is 3, and the solubility of lithium salt can reach 5M). This discovery has changed the current situation that lithium salt non-aqueous electrolytes must be dissolved in electrolytes containing solvents with higher dielectric constants or in ionic liquids. Since chain carbonates, phosphoric acid esters, siloxanes or boroxane solvents with low dielectric constants generally have lower melting points, they are not easy to crystallize and solidify. Therefore, the present invention uses such low melting point solvents to prepare The electrolyte has high ionic conductivity at low temperature, and is especially suitable for energy storage devices such as lithium batteries and supercapacitors at low temperatures. The present invention also finds that novel fluorine-containing sulfonylimide lithium salt can also be mainly used as a solvent for flame retardant additives in the past as a conductive salt, such as phosphoric acid ester and siloxane, with higher solubility (1-2M), changing In the past, flame retardants could not be used as the main solvent. Therefore, a new type of electrolyte based on the original flame retardant additive and the main solvent in the present invention can be produced. Such an electrolyte has the advantages of high safety and is suitable for a wide temperature range. Using this fluorine-containing lithium sulfonylimide as a conductive salt, it is dissolved in an electrolyte solution containing only a specific organic solvent at a certain molar concentration, and can achieve high ionic conductivity and Lithium ion transfer number. Therefore, this type of electrolyte solution using lithium fluorine-containing sulfonylimide as a conductive salt can be used in a wide temperature range and has high safety. At the same time, the present invention also finds that the non-aqueous electrolyte solution proposed by the present invention has good electrode matching in energy storage devices, such as lithium batteries and supercapacitors.

本发明的另一个目的在于提供本发明所述的非水电解质材料在制备锂电池和/或超级电容器中的应用。Another object of the present invention is to provide the application of the non-aqueous electrolyte material described in the present invention in the preparation of lithium batteries and/or supercapacitors.

本发明的又一个目的在于提供一种包含本发明所述的非水电解质材料的锂电池。Another object of the present invention is to provide a lithium battery comprising the non-aqueous electrolyte material of the present invention.

本发明的再一个目的在于提供一种包含本发明所述的非水电解质材料的超级电容器(亦被称为电化学双层电容器)。Another object of the present invention is to provide a supercapacitor (also called an electrochemical double layer capacitor) comprising the non-aqueous electrolyte material of the present invention.

一方面,本发明提供了一种非水电解质材料,所述非水电解质材料包含作为导电盐的含氟磺酰亚胺锂盐和介电常数小于30的有机溶剂,该有机溶剂选自链状碳酸酯类、磷酸酯类、硅氧烷类、硼氧烷类、乙酸酯类、丙酸酯类、丁酸酯类、CF3OCH2CH2OCF3、C2H5OCH2CH2OCH3、C2F5OCH2CH2OCF3、1,3-二氧环戊烷以及碳原子数大于2的脂肪腈类有机溶剂中的一种或几种。On the one hand, the present invention provides a kind of non-aqueous electrolyte material, and described non-aqueous electrolyte material comprises the lithium salt of fluorine-containing sulfonyl imide as conductive salt and the organic solvent that dielectric constant is less than 30, and this organic solvent is selected from chain Carbonates, phosphates, siloxanes, boroxanes, acetates, propionates, butyrates, CF 3 OCH 2 CH 2 OCF 3 , C 2 H 5 OCH 2 CH 2 OCH 3. One or more of C 2 F 5 OCH 2 CH 2 OCF 3 , 1,3-dioxolane, and aliphatic nitrile organic solvents with more than 2 carbon atoms.

优选地,所述含氟磺酰亚胺锂盐为化学式(I)所示的化合物中的一种或几种:Preferably, the lithium fluorine-containing sulfonylimide salt is one or more of the compounds shown in the chemical formula (I):

其中,取代基R1、R2各自独立地选自卤素、碳原子数为1至6的饱和或者不饱和烷基、碳原子数为1至6的饱和或者不饱和的卤素部分取代或者全取代的烷基、卤素部分取代或者全取代的芳基,所述卤素选自F、Cl、Br和I;优选地,取代基R1=R2=F,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)2](缩写为Li[FSI]);或优选地,取代基R1=R2=CF3,此时所述含氟磺酰亚胺锂盐为Li[N(SO2CF3)2](缩写为Li[TFSI]);或优选地,取代基R1=F,R2=CF3,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2CF3)](缩写为Li[FTFSI]);或优选地,取代基R1=F,R2=C2F5,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2C2F5)](缩写为Li[FEFSI]);或优选地,取代基R1=F,R2=C3F7,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2C3F7)](缩写为Li[FPFSI]);或优选地,取代基R1=F,R2=C5F6,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2C5F6)](缩写为Li[FPHFSI])。Wherein, substituents R 1 and R 2 are independently selected from halogen, saturated or unsaturated alkyl with 1 to 6 carbon atoms, partially substituted or fully substituted with saturated or unsaturated halogen with 1 to 6 carbon atoms Alkyl, halogen partially substituted or fully substituted aryl, the halogen is selected from F, Cl, Br and I; preferably, the substituent R 1 =R 2 =F, at this time the fluorine-containing sulfonimide The lithium salt is Li[N(SO 2 F) 2 ] (abbreviated as Li[FSI]); or preferably, the substituent R 1 =R 2 =CF 3 , at this time, the fluorine-containing sulfonyl imide lithium salt is Li[N(SO 2 CF 3 ) 2 ] (abbreviated as Li[TFSI]); or preferably, the substituent R 1 =F, R 2 =CF 3 , at this time, the fluorine-containing lithium sulfonyl imide salt is Li[N(SO 2 F)(SO 2 CF 3 )] (abbreviated as Li[FTFSI]); or preferably, the substituent R 1 =F, R 2 =C 2 F 5 , at this time, the fluorine-containing sulfur The lithium imide salt is Li[N(SO 2 F)(SO 2 C 2 F 5 )] (abbreviated as Li[FEFSI]); or preferably, the substituents R 1 =F, R 2 =C 3 F 7 , at this time, the lithium fluorine-containing sulfonylimide salt is Li[N(SO 2 F)(SO 2 C 3 F 7 )] (abbreviated as Li[FPFSI]); or preferably, the substituent R 1 =F , R 2 =C 5 F 6 , at this time, the lithium fluorine-containing sulfonyl imide salt is Li[N(SO 2 F)(SO 2 C 5 F 6 )] (abbreviated as Li[FPHFSI]).

优选地,所述氟磺酰亚胺锂盐在该非水电解质材料中的摩尔浓度为0.1-5mol/L。Preferably, the molar concentration of the lithium fluorosulfonyl imide salt in the non-aqueous electrolyte material is 0.1-5 mol/L.

优选地,所述链状碳酸酯类有机溶剂具有化学式(II)所示结构:Preferably, the chain carbonate organic solvent has a structure shown in chemical formula (II):

其中,取代基R3、R4各自独立地选自卤素、碳原子数为1至10的饱和或不饱和烷基、碳原子数为1至10的饱和或不饱和卤素部分取代或全取代的烷基、卤素部分取代或者全取代的芳基、碳原子数为1至10的饱和或不饱和的烷氧基,所述卤素选自F、Cl、Br和I。优选地,所述链状碳酸酯类有机溶剂选自CH3OCO2CH3(缩写为DMC)、CF3OCO2CF3(缩写为DMC-f)、CH3OCO2CH2CH3(缩写为EMC)、CF3OCO2CF2CF3(缩写为EMC-f)、CH3CH2OCO2CH2CH3(缩写为DEC)、CF3CF2OCO2CF2CF3(缩写为DEC-f),及其混合物。Wherein, substituents R 3 and R 4 are independently selected from halogen, saturated or unsaturated alkyl with 1 to 10 carbon atoms, partially or fully substituted with saturated or unsaturated halogen with 1 to 10 carbon atoms Alkyl, partially substituted or fully substituted aryl with halogen, saturated or unsaturated alkoxy with 1 to 10 carbon atoms, the halogen is selected from F, Cl, Br and I. Preferably, the chain carbonate organic solvent is selected from CH 3 OCO 2 CH 3 (abbreviated as DMC), CF 3 OCO 2 CF 3 (abbreviated as DMC-f), CH 3 OCO 2 CH 2 CH 3 (abbreviated as EMC), CF 3 OCO 2 CF 2 CF 3 (abbreviated as EMC-f), CH 3 CH 2 OCO 2 CH 2 CH 3 (abbreviated as DEC), CF 3 CF 2 OCO 2 CF 2 CF 3 (abbreviated as DEC -f), and mixtures thereof.

优选地,所述磷酸酯类有机溶剂具有化学式(III)、(IV)或(V)所示结构:Preferably, the phosphate ester organic solvent has a structure shown in chemical formula (III), (IV) or (V):

其中,取代基R5、R6、R7各自独立地选自:碳原子数为1至10的饱和或者不饱和烷基、碳原子数为1至10的饱和或者不饱和的卤素部分取代或者全取代烷基,卤素部分取代或者全取代的芳基、碳原子数为1至10的饱和或者不饱和的烷氧基。取代基R5、R6还可环化构成含有2至5个碳的环状磷酸酯。取代基X1、X2各自独立地为卤素,所述卤素选自F、Cl、Br和I。优选地,所述磷酸酯类有机溶剂为式(III)所示的磷酸酯类,如磷酸三甲酯((CH3O)3PO,缩写为TMP)、磷酸三乙酯((C2H5O)3PO,缩写为TEP)、磷酸三正丁基酯、磷酸三辛酯、磷酸三(2-乙基己基)酯、磷酸三苯酯、磷酸二乙一甲酯、磷酸二丁一甲酯、磷酸三氟乙基二甲基酯、磷酸三(三氟甲基)酯、磷酸三(氯乙基)酯、磷酸三(三溴新戊基)酯、磷酸二甲基甲酯、磷酸三(二氯丙基)酯、磷酸三(2、6-二甲基苯基)酯、磷酸二乙一丙酯、磷酸三(三氟乙基)酯、磷酸二丙一乙酯、氟代磷酸二甲酯((CH3O)2FPO,缩写为f-TMP)、二氟磷酸甲酯((CH3O)F2PO,缩写为2f-TMP),或其混合物。Wherein, the substituents R 5 , R 6 , and R 7 are each independently selected from: a saturated or unsaturated alkyl group with 1 to 10 carbon atoms, a saturated or unsaturated halogen with 1 to 10 carbon atoms partially substituted or Fully substituted alkyl, partially or fully substituted aryl with halogen, saturated or unsaturated alkoxy with 1 to 10 carbon atoms. The substituents R 5 and R 6 can also be cyclized to form a cyclic phosphate ester containing 2 to 5 carbons. Each of the substituents X 1 and X 2 is independently a halogen selected from F, Cl, Br and I. Preferably, the phosphate organic solvent is a phosphate represented by formula (III), such as trimethyl phosphate ((CH 3 O) 3 PO, abbreviated as TMP), triethyl phosphate ((C 2 H 5 O) 3 PO, abbreviated as TEP), tri-n-butyl phosphate, trioctyl phosphate, tris (2-ethylhexyl) phosphate, triphenyl phosphate, diethyl monomethyl phosphate, dibutyl monomethyl phosphate ester, trifluoroethyl dimethyl phosphate, tris(trifluoromethyl) phosphate, tris(chloroethyl) phosphate, tris(tribromoneopentyl) phosphate, dimethyl methyl phosphate, phosphoric acid Tris(dichloropropyl) ester, tris(2,6-dimethylphenyl) phosphate, diethyl-propyl phosphate, tris(trifluoroethyl) phosphate, dipropyl-ethyl phosphate, fluorophosphoric acid Dimethyl ester ((CH 3 O) 2 FPO, abbreviated as f-TMP), methyl difluorophosphate ((CH 3 O)F 2 PO, abbreviated as 2f-TMP), or a mixture thereof.

优选地,所述硅氧烷类有机溶剂具有化学式(VI)所示结构:Preferably, the siloxane organic solvent has a structure shown in chemical formula (VI):

其中,取代基R8、R9、R10、R11相同或不同,各自独立地选自H、碳原子数为1至10的饱和或不饱和烷基、以及OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm和基于乙氧基的聚合物基团,其中,n为1至10的整数,m为大于零的整数,且2n+1-m大于等于零;或者,取代基R8、R9、R10、R11可相同或不同,各自独立地为可被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳基,所述芳基为苯基和/或萘基,或为可被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳族杂环基,所述芳族杂环基为吡啶基、吡唑基和/或嘧啶基,其中,n为1至10的整数,m为大于零的整数,且2n+1-m大于等于零。优选地,所述硅氧烷类有机溶剂为式(VI)所示的硅氧烷类,如四甲氧基硅((CH3O)4Si)、乙基三乙氧基硅氧烷((CH3CH2O)3SiC2H5)、乙基三乙酰氧基硅氧烷((CH3COO)3SiC2H5)、二苯基甲氧基硅氧烷((CH3O)2Si(C5H6)2)、三乙基甲硅氧烷基氟代甲烷磺酸盐((C2H5)3SiCH2SO3CF3),或其混合物。Wherein, the substituents R 8 , R 9 , R 10 , and R 11 are the same or different, each independently selected from H, a saturated or unsaturated alkyl group with 1 to 10 carbon atoms, and OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , and ethoxy-based polymer groups, wherein n is an integer from 1 to 10, and m is greater than An integer of zero, and 2n+1-m is greater than or equal to zero; or, the substituents R 8 , R 9 , R 10 , and R 11 may be the same or different, each independently being F, C n F 2n+1-m H m , OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted or monosubstituted or polysubstituted aryl, said aryl is phenyl and/or naphthyl, or can be replaced by F, C n F 2n+1-m H m , OC n F 2n+1- m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted or monosubstituted or multisubstituted The aromatic heterocyclic group, the aromatic heterocyclic group is pyridyl, pyrazolyl and/or pyrimidinyl, wherein, n is an integer from 1 to 10, m is an integer greater than zero, and 2n+1-m greater than or equal to zero. Preferably, the siloxane organic solvent is a siloxane represented by formula (VI), such as tetramethoxysilane ((CH 3 O) 4 Si), ethyltriethoxysiloxane ( (CH 3 CH 2 O) 3 SiC 2 H 5 ), ethyltriacetoxysiloxane ((CH 3 COO) 3 SiC 2 H 5 ), diphenylmethoxysiloxane ((CH 3 O ) 2 Si(C 5 H 6 ) 2 ), triethylsiloxane fluoromethanesulfonate ((C 2 H 5 ) 3 SiCH 2 SO 3 CF 3 ), or a mixture thereof.

优选地,所述硼氧烷类有机溶剂具有化学式(VII)或(VIII)所示结构:Preferably, the boroxane organic solvent has a structure shown in chemical formula (VII) or (VIII):

其中,取代基R12、R13、R14相同或不同,各自独立地为H、碳原子数为1至10的饱和或不饱和的烷基、以及OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm和基于乙氧基的聚合物基团,其中,n为1至10的整数,m为大于零的整数,且2n+1-m大于等于零;或者,取代基R8、R9、R10、R11可相同或不同,各自独立地为可被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳基,所述芳基为苯基和/或萘基,或为可被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳族杂环基,所述芳族杂环基为吡啶基、吡唑基和/或嘧啶基。优选地,所述硼氧烷类有机溶剂选自三乙氧基硼氧烷(TEOBX)、全氟取代三乙氧基硼烷(PFTEOBX)、三乙烯基硼氧烷(TEBX)、三炔丙基硼氧烷(TABX)、三乙基硼酸酯(TEB)、全氟取代三乙基硼酸酯(PFTEB),及其混合物。Wherein, the substituents R 12 , R 13 , and R 14 are the same or different, each independently being H, a saturated or unsaturated alkyl group with 1 to 10 carbon atoms, and OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , and ethoxy-based polymer groups, where n is an integer from 1 to 10 and m is an integer greater than zero , and 2n+1-m is greater than or equal to zero; or, the substituents R 8 , R 9 , R 10 , and R 11 may be the same or different, each independently being F, C n F 2n+1-m H m , OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted Or monosubstituted or polysubstituted aryl, the aryl is phenyl and/or naphthyl, or can be replaced by F, C n F 2n+1-m H m , OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted or monosubstituted or polysubstituted aromatic Heterocyclic group, the aromatic heterocyclic group is pyridyl, pyrazolyl and/or pyrimidinyl. Preferably, the boroxane organic solvent is selected from triethoxyboroxane (TEOBX), perfluorosubstituted triethoxyborane (PFTEOBX), trivinylboroxane (TEBX), propargyl boroxane (TABX), triethyl borate (TEB), perfluorotriethyl borate (PFTEB), and mixtures thereof.

优选地,所述乙酸酯类有机溶剂选自CH3CO2CH3(缩写为MA)、CF3CO2CF3(缩写为MA-f)、CH3CO2CH2CH3(缩写为EA)、CF3CO2CF2CF3(缩写为EA-f)、CH3CO2CH2CF3(缩写为TFEA)、CF3CO2CH2CH3(缩写为ETFA)及其混合物;所述丙酸酯类有机溶剂选自CH3CH2CO2CH3(缩写为MP)、CF3CF2CO2CF3(缩写为MP-f)、CH3CH2CO2CH2CH3(缩写为EP)、CF3CF2CO2CF2CF3(缩写为EP-f)、CF3CF2CO2CH3(缩写为MPFP),及其混合物;所述丁酸酯类有机溶剂选自CH3CH2CH2CO2CH3(缩写为MB)、CF3CF2CF2CO2CF3(缩写为MB-f)、CH3CH2CH2CO2CH2CH3(缩写为EB)、CF3CF2CF2CO2CF2CF3(缩写为EB-f)、CH3CH2CH2CO2CH2CH2CH3(缩写为PB)、CF3CF2CF2CO2CF2CF2CF3(缩写为PB-f)、CH3CH2CH2CO2CH2CH2CH2CH3(缩写为BB)、CF3CF2CF2CO2CF2CF2CF2CF3(缩写为BB-f)、CH3CH2CH2CO2CH2CF3(缩写为TFEB),及其混合物。Preferably, the acetate-based organic solvent is selected from CH 3 CO 2 CH 3 (abbreviated as MA), CF 3 CO 2 CF 3 (abbreviated as MA-f), CH 3 CO 2 CH 2 CH 3 (abbreviated as EA ), CF 3 CO 2 CF 2 CF 3 (abbreviated as EA-f), CH 3 CO 2 CH 2 CF 3 (abbreviated as TFEA), CF 3 CO 2 CH 2 CH 3 (abbreviated as ETFA) and mixtures thereof; The propionate organic solvent is selected from CH 3 CH 2 CO 2 CH 3 (abbreviated as MP), CF 3 CF 2 CO 2 CF 3 (abbreviated as MP-f), CH 3 CH 2 CO 2 CH 2 CH 3 ( EP), CF 3 CF 2 CO 2 CF 2 CF 3 (abbreviated as EP-f), CF 3 CF 2 CO 2 CH 3 (abbreviated as MPFP), and mixtures thereof; the butyrate organic solvent is selected from From CH 3 CH 2 CH 2 CO 2 CH 3 (abbreviated as MB), CF 3 CF 2 CF 2 CO 2 CF 3 (abbreviated as MB-f), CH 3 CH 2 CH 2 CO 2 CH 2 CH 3 ( abbreviated as EB), CF 3 CF 2 CF 2 CO 2 CF 2 CF 3 (abbreviated as EB-f), CH 3 CH 2 CH 2 CO 2 CH 2 CH 2 CH 3 (abbreviated as PB), CF 3 CF 2 CF 2 CO 2 CF 2 CF 2 CF 3 (abbreviated as PB-f), CH 3 CH 2 CH 2 CO 2 CH 2 CH 2 CH 2 CH 3 (abbreviated as BB), CF 3 CF 2 CF 2 CO 2 CF 2 CF 2 CF 2 CF 3 (abbreviated as BB-f), CH 3 CH 2 CH 2 CO 2 CH 2 CF 3 (abbreviated as TFEB), and mixtures thereof.

优选地,所述碳原子数大于2的脂肪腈类有机溶剂选自丙腈(C2H5CN,缩写为PN)、丙二腈(NCCH2CN,缩写为PDN),甲氧基乙腈(CH3OCH2CN,缩写为MAN)、3-甲氧基丙腈(CH3OCH2CH2CN,缩写为3-MPN),及其混合物。Preferably, the aliphatic nitrile organic solvent with more than 2 carbon atoms is selected from propionitrile (C 2 H 5 CN, abbreviated as PN), malononitrile (NCCH 2 CN, abbreviated as PDN), methoxyacetonitrile ( CH3OCH2CN , abbreviated as MAN), 3-methoxypropionitrile ( CH3OCH2CH2CN , abbreviated as 3-MPN), and mixtures thereof.

本发明所述的非水电解质材料的室温离子电导率为0.01-18mS/cm,且所述非水电解质材料中的锂离子迁移数为tLi+=0.2-0.8。The room temperature ionic conductivity of the non-aqueous electrolyte material of the present invention is 0.01-18 mS/cm, and the lithium ion migration number in the non-aqueous electrolyte material is t Li+ =0.2-0.8.

本发明所述的非水电解质材料适用的温度范围为-80℃-60℃。The applicable temperature range of the non-aqueous electrolyte material of the present invention is -80°C-60°C.

另一方面,本发明提供了本发明所述的非水电解质材料在制备锂电池和/或超级电容器中的应用。In another aspect, the present invention provides the application of the non-aqueous electrolyte material described in the present invention in the preparation of lithium batteries and/or supercapacitors.

又一方面,本发明提供了一种锂电池,包括阳极、阴极和集流片,所述锂电池还包括本发明所述的含氟磺酰亚胺基锂的非水电解质材料或用该非水电解质材料浸泡过的锂电池隔膜。In yet another aspect, the present invention provides a lithium battery, including an anode, a cathode and a current collector, and the lithium battery also includes the non-aqueous electrolyte material containing fluorine-containing sulfonimide-based lithium according to the present invention or uses the non-aqueous electrolyte material Lithium battery separator soaked in aqueous electrolyte material.

再一方面,本发明提供一种超级电容器,包括阳极、阴极和集流片,所述超级电容器还包括本发明所述的含氟磺亚胺基锂的非水电解质材料或用该非水电解质材料浸泡过的锂电池隔膜。In another aspect, the present invention provides a supercapacitor, including an anode, a cathode and a current collector, and the supercapacitor also includes the nonaqueous electrolyte material containing fluorine-sulfonimide lithium according to the present invention or uses the nonaqueous electrolyte Material soaked lithium battery separator.

与现有技术相比,本发明的优势在于:Compared with the prior art, the present invention has the advantages of:

(1)发现新型含氟磺酰亚胺基锂盐作为导电盐,在低介电常数的有机溶剂中溶解度大,低温不易结晶。这类新型锂盐由于阴离子具有低对称性和良好的自由度,其熔点比LiPF6、LiBF4、LiClO4等常见锂盐低,因而,以这类新型锂盐作为导电盐的非水电解质溶液,具有很宽的适用温度范围,可以在-80℃至60℃范围内使用,在此适用温度范围内具有很高的离子电导率,锂离子迁移数;(1) A new type of fluorine-containing sulfonylimide-based lithium salt was found as a conductive salt, which has high solubility in organic solvents with low dielectric constant and is not easy to crystallize at low temperature. Due to the low symmetry and good degree of freedom of the anion, this new type of lithium salt has a lower melting point than LiPF 6 , LiBF 4 , LiClO 4 and other common lithium salts. , has a wide applicable temperature range, can be used in the range of -80°C to 60°C, and has high ion conductivity and lithium ion migration number in this applicable temperature range;

(2)以该类锂盐为导电盐的非水电解质应用于储能器件,如锂电池,具有很宽的温度适用范围,可以在-80℃至60℃范围内使用,具有很好的电极匹配性。此类电解质可以明显拓宽现有储能体系的低温使用温度,显著提高储能器件,如锂电池,电容器的低温性能;(2) Non-aqueous electrolytes using such lithium salts as conductive salts are used in energy storage devices, such as lithium batteries, which have a wide temperature range and can be used in the range of -80°C to 60°C, and have good electrodes compatibility. This type of electrolyte can significantly expand the low-temperature service temperature of existing energy storage systems, and significantly improve the low-temperature performance of energy storage devices, such as lithium batteries and capacitors;

(3)该类非水电解质,可以直接采用阻燃剂作为溶剂,具有安全性高的显著优点,采用这些电解质的锂电池、超级电容器具有较高的安全性。(3) This type of non-aqueous electrolyte can directly use flame retardants as solvents, which has the remarkable advantage of high safety. Lithium batteries and supercapacitors using these electrolytes have higher safety.

附图说明 Description of drawings

以下,结合附图来详细说明本发明的实施例,其中:Hereinafter, embodiments of the present invention will be described in detail in conjunction with the accompanying drawings, wherein:

图1为使用含氟磺酰亚胺锂盐的非水电解质的模拟电池的示意图;其中:1为阳极引线,2为不锈钢密封螺帽(和阴极连接),3为聚四氟乙烯螺母,4为不锈钢钢柱,5为聚四氟乙烯内衬,6为不锈钢筒(和阳极连接),7、8为锂片,9为浸渍含有吸电子基团化合物电解质溶液的隔膜,10为阳极活性材料,11为铜箔,12为阴极引线;Fig. 1 is the schematic diagram of the simulated battery that uses the non-aqueous electrolyte of fluorine-containing sulfonylimide lithium salt; Wherein: 1 is anode lead, 2 is stainless steel sealing nut (connected with cathode), 3 is polytetrafluoroethylene nut, 4 It is a stainless steel column, 5 is a polytetrafluoroethylene lining, 6 is a stainless steel cylinder (connected to the anode), 7 and 8 are lithium sheets, 9 is a diaphragm impregnated with an electrolyte solution containing an electron-withdrawing group compound, and 10 is an anode active material , 11 is copper foil, 12 is the cathode lead;

图2为实施例1-3和实施例76-78中非水电解质材料的电导率随温度变化的图;Fig. 2 is the figure that the conductivity of non-aqueous electrolyte material changes with temperature in embodiment 1-3 and embodiment 76-78;

图3为负极材料石墨化中间相碳小球(MCMB)在实施例1-2中的非水电解质材料中的首周充放电曲线;和Fig. 3 is the first cycle charge and discharge curve of negative electrode material graphitized mesocarbon bead (MCMB) in the non-aqueous electrolyte material in embodiment 1-2; With

图4为正极材料磷酸铁锂在实施例1-2中非水电解质材料中的首周充放曲线。Fig. 4 is the first cycle charge and discharge curve of the positive electrode material lithium iron phosphate in the non-aqueous electrolyte material in Example 1-2.

具体实施方式 Detailed ways

以下参照具体的实施例来说明本发明。本领域技术人员能够理解,这些实施例仅用于说明本发明的目的,其不以任何方式限制本发明的范围。The present invention will be described below with reference to specific examples. Those skilled in the art can understand that these examples are only for the purpose of illustrating the present invention and do not limit the scope of the present invention in any way.

实施例1Example 1

电解质溶液配制:将导电盐组分A双(氟磺酰)亚胺锂(Li[FSI])真空干燥,有机溶剂组分B的碳酸二甲酯(DMC)干燥后放入真空手套箱中(水含量小于1ppm)。称量18.7g Li[FSI]于烧杯中,在磁力搅拌下,分多次缓慢加入DMC,配制成摩尔浓度为1.0M的电解质溶液,密封保存待用。Electrolyte solution preparation: the conductive salt component A lithium bis(fluorosulfonyl)imide (Li[FSI]) was vacuum-dried, and the organic solvent component B dimethyl carbonate (DMC) was dried and placed in a vacuum glove box ( water content is less than 1ppm). Weigh 18.7g Li[FSI] in a beaker, slowly add DMC several times under magnetic stirring to prepare an electrolyte solution with a molar concentration of 1.0M, and store it in a sealed seal until use.

电导率测定:将上述电解质溶液滴加到两端电极均为铂电极的玻璃电导池中,使用GDW6005型高低温试验箱控温,HP4192阻抗谱仪测定阻抗谱(5Hz-13MHz),得到温度范围为-80℃至60℃的电导率。测得-80℃时的电导率为0.2mS/cm,25℃时的电导率为9.2mS/cm,60℃时的电导率为14.6mS/cm。得到的电解质溶液的电导率随温度变化的规律如图2所示。Conductivity measurement: Add the above electrolytic solution dropwise into a glass conductivity cell with platinum electrodes at both ends, use a GDW6005 high and low temperature test box to control the temperature, measure the impedance spectrum (5Hz-13MHz) with an HP4192 impedance spectrometer, and obtain the temperature range Conductivity for -80°C to 60°C. The conductivity measured at -80°C was 0.2mS/cm, the conductivity at 25°C was 9.2mS/cm, and the conductivity at 60°C was 14.6mS/cm. The conductivity of the obtained electrolyte solution varies with temperature as shown in FIG. 2 .

原型锂电池组装及性能测定:将上述Li[FSI]作为导电盐的非水电解质溶液直接用于一个原型锂电池,测量其与正、负极材料的相容性及电池性能。Prototype lithium battery assembly and performance measurement: The above-mentioned Li[FSI] as a conductive salt non-aqueous electrolyte solution was directly used in a prototype lithium battery, and its compatibility with positive and negative electrode materials and battery performance were measured.

原型锂电池的组装步骤如下:The assembly steps of the prototype lithium battery are as follows:

将MCMB,粒度15μm与聚偏氟乙烯(PVDF)的N,N-二甲基吡咯烷酮(NMP)溶液混合制成均一的复合浆料,然后均匀涂敷在作为集流体铜箔(厚度20μm)上。所得薄膜厚度2-20μm,在160℃下烘干,在1MPa压力下压紧,继续在160℃下烘12小时。烘干后的极片中,MCMB占总涂敷物的94wt%,聚偏氟乙烯(PVDF)占6wt%。然后将所得极片裁剪成面积为1cm2圆片作为阳极。Mix MCMB with a particle size of 15 μm and N, N-dimethylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) to make a uniform composite slurry, and then evenly coat it on copper foil (thickness 20 μm) as a current collector . The obtained film has a thickness of 2-20 μm, is dried at 160° C., is pressed under a pressure of 1 MPa, and is further baked at 160° C. for 12 hours. In the pole piece after drying, MCMB accounts for 94wt% of the total coating, and polyvinylidene fluoride (PVDF) accounts for 6wt%. Then the resulting pole piece is cut into an area of 1cm 2 discs as the anode.

将LiFePO4粉料、炭黑(粒度1000nm)、聚偏氟乙烯(PVDF)的N,N-二甲基吡咯烷酮(NMP)溶液混合制成均一的复合浆料,将浆料均匀涂敷在作为集流体的铝箔(厚度15μm)上,然后在160℃下烘干,所得薄膜厚度在5-40μm,在1MPa×1cm2压力下压紧,继续在160℃下烘12小时。烘干后的极片中,LiFePO4占总涂敷物的85wt%,共聚物占5wt%,炭黑占10wt%。然后将所得极片裁剪成面积为1cm2圆片作为阴极。Mix LiFePO 4 powder, carbon black (particle size 1000nm), and polyvinylidene fluoride (PVDF) N,N-dimethylpyrrolidone (NMP) solution to make a uniform composite slurry, and apply the slurry evenly on the Aluminum foil (thickness 15μm) of the current collector, and then dried at 160°C, the thickness of the obtained film is 5-40μm, pressed under a pressure of 1MPa× 1cm2 , and continued to bake at 160°C for 12 hours. In the pole piece after drying, LiFePO 4 accounts for 85wt% of the total coating, the copolymer accounts for 5wt%, and carbon black accounts for 10wt%. Then the resulting pole piece is cut into an area of 1cm 2 discs as the cathode.

将干燥后的极片移入氩气手套箱中,将PVDF多孔膜放在MCMB极片(或者LiFePO4极片)和金属锂片之间,滴加上述配制好的Li[FSI]作为导电盐的电解质溶液,使电极片被淹没。按附图1所示组装成实验电池。实验电池在微机控制的自动充放电仪上进行充放电循环测试。电流密度0.1mA/cm2,充电截止电压2.5V,放电截止电压0V,测试温度为-80℃、-40℃、0℃、25℃和60℃。分别测得电池容量为根据活性物质质量计算值31%、45%、63%、94%和89%。相关数据参见附表1。MCMB和LiFePO4极片在实施例1所制备的非水电解质材料中的充放电曲线如图3(A)和图4(A)所示。The dried pole piece was moved into an argon glove box, the PVDF porous membrane was placed between the MCMB pole piece (or LiFePO4 pole piece) and the metal lithium piece, and the Li[FSI] prepared above was added dropwise as the conductive salt. Electrolyte solution, so that the electrode pads are submerged. Assemble the experimental battery as shown in Figure 1. The experimental battery is subjected to a charge-discharge cycle test on an automatic charge-discharge instrument controlled by a microcomputer. The current density is 0.1mA/cm 2 , the charge cut-off voltage is 2.5V, the discharge cut-off voltage is 0V, and the test temperatures are -80°C, -40°C, 0°C, 25°C and 60°C. The measured battery capacities were 31%, 45%, 63%, 94% and 89% of the calculated values based on the mass of the active material, respectively. See attached table 1 for relevant data. The charge and discharge curves of MCMB and LiFePO4 pole pieces in the non-aqueous electrolyte material prepared in Example 1 are shown in Figure 3 (A) and Figure 4 (A).

实施例2Example 2

电解质溶液配制:将导电盐组分A双(氟磺酰)亚胺锂(Li[FSI])真空干燥,有机溶剂组分B的DMC和乙基三乙氧基硅氧烷((CH3CH2O)3SiC2H5)(简称为silane)干燥后放入真空手套箱中(水含量小于1ppm)。称量18.7g Li[FSI]于烧杯中,在磁力搅拌下,分多次缓慢加入DMC和sliane的混合溶剂中(DMC∶silane=1∶4,体积比),配制成摩尔浓度为1M的电解质溶液,密封保存待用。Electrolyte solution preparation: Conductive salt component A lithium bis(fluorosulfonyl)imide (Li[FSI]) was vacuum-dried, organic solvent component B DMC and ethyltriethoxysiloxane ((CH 3 CH 2 O) 3 SiC 2 H 5 ) (silane for short) was dried and placed in a vacuum glove box (water content less than 1 ppm). Weigh 18.7g Li[FSI] in a beaker, under magnetic stirring, slowly add DMC and sliane in a mixed solvent (DMC:silane=1:4, volume ratio) several times to prepare an electrolyte with a molar concentration of 1M solution, sealed and stored for later use.

电导率测定:将上述电解质溶液滴加到两端电极均为铂电极的玻璃电导池中,使用GDW6005型高低温试验箱控温,HP4192阻抗谱仪测定阻抗谱(5Hz-13MHz),得到温度范围为-80℃至60℃的电导率。测得-80℃时的电导率为0.03mS/cm,25℃时的电导率为2.4mS/cm,60℃时的电导率为7.6mS/cm,得到的电解质溶液的电导率随温度变化的规律如图2所示。Conductivity measurement: Add the above electrolytic solution dropwise into a glass conductivity cell with platinum electrodes at both ends, use a GDW6005 high and low temperature test box to control the temperature, measure the impedance spectrum (5Hz-13MHz) with an HP4192 impedance spectrometer, and obtain the temperature range Conductivity for -80°C to 60°C. The measured conductivity at -80°C is 0.03mS/cm, the conductivity at 25°C is 2.4mS/cm, and the conductivity at 60°C is 7.6mS/cm. The conductivity of the obtained electrolyte solution varies with temperature. The rules are shown in Figure 2.

原型锂电池组装及性能测定:将上述Li[FSI]作为导电盐的非水电解质溶液直接用于一个原型锂电池,测量其与MCMB和LiFePO4电极材料的相容性及电池性能。实验锂电池组装、测试方式与实施例1相同。本实施例的组成和测试数据参见表1。MCMB和LiFePO4极片在此电解液中的充放电曲线如图3(B)和图4(B)所示。Prototype lithium battery assembly and performance measurement: The above-mentioned Li[FSI] as a conductive salt non-aqueous electrolyte solution was directly used in a prototype lithium battery, and its compatibility with MCMB and LiFePO 4 electrode materials and battery performance were measured. The assembly and testing methods of the experimental lithium battery are the same as those in Example 1. The composition and test data of this embodiment are shown in Table 1. The charge-discharge curves of MCMB and LiFePO4 pole pieces in this electrolyte are shown in Fig. 3(B) and Fig. 4(B).

实施例3Example 3

电解质溶液的配制:将导电盐组分A双(氟磺酰)亚胺锂(Li[FSI])真空干燥,有机溶剂组分B的DMC,和三甲基磷酸酯(TMP)干燥后放入真空手套箱中(水含量小于1ppm)。称量18.7g Li[FSI]于烧杯中,在磁力搅拌下,分多次缓慢加入碳酸二甲酯(DMC)和TMP的混合溶剂中(DMC∶TMP=1∶1,体积比),配制成摩尔浓度为1.0M的电解质溶液,密封保存待用。The preparation of the electrolyte solution: the conductive salt component A lithium bis(fluorosulfonyl)imide (Li[FSI]) was vacuum-dried, the DMC of the organic solvent component B, and trimethyl phosphate (TMP) were dried and put into In a vacuum glove box (water content less than 1ppm). Weigh 18.7g Li[FSI] in a beaker, under magnetic stirring, slowly add in the mixed solvent of dimethyl carbonate (DMC) and TMP (DMC:TMP=1:1, volume ratio) several times, and prepare Electrolyte solution with a molar concentration of 1.0M, sealed and stored for later use.

电导率测定:将上述电解质溶液滴加到两端电极均为铂电极的玻璃电导池中,使用GDW6005型高低温试验箱控温,HP4192阻抗谱仪测定阻抗谱(5Hz-13MHz),得到温度范围为-80℃至60℃的电导率。测得-80℃时的电导率为0.1mS/cm,25℃时的电导率为8.7mS/cm,60℃时的电导率为16.8mS/cm,得到的电解质溶液的电导率随温度变化的规律如图2所示。Conductivity measurement: Add the above electrolytic solution dropwise into a glass conductivity cell with platinum electrodes at both ends, use a GDW6005 high and low temperature test box to control the temperature, measure the impedance spectrum (5Hz-13MHz) with an HP4192 impedance spectrometer, and obtain the temperature range Conductivity for -80°C to 60°C. The conductivity measured at -80°C is 0.1mS/cm, the conductivity at 25°C is 8.7mS/cm, and the conductivity at 60°C is 16.8mS/cm. The conductivity of the obtained electrolyte solution varies with temperature. The rules are shown in Figure 2.

原型锂电池组装及性能测定:将上述Li[FSI]作为导电盐的电解质溶液直接用于一个原型锂电池,测量其与正、负极材料的相容性及电池性能。实验锂电池组装、测试方式与实施例1相同。本实施例的组成和测试数据参见表1。Prototype lithium battery assembly and performance measurement: The above-mentioned Li[FSI] electrolyte solution as a conductive salt was directly used in a prototype lithium battery, and its compatibility with positive and negative electrode materials and battery performance were measured. The assembly and testing methods of the experimental lithium battery are the same as those in Example 1. The composition and test data of this embodiment are shown in Table 1.

实施例4-实施例235Example 4 - Example 235

实施例4-实施例235的操作方法与实施例1-3相同。此实施例中组分A和组分B的组成和测试数据参见表1及2。The operation method of embodiment 4-embodiment 235 is the same as that of embodiment 1-3. Refer to Tables 1 and 2 for the composition and test data of component A and component B in this example.

对比实施例236Comparative Example 236

电解质溶液的配制:将导电盐组分A双(氟磺酰)亚胺锂(Li[FSI])真空干燥,在真空手套箱中,溶于有机溶剂碳酸丙烯酯(PC)中(水含量小于1ppm)。称量18.7g Li[FSI]于烧杯中,在磁力搅拌下,分多次缓慢加入PC,配制成摩尔浓度为1.0M的电解质溶液,密封保存待用。用类似方法配制1.0M[(CH3CH2)3]NCH3][BF4]/碳酸丙烯酯(PC)的普通电解质溶液。Preparation of electrolyte solution: Conductive salt component A lithium bis(fluorosulfonyl)imide (Li[FSI]) was vacuum-dried, and dissolved in the organic solvent propylene carbonate (PC) in a vacuum glove box (water content less than 1ppm). Weigh 18.7g Li[FSI] into a beaker, slowly add PC several times under magnetic stirring to prepare an electrolyte solution with a molar concentration of 1.0M, and store it in a sealed seal until use. A 1.0M common electrolyte solution of [(CH 3 CH 2 ) 3 ]NCH 3 ][BF 4 ]/propylene carbonate (PC) was prepared in a similar manner.

采用2032(直径2.0cm,高度0.32cm)扣式电容,活性碳为正、负电极材料(直径1.0cm,厚度0.6mm),聚丙烯隔膜,以及上述1.0M的Li[FSI]及[(CH3CH2)3]NCH3][BF4]/碳酸丙烯酯(PC)电解液,在真空手套箱中组装电容器。超级电容器冲放电测试条件为:电压V=0至2.8V,电流5mA。25℃下,测定的电容量分别为14.7,13.4F/cm3;-25℃下,容量分别为9.3,及12.7F/cm3。因此,低温下,采用Li[FSI]作为导电盐的超级电容器容量高。Use 2032 (diameter 2.0cm, height 0.32cm) button capacitors, activated carbon as positive and negative electrode materials (diameter 1.0cm, thickness 0.6mm), polypropylene diaphragm, and the above 1.0M Li[FSI] and [(CH 3CH 2 ) 3 ]NCH 3 ][BF 4 ]/propylene carbonate (PC) electrolyte, and assembled the capacitor in a vacuum glove box. The charging and discharging test conditions of the supercapacitor are: voltage V=0 to 2.8V, current 5mA. At 25°C, the measured capacities are 14.7 and 13.4 F/cm 3 respectively; at -25°C, the capacities are 9.3 and 12.7 F/cm 3 respectively. Therefore, at low temperature, the capacity of supercapacitors using Li[FSI] as conductive salt is high.

电导率测定:将上述电解质溶液滴加到两端电极均为铂电极的玻璃电导池中,使用GDW6005型高低温试验箱控温,HP4192阻抗谱仪测定阻抗谱(5Hz-13MHz),测试该电解质溶液在-40℃和60℃的温度下电导率,得到结果如下:-40℃时电导率值为0.1mS/cm,而60℃时的电导率为10mS/cm。Conductivity measurement: Add the above electrolytic solution dropwise into a glass conductivity cell with platinum electrodes at both ends, use a GDW6005 high and low temperature test box to control the temperature, and measure the impedance spectrum (5Hz-13MHz) with an HP4192 impedance spectrometer to test the electrolyte Conductivity of the solution at temperatures of -40°C and 60°C, the results are as follows: the conductivity value at -40°C is 0.1mS/cm, and the conductivity at 60°C is 10mS/cm.

由于PC溶剂在-40℃左右存在固液相变,在-40℃或者更低温度下,体系会转变为固态,电导率急剧下降至无法测量,电池无法正常充放电。Since the PC solvent has a solid-liquid phase transition at around -40°C, the system will turn into a solid state at -40°C or lower, and the conductivity drops sharply to the point where it cannot be measured, and the battery cannot be charged and discharged normally.

对比实施例237-256Comparative Examples 237-256

对比实施例237-256的操作方法与实施例1-3相同。此实施例中组分A选自LiPF6、LiFSI和/或LiBF4。组分B选自下列溶剂:二乙醚,二甲氧基乙烷,四氢呋喃,二甲基四氢呋喃,二氧杂环乙烷,甲基甲酸酯,乙基甲酸酯,丙烯碳酸酯,乙烯碳酸酯,丁内酯,乙腈,丙腈,硝基甲烷,硝基苯,二甲基甲酰胺,二乙基甲酰胺,N-甲基吡咯烷酮,二甲亚砜,四亚甲基砜和/或四乙基磺胺。这些体系在-80度下均无法正常工作。The operation method of comparative examples 237-256 is the same as that of examples 1-3. Component A in this example is selected from LiPF 6 , LiFSI and/or LiBF 4 . Component B is selected from the following solvents: diethyl ether, dimethoxyethane, tetrahydrofuran, dimethyltetrahydrofuran, dioxane, methyl formate, ethyl formate, propylene carbonate, ethylene carbonate Esters, butyrolactone, acetonitrile, propionitrile, nitromethane, nitrobenzene, dimethylformamide, diethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, tetramethylene sulfone and/or Tetraethylsulfonamide. None of these systems work properly at -80 degrees.

表1含氟磺酰亚胺基锂盐作为导电盐的非水电解质的组分及其电化学性质Table 1 Components and electrochemical properties of non-aqueous electrolytes containing fluorine-containing sulfonylimide lithium salts as conductive salts

  实施例 Example   组分A锂盐(mol/L) Component A lithium salt (mol/L)   组分B溶剂(体积比) Component B solvent (volume ratio)   电导率(mS/cm) Conductivity (mS/cm)   容量百分率(MCMB%) Percentage of capacity (MCMB%)   1 1   Li[FSI](1M) Li[FSI](1M)   DMC DMC   9.2 9.2   94 94   2 2   Li[FSI](1M) Li[FSI](1M)   DMC/Silane(1/4) DMC/Silane(1/4)   2.4 2.4   79 79   3 3   Li[FSI](1M) Li[FSI](1M)   DMC/TMP(1/1) DMC/TMP(1/1)   8.7 8.7   86 86   4 4   Li[FSI](1M) Li[FSI](1M)   DMC-f/TMP/MA(1/3/1) DMC-f/TMP/MA(1/3/1)   5.5 5.5   90 90   5 5   Li[FSI](0.1M) Li[FSI](0.1M)   DMC-f/TMP/MA(1/3/1) DMC-f/TMP/MA(1/3/1)   0.5 0.5   79 79   6 6   Li[FSI](5M) Li[FSI](5M)   DMC-f/TMP/MA(1/3/1) DMC-f/TMP/MA(1/3/1)   5.6 5.6   86 86   7 7   Li[FSI](1M) Li[FSI](1M)   DMC/THF/EP(3/5/2) DMC/THF/EP(3/5/2)   5.8 5.8   90 90   8 8   Li[FSI](0.1M) Li[FSI](0.1M)   DMC/THF/EP(3/5/2) DMC/THF/EP(3/5/2)   1.4 1.4   85 85   9 9   Li[FSI](5M) Li[FSI](5M)   DMC/THF/EP(3/5/2) DMC/THF/EP(3/5/2)   5.2 5.2   77 77   10 10   Li[FSI](1M) Li[FSI](1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   5.7 5.7   68 68   11 11   Li[FSI](0.1M) Li[FSI](0.1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   1.9 1.9   82 82   12 12   Li[FSI](5M) Li[FSI](5M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   2.8 2.8   86 86   13 13   Li[FSI](1M) Li[FSI](1M)   EMC/(CH3O)4Si/MB(3/1/1)EMC/(CH 3 O) 4 Si/MB(3/1/1)   3.7 3.7   81 81   14 14   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/(CH3O)4Si/MB(3/1/1)EMC/(CH 3 O) 4 Si/MB(3/1/1)   0.8 0.8   77 77   15 15   Li[FSI](5M) Li[FSI](5M)   EMC/(CH3O)4Si/MB(3/1/1)EMC/(CH 3 O) 4 Si/MB(3/1/1)   4.9 4.9   65 65   16 16   Li[FSI](1M) Li[FSI](1M)   DEC/F-TMP/PN(3/1/1) DEC/F-TMP/PN(3/1/1)   5.8 5.8   85 85   17 17   Li[FSI](0.1M) Li[FSI](0.1M)   DEC/F-TMP/PN(3/1/1) DEC/F-TMP/PN(3/1/1)   0.7 0.7   88 88   18 18   Li[FSI](5M) Li[FSI](5M)   DEC/F-TMP/PN(3/1/1) DEC/F-TMP/PN(3/1/1)   3.7 3.7   86 86   19 19   Li[FSI](1M) Li[FSI](1M)   BC/2-MTHF/PDN(1/1/1) BC/2-MTHF/PDN(1/1/1)   4.6 4.6   70 70   20 20   Li[FSI](0.1M) Li[FSI](0.1M)   BC/2-MTHF/PDN(1/1/1) BC/2-MTHF/PDN(1/1/1)   0.6 0.6   65 65   21 twenty one   Li[FSI](5M) Li[FSI](5M)   BC/2-MTHF/PDN(1/1/1) BC/2-MTHF/PDN(1/1/1)   3.0 3.0   89 89   22 twenty two   Li[FSI](1M) Li[FSI](1M)   TMP/DOL/EB(1/1/1) TMP/DOL/EB(1/1/1)   3.9 3.9   80 80   23 twenty three   Li[FSI](0.1M) Li[FSI](0.1M)   TMP/DOL/EB(1/1/1) TMP/DOL/EB(1/1/1)   0.7 0.7   87 87   24 twenty four   Li[FSI](5M) Li[FSI](5M)   TMP/DOL/EB(1/1/1) TMP/DOL/EB(1/1/1)   3.7 3.7   83 83   25 25   Li[FSI](1M) Li[FSI](1M)   EMC-f/MA-f/EMOE(3/1/1) EMC-f/MA-f/EMOE(3/1/1)   6.1 6.1   80 80   26 26   Li[FSI](0.1M) Li[FSI](0.1M)   EMC-f/MA-f/EMOE(3/1/1) EMC-f/MA-f/EMOE(3/1/1)   1.1 1.1   78 78   27 27   Li[FSI](5M) Li[FSI](5M)   EMC-f/MA-f/EMOE(3/1/1) EMC-f/MA-f/EMOE(3/1/1)   3.9 3.9   80 80   28 28   Li[FSI](1M) Li[FSI](1M)   EMC/PB/MOAN(7/2/1) EMC/PB/MOAN(7/2/1)   4.2 4.2   81 81

  29 29   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/PB/MOAN(7/2/1) EMC/PB/MOAN(7/2/1)   1.4 1.4   85 85   30 30   Li[FSI](5M) Li[FSI](5M)   EMC/PB/MOAN(7/2/1) EMC/PB/MOAN(7/2/1)   2.7 2.7   70 70   31 31   Li[FSI](1M) Li[FSI](1M)   DEC/BB/BC(6/3/1) DEC/BB/BC(6/3/1)   6.8 6.8   67 67   32 32   Li[FSI](0.1M) Li[FSI](0.1M)   DEC/BB/BC(6/3/1) DEC/BB/BC(6/3/1)   0.5 0.5   65 65   33 33   Li[FSI](5M) Li[FSI](5M)   DEC/BB/BC(6/3/1) DEC/BB/BC(6/3/1)   4.0 4.0   65 65   34 34   Li[FSI](1M) Li[FSI](1M)   EMC-f/TFEB/3-MPN(5/1/4) EMC-f/TFEB/3-MPN(5/1/4)   4.7 4.7   68 68   35 35   Li[FSI](0.1M) Li[FSI](0.1M)   EMC-f/TFEB/3-MPN(5/1/4) EMC-f/TFEB/3-MPN(5/1/4)   1.1 1.1   70 70   36 36   Li[FSI](5M) Li[FSI](5M)   EMC-f/TFEB/3-MPN(5/1/4) EMC-f/TFEB/3-MPN(5/1/4)   1.8 1.8   75 75   37 37   Li[FSI](1M) Li[FSI](1M)   EMC/(CH3CO2)3SiC2H5/TFEA(3/1/1)EMC/(CH 3 CO 2 ) 3 SiC 2 H 5 /TFEA(3/1/1)   3.7 3.7   73 73   38 38   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/(CH3CO2)3SiC2H5/TFEA(3/1/1)EMC/(CH 3 CO 2 ) 3 SiC 2 H 5 /TFEA(3/1/1)   0.4 0.4   70 70   39 39   Li[FSI](5M) Li[FSI](5M)   EMC/(CH3CO2)3SiC2H5/TFEA(3/1/1)EMC/(CH 3 CO 2 ) 3 SiC 2 H 5 /TFEA(3/1/1)   3.5 3.5   69 69   40 40   Li[FSI](1M) Li[FSI](1M)   EMC/DEC/ETFA(3/1/1) EMC/DEC/ETFA(3/1/1)   5.4 5.4   60 60   41 41   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/DEC/ETFA(3/1/1) EMC/DEC/ETFA(3/1/1)   0.7 0.7   70 70   42 42   Li[FSI](5M) Li[FSI](5M)   EMC/DEC/ETFA(3/1/1) EMC/DEC/ETFA(3/1/1)   3.0 3.0   60 60   43 43   Li[FSI](1M) Li[FSI](1M)   EMC/MPFP/AN(5/3/2) EMC/MPFP/AN(5/3/2)   4.1 4.1   58 58   44 44   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/MPFP/AN(5/3/2) EMC/MPFP/AN(5/3/2)   0.9 0.9   53 53   45 45   Li[FSI](5M) Li[FSI](5M)   EMC/MPFP/AN(5/3/2) EMC/MPFP/AN(5/3/2)   3.0 3.0   80 80   46 46   Li[FSI](1M) Li[FSI](1M)   DMC/EMC/BB-f(9/9/2) DMC/EMC/BB-f(9/9/2)   3.8 3.8   79 79   47 47   Li[FSI](0.1M) Li[FSI](0.1M)   DMC/EMC/BB-f(9/9/2) DMC/EMC/BB-f(9/9/2)   0.7 0.7   82 82   48 48   Li[FSI](5M) Li[FSI](5M)   DMC/EMC/BB-f(9/9/2) DMC/EMC/BB-f(9/9/2)   4.5 4.5   85 85   49 49   Li[FSI](1M) Li[FSI](1M)   EMC-f/DMOE/DOL(3/1/1) EMC-f/DMOE/DOL(3/1/1)   4.8 4.8   89 89   50 50   Li[FSI](0.1M) Li[FSI](0.1M)   EMC-f/DMOE/DOL(3/1/1) EMC-f/DMOE/DOL(3/1/1)   0.9 0.9   86 86   51 51   Li[FSI](5M) Li[FSI](5M)   EMC-f/DMOE/DOL(3/1/1) EMC-f/DMOE/DOL(3/1/1)   5.1 5.1   86 86   52 52   Li[FSI](1M) Li[FSI](1M)   DMC/EMC/DEC/EP(3/3/3/1) DMC/EMC/DEC/EP(3/3/3/1)   5.9 5.9   80 80   53 53   Li[FSI](0.1M) Li[FSI](0.1M)   DMC/EMC/DEC/MA(3/3/3/1) DMC/EMC/DEC/MA(3/3/3/1)   1.2 1.2   89 89   54 54   Li[FSI](5M) Li[FSI](5M)   DMC/EMC/DEC/EA(3/3/3/1) DMC/EMC/DEC/EA(3/3/3/1)   6.4 6.4   80 80   55 55   Li[FSI](1M) Li[FSI](1M)   DMC-f/TEP/AN/MA-f(3/3/1/1) DMC-f/TEP/AN/MA-f(3/3/1/1)   6.8 6.8   79 79

  56 56   Li[FSI](0.1M) Li[FSI](0.1M)   DMC-f/TEP/THF/MB(3/3/1/1) DMC-f/TEP/THF/MB(3/3/1/1)   1.5 1.5   85 85   57 57   Li[FSI](5M) Li[FSI](5M)   DMC-f/2F-TMP/ETFA/PB(3/3/1/1) DMC-f/2F-TMP/ETFA/PB(3/3/1/1)   5.8 5.8   81 81   58 58   Li[FSI](1M) Li[FSI](1M)   DMC/DMOE/THF/EP(3/5/2/1) DMC/DMOE/THF/EP(3/5/2/1)   5.7 5.7   80 80   59 59   Li[FSI](0.1M) Li[FSI](0.1M)   DMC/DMOE-f/DOL/TFEA(3/5/2/1) DMC/DMOE-f/DOL/TFEA(3/5/2/1)   1.2 1.2   76 76   60 60   Li[FSI](5M) Li[FSI](5M)   DMC/EMOE-f/2-MTHF/MPFP(3/5/2/1) DMC/EMOE-f/2-MTHF/MPFP(3/5/2/1)   3.5 3.5   80 80   61 61   Li[FSI](1M) Li[FSI](1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   3.8 3.8   82 82   62 62   Li[FSI](0.1M) Li[FSI](0.1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   1.1 1.1   79 79   63 63   Li[FSI](5M) Li[FSI](5M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   2.9 2.9   74 74   64 64   Li[FSI](1M) Li[FSI](1M)   EMC/(CH3O)2Si(C6H5)2/PN/MB(3/3/1/1)EMC/(CH 3 O) 2 Si(C 6 H 5 ) 2 /PN/MB(3/3/1/1)   2.8 2.8   78 78   65 65   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/(CH3O)2Si(C6H5)2/PDN/MB(3/3/1/1)EMC/(CH 3 O) 2 Si(C 6 H 5 ) 2 /PDN/MB(3/3/1/1)   1.0 1.0   79 79   66 66   Li[FSI](5M) Li[FSI](5M)   EMC/(CH3O)2Si(C6H5)2/DOL/MB(3/3/1/1)EMC/(CH 3 O) 2 Si(C 6 H 5 ) 2 /DOL/MB(3/3/1/1)   5.9 5.9   81 81   67 67   Li[FSI](1M) Li[FSI](1M)   DEC/F-TMP/EB-f/PN(5/3/1/1) DEC/F-TMP/EB-f/PN(5/3/1/1)   6.4 6.4   87 87   68 68   Li[FSI](0.1M) Li[FSI](0.1M)   DEC/F-TMP/PB-f/PN(5/3/1/1) DEC/F-TMP/PB-f/PN(5/3/1/1)   0.9 0.9   80 80   69 69   Li[FSI](5M) Li[FSI](5M)   DEC/F-TMP/BB-fPN(5/3/1/1) DEC/F-TMP/BB-fPN(5/3/1/1)   4.5 4.5   84 84   70 70   Li[FSI](1M) Li[FSI](1M)   DMC/MA(9/1) DMC/MA(9/1)   4.3 4.3   88 88   71 71   Li[FSI](0.1M) Li[FSI](0.1M)   EMC/EA(4/1) EMC/EA(4/1)   2.0 2.0   70 70   72 72   Li[FSI](5M) Li[FSI](5M)   DEC/THF(9/1) DEC/THF(9/1)   2.4 2.4   65 65   73 73   Li[FSI](1M) Li[FSI](1M)   EMC-f/TMP(5/1) EMC-f/TMP(5/1)   5.0 5.0   88 88   74 74   Li[FSI](0.1M) Li[FSI](0.1M)   DEC-f/(C2H5)3SiCH2SO3CF3(3/1)DEC-f/(C 2 H 5 ) 3 SiCH 2 SO 3 CF 3 (3/1)   1.1 1.1   78 78   75 75   Li[FSI](5M) Li[FSI](5M)   DMC-f/F-TMP(2/1) DMC-f/F-TMP(2/1)   5.9 5.9   75 75

  76 76   Li[FSI](1M) Li[FSI](1M)   DMC/TEP(1/1) DMC/TEP(1/1)   7.5 7.5   86 86   77 77   Li[FSI](1M) Li[FSI](1M)   DMC/TEP(1/4) DMC/TEP(1/4)   6.1 6.1   80 80   78 78   Li[FSI](1M) Li[FSI](1M)   DMC/TMP(1/4) DMC/TMP(1/4)   6.2 6.2   84 84   79 79   Li[FSI](1M) Li[FSI](1M)   TFEA/2F-TMP(1/2) TFEA/2F-TMP(1/2)   4.3 4.3   88 88   80 80   Li[FSI](0.1M) Li[FSI](0.1M)   ETFA/(C2H5)3SiCH2SO3CF3(1/5)ETFA/(C 2 H 5 ) 3 SiCH 2 SO 3 CF 3 (1/5)   0.8 0.8   70 70   81 81   Li[FSI](5M) Li[FSI](5M)   MPFP/PDN(1/1) MPFP/PDN(1/1)   5.8 5.8   65 65   82 82   Li[FSI](1M) Li[FSI](1M)   THF/MB(5/1) THF/MB(5/1)   6.8 6.8   88 88   83 83   Li[FSI](0.1M) Li[FSI](0.1M)   DOL/PB-f(9/1) DOL/PB-f(9/1)   2.1 2.1   78 78   84 84   Li[FSI](5M) Li[FSI](5M)   BC/3-MPN(1/8) BC/3-MPN(1/8)   5.9 5.9   75 75   85 85   Li[FSI](1M) Li[FSI](1M)   BB-f/EMOE(1/1) BB-f/EMOE(1/1)   7.5 7.5   86 86   86 86   Li[FSI](0.1M) Li[FSI](0.1M)   2-MTHF/EA-f(8/1) 2-MTHF/EA-f(8/1)   1.5 1.5   80 80   87 87   Li[FSI](5M) Li[FSI](5M)   DMC-f/MOAN(7/3) DMC-f/MOAN(7/3)   5.6 5.6   86 86   88 88   Li[FSI](1M) Li[FSI](1M)   DMC DMC   5.8 5.8   90 90   89 89   Li[FSI](0.1M) Li[FSI](0.1M)   DMC-f DMC-f   1.9 1.9   85 85   90 90   Li[FSI](5M) Li[FSI](5M)   EMC EMC   5.2 5.2   77 77   91 91   Li[FSI](1M) Li[FSI](1M)   EMC-f EMC-f   5.7 5.7   68 68   92 92   Li[FSI](0.1M) Li[FSI](0.1M)   DEC DEC   1.7 1.7   82 82   93 93   Li[FSI](5M) Li[FSI](5M)   DEC-f DEC-f   4.8 4.8   86 86   94 94   Li[FSI](1M) Li[FSI](1M)   MA MA   4.7 4.7   81 81   95 95   Li[FSI](0.1M) Li[FSI](0.1M)   MA-f MA-f   1.8 1.8   77 77   96 96   Li[FSI](5M) Li[FSI](5M)   EA EA   4.9 4.9   65 65   97 97   Li[FSI](1M) Li[FSI](1M)   EA-f EA-f   7.8 7.8   85 85   98 98   Li[FSI](0.1M) Li[FSI](0.1M)   EP EP   0.7 0.7   88 88   99 99   Li[FSI](5M) Li[FSI](5M)   EP-f EP-f   4.7 4.7   86 86   100 100   Li[FSI](1M) Li[FSI](1M)   MB MB   7.5 7.5   70 70   101 101   Li[FSI](0.1M) Li[FSI](0.1M)   MB-f MB-f   0.6 0.6   65 65   102 102   Li[FSI](5M) Li[FSI](5M)   EB EB   3.0 3.0   89 89   103 103   Li[FSI](1M) Li[FSI](1M)   EB-f EB-f   3.9 3.9   80 80   104 104   Li[FSI](0.1M) Li[FSI](0.1M)   PB PB   1.4 1.4   87 87   105 105   Li[FSI](5M) Li[FSI](5M)   PB-f PB-f   3.7 3.7   83 83

  106 106   Li[FSI](1M) Li[FSI](1M)   BB BB   6.1 6.1   80 80   107 107   Li[FSI](0.1M) Li[FSI](0.1M)   BB-f BB-f   1.9 1.9   78 78   108 108   Li[FSI](5M) Li[FSI](5M)   TFEB TFEB   3.9 3.9   80 80   109 109   Li[FSI](1M) Li[FSI](1M)   TFEA TFEA   4.2 4.2   81 81   110 110   Li[FSI](0.1M) Li[FSI](0.1M)   ETFA ETFA   1.1 1.1   85 85   111 111   Li[FSI](5M) Li[FSI](5M)   MPFP MPFP   0.7 0.7   70 70   112 112   Li[FSI](1M) Li[FSI](1M)   DMOE DMOE   4.8 4.8   67 67   113 113   Li[FSI](0.1M) Li[FSI](0.1M)   DMOE-f DMOE-f   0.5 0.5   65 65   114 114   Li[FSI](5M) Li[FSI](5M)   EMOE EMOE   4.0 4.0   65 65   115 115   Li[FSI](1M) Li[FSI](1M)   EMOE-f EMOE-f   4.7 4.7   68 68   116 116   Li[FSI](0.5M) Li[FSI](0.5M)   TMP TMP   3.1 3.1   70 70   117 117   Li[FSI](5M) Li[FSI](5M)   (CH3O)4Si(CH 3 O) 4 Si   0.8 0.8   75 75   118 118   Li[FSI](1M) Li[FSI](1M)   F-TMP F-TMP   7.7 7.7   73 73   119 119   Li[FSI](0.1M) Li[FSI](0.1M)   BC BC   0.4 0.4   70 70   120 120   Li[FSI](5M) Li[FSI](5M)   THF THF   3.5 3.5   69 69   121 121   Li[FSI](1M) Li[FSI](1M)   2-MTHF 2-MTHF   5.4 5.4   60 60   122 122   Li[FSI](0.5M) Li[FSI](0.5M)   DOL DOL   0.7 0.7   70 70   123 123   Li[FSI](5M) Li[FSI](5M)   AN AN   4.0 4.0   60 60   124 124   Li[FSI](1M) Li[FSI](1M)   PN PN   6.1 6.1   58 58   125 125   Li[FSI](0.5M) Li[FSI](0.5M)   PDN PDN   0.9 0.9   53 53   126 126   Li[FSI](5M) Li[FSI](5M)   MOAN MOAN   3.0 3.0   80 80   127 127   Li[FSI](1M) Li[FSI](1M)   3-MPN 3-MPN   3.8 3.8   79 79   128 128   LiFTFSI(1.5M) LiFTFSI(1.5M)   DMC/EMC/DEC(1/1/1) DMC/EMC/DEC(1/1/1)   3.7 3.7   82 82   129 129   LiFTFSI(0.1M) LiFTFSI(0.1M)   DMC/EMC/DEC(1/1/1) DMC/EMC/DEC(1/1/1)   1.3 1.3   85 85   130 130   LiFTFSI(5M) LiFTFSI(5M)   DMC/EMC/DEC(1/1/1) DMC/EMC/DEC(1/1/1)   4.8 4.8   89 89   131 131   LiTFSI(1M) LiTFSI(1M)   DMC-f/TMP/MA(1/3/1) DMC-f/TMP/MA(1/3/1)   4.9 4.9   86 86   132 132   LiTFSI(0.1M) LiTFSI(0.1M)   DMC-f/TMP/MA(1/3/1) DMC-f/TMP/MA(1/3/1)   1.1 1.1   86 86   133 133   LiTFSI(5M) LiTFSI(5M)   DMC-f/TMP/MA(1/3/1) DMC-f/TMP/MA(1/3/1)   5.9 5.9   80 80   134 134   LiFEFSI(1M) LiFEFSI(1M)   DMC/THF/EP(3/5/2) DMC/THF/EP(3/5/2)   6.7 6.7   89 89

  135 135   LiFEFSI(0.2M) LiFEFSI(0.2M)   DMC/THF/EP(3/5/2) DMC/THF/EP(3/5/2)   2.4 2.4   80 80   136 136   LiFEFSI(5M) LiFEFSI(5M)   DMC/THF/EP(3/5/2) DMC/THF/EP(3/5/2)   6.8 6.8   79 79   137 137   LiFPFSI(1M) LiFPFSI(1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   6.5 6.5   85 85   138 138   LiFPFSI(0.1M) LiFPFSI(0.1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   1.8 1.8   81 81   139 139   LiFPFSI(5M) LiFPFSI(5M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   5.7 5.7   80 80   140 140   LiFTFSI(1.5M) LiFTFSI(1.5M)   DEC/BB/BC(6/3/1) DEC/BB/BC(6/3/1)   5.2 5.2   76 76   141 141   LiFTFSI(0.1M) LiFTFSI(0.1M)   DEC/BB/BC(6/3/1) DEC/BB/BC(6/3/1)   1.5 1.5   80 80   142 142   LiFTFSI(5M) LiFTFSI(5M)   DEC/BB/BC(6/3/1) DEC/BB/BC(6/3/1)   3.8 3.8   82 82   143 143   LiTFSI(1M) LiTFSI(1M)   EMC-f/TFEB/3-MPN(5/1/4) EMC-f/TFEB/3-MPN(5/1/4)   4.0 4.0   79 79   144 144   LiTFSI(0.1M) LiTFSI(0.1M)   EMC-f/TFEB/3-MPN(5/1/4) EMC-f/TFEB/3-MPN(5/1/4)   2.9 2.9   74 74   145 145   LiTFSI(5M) LiTFSI(5M)   EMC-f/TFEB/3-MPN(5/1/4) EMC-f/TFEB/3-MPN(5/1/4)   2.8 2.8   78 78   146 146   LiFEFSI(1M) LiFEFSI(1M)   EMC/(C2H5O)4Si/TFEA(3/1/1)EMC/(C 2 H 5 O) 4 Si/TFEA(3/1/1)   3.0 3.0   79 79   147 147   LiFEFSI(0.2M) LiFEFSI(0.2M)   EMC/(C2H5O)4Si/TFEA(3/1/1)EMC/(C 2 H 5 O) 4 Si/TFEA(3/1/1)   1.9 1.9   81 81   148 148   LiFEFSI(5M) LiFEFSI(5M)   EMC/(C2H5O)4Si/TFEA(3/1/1)EMC/(C 2 H 5 O) 4 Si/TFEA(3/1/1)   6.4 6.4   87 87   149 149   LiFPFSI(1M) LiFPFSI(1M)   EMC/DEC/ETFA(3/1/1) EMC/DEC/ETFA(3/1/1)   6.7 6.7   80 80   150 150   LiFPFSI(0.1M) LiFPFSI(0.1M)   EMC/DEC/ETFA(3/1/1) EMC/DEC/ETFA(3/1/1)   1.5 1.5   84 84   151 151   LiFPFSI(5M) LiFPFSI(5M)   EMC/DEC/ETFA(3/1/1) EMC/DEC/ETFA(3/1/1)   4.3 4.3   88 88   152 152   LiFTFSI(1.5M) LiFTFSI(1.5M)   DMC/EMC/DEC/MA(3/3/3/1) DMC/EMC/DEC/MA(3/3/3/1)   6.0 6.0   70 70   153 153   LiFTFSI(0.1M) LiFTFSI(0.1M)   DMC/EMC/DEC/EA(3/3/3/1) DMC/EMC/DEC/EA(3/3/3/1)   1.4 1.4   65 65   154 154   LiFTFSI(5M) LiFTFSI(5M)   DMC-f/TMP/AN/MA-f(3/3/1/1) DMC-f/TMP/AN/MA-f(3/3/1/1)   5.0 5.0   88 88

  155 155   LiTFSI(1M) LiTFSI(1M)   DMC-f/TMP/THF/MB(3/3/1/1) DMC-f/TMP/THF/MB(3/3/1/1)   7.1 7.1   78 78   156 156   LiTFSI(0.1M) LiTFSI(0.1M)   DMC-f/F-TMP/ETFA/PB(3/3/1/1) DMC-f/F-TMP/ETFA/PB(3/3/1/1)   1.9 1.9   75 75   157 157   LiTFSI(5M) LiTFSI(5M)   DMC/DMOE/THF/EP(3/5/2/1) DMC/DMOE/THF/EP(3/5/2/1)   3.5 3.5   86 86   158 158   LiFEFSI(1M) LiFEFSI(1M)   DMC/DMOE-f/DOL/TFEA(3/5/2/1) DMC/DMOE-f/DOL/TFEA(3/5/2/1)   7.1 7.1   80 80   159 159   LiFEFSI(0.2M) LiFEFSI(0.2M)   DMC/EMOE-f/2-MTHF/MPFP(3/5/2/1) DMC/EMOE-f/2-MTHF/MPFP(3/5/2/1)   2.2 2.2   84 84   160 160   LiFEFSI(5M) LiFEFSI(5M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   4.3 4.3   88 88   161 161   LiFPFSI(1M) LiFPFSI(1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   5.8 5.8   70 70   162 162   LiFPFSI(0.1M) LiFPFSI(0.1M)   DEC-f/DMOE/AN(3/1/1) DEC-f/DMOE/AN(3/1/1)   1.8 1.8   65 65   163 163   LiFPFSI(5M) LiFPFSI(5M)   EMC/TEP/PN/MB(3/3/1/1) EMC/TEP/PN/MB(3/3/1/1)   3.8 3.8   88 88   164 164   LiFTFSI(1.5M) LiFTFSI(1.5M)   EMC/TEP/PDN/MB(3/3/1/1) EMC/TEP/PDN/MB(3/3/1/1)   6.5 6.5   78 78   165 165   LiFTFSI(0.1M) LiFTFSI(0.1M)   EMC/TEP/DOL/MB(3/3/1/1) EMC/TEP/DOL/MB(3/3/1/1)   0.9 0.9   75 75   166 166   LiFTFSI(5M) LiFTFSI(5M)   DEC/F-TMP/EB-f/PN(5/3/1/1) DEC/F-TMP/EB-f/PN(5/3/1/1)   3.5 3.5   86 86   167 167   LiTFSI(1M) LiTFSI(1M)   DEC/F-TMP/PB-f/PN(5/3/1/1) DEC/F-TMP/PB-f/PN(5/3/1/1)   7.5 7.5   80 80   168 168   LiTFSI(0.1M) LiTFSI(0.1M)   DEC/F-TMP/BB-fPN(5/3/1/1) DEC/F-TMP/BB-fPN(5/3/1/1)   1.1 1.1   86 86   169 169   LiTFSI(5M) LiTFSI(5M)   DMC/MA(9/1) DMC/MA(9/1)   5.6 5.6   86 86   170 170   LiFEFSI(1M) LiFEFSI(1M)   EMC/EA(4/1) EMC/EA(4/1)   5.8 5.8   90 90   171 171   LiFEFSI(0.2M) LiFEFSI(0.2M)   DEC/THF(9/1) DEC/THF(9/1)   2.4 2.4   85 85   172 172   LiFEFSI(5M) LiFEFSI(5M)   EMC-f/TMP(5/1) EMC-f/TMP(5/1)   5.2 5.2   77 77   173 173   LiFPFSI(1M) LiFPFSI(1M)   DEC-f/(CH3O)4Si(3/1)DEC-f/( CH3O ) 4Si (3/1)   5.7 5.7   68 68   174 174   LiFPFSI LiFPFSI   DMC-f/F-TMP(2/1) DMC-f/F-TMP(2/1)   1.9 1.9   82 82

  (0.1M) (0.1M)   175 175   LiFPFSI(5M) LiFPFSI(5M)   EMC/EMC(3/7) EMC/EMC(3/7)   4.8 4.8   86 86   176 176   LiFTFSI(1.5M) LiFTFSI(1.5M)   EMC/DMOE(6/1) EMC/DMOE(6/1)   4.7 4.7   81 81   177 177   LiFTFSI(0.1M) LiFTFSI(0.1M)   TFEB/AN(1/1) TFEB/AN(1/1)   0.8 0.8   77 77   178 178   LiFTFSI(5M) LiFTFSI(5M)   TFEA/F-TMP(1/2) TFEA/F-TMP(1/2)   4.9 4.9   65 65   179 179   LiTFSI(1M) LiTFSI(1M)   ETFA/(CH3O)4Si(1/5)ETFA/( CH3O ) 4Si (1/5)   5.8 5.8   85 85   180 180   LiTFSI(0.1M) LiTFSI(0.1M)   MPFP/PDN(1/1) MPFP/PDN(1/1)   0.7 0.7   88 88   181 181   LiTFSI(5M) LiTFSI(5M)   THF/MB(5/1) THF/MB(5/1)   0.7 0.7   86 86   182 182   LiFEFSI(1M) LiFEFSI(1M)   DOL/PB-f(9/1) DOL/PB-f(9/1)   6.6 6.6   70 70   183 183   LiFEFSI(0.2M) LiFEFSI(0.2M)   BC/3-MPN(1/8) BC/3-MPN(1/8)   0.6 0.6   65 65   184 184   LiFEFSI(5M) LiFEFSI(5M)   BB-f/EMOE(1/1) BB-f/EMOE(1/1)   3.0 3.0   89 89   185 185   LiFPFSI(1M) LiFPFSI(1M)   2-MTHF/EA-f(8/1) 2-MTHF/EA-f(8/1)   3.9 3.9   80 80   186 186   LiFPFSI(0.1M) LiFPFSI(0.1M)   DMC-f/MOAN(7/3) DMC-f/MOAN(7/3)   1.1 1.1   87 87   187 187   LiFPFSI(5M) LiFPFSI(5M)   DMC DMC   3.7 3.7   83 83   188 188   LiFTFSI(1.5M) LiFTFSI(1.5M)   DMC-f DMC-f   3.9 3.9   80 80   189 189   LiFTFSI(0.1M) LiFTFSI(0.1M)   EMC EMC   1.9 1.9   78 78   190 190   LiFTFSI(5M) LiFTFSI(5M)   EMC-f EMC-f   3.9 3.9   80 80   191 191   LiTFSI(1M) LiTFSI(1M)   DEC DEC   4.2 4.2   81 81   192 192   LiTFSI(0.1M) LiTFSI(0.1M)   DEC-f DEC-f   1.0 1.0   85 85   193 193   LiTFSI(5M) LiTFSI(5M)   MA MA   0.7 0.7   70 70   194 194   LiFEFSI(1M) LiFEFSI(1M)   MA-f MA-f   6.8 6.8   67 67   195 195   LiFEFSI(0.2M) LiFEFSI(0.2M)   EA EA   0.5 0.5   65 65   196 196   LiFEFSI(5M) LiFEFSI(5M)   EA-f EA-f   4.0 4.0   65 65   197 197   LiFPFSI(1M) LiFPFSI(1M)   EP EP   3.7 3.7   68 68

  198 198   LiFPFSI(0.1M) LiFPFSI(0.1M)   EP-f EP-f   1.1 1.1   70 70   199 199   LiFPFSI(5M) LiFPFSI(5M)   MB MB   0.8 0.8   75 75   200 200   LiFTFSI(1.5M) LiFTFSI(1.5M)   MB-f MB-f   5.7 5.7   73 73   201 201   LiFTFSI(0.1M) LiFTFSI(0.1M)   EB EB   0.4 0.4   70 70   202 202   LiFTFSI(5M) LiFTFSI(5M)   EB-f EB-f   0.5 0.5   69 69   203 203   LITFSI(1M) LITFSI(1M)   PB PB   5.7 5.7   60 60   204 204   LiTFSI(0.1M) LiTFSI(0.1M)   PB-f PB-f   0.7 0.7   70 70   205 205   LiTFSI(5M) LiTFSI(5M)   BB BB   1.0 1.0   60 60   206 206   LiFEFSI(1M) LiFEFSI(1M)   BB-f BB-f   1.1 1.1   58 58   207 207   LiFEFSI(0.2M) LiFEFSI(0.2M)   TFEB TFEB   0.9 0.9   53 53   208 208   LiFEFSI(5M) LiFEFSI(5M)   TFEA TFEA   3.0 3.0   80 80   209 209   LiFPFSI(1M) LiFPFSI(1M)   ETFA ETFA   3.8 3.8   79 79   210 210   LiFPFSI(0.1M) LiFPFSI(0.1M)   MPFP MPFP   1.6 1.6   82 82   211 211   LiFPFSI(5M) LiFPFSI(5M)   DMOE DMOE   4.5 4.5   85 85   212 212   LiFTFSI(1.5M) LiFTFSI(1.5M)   DMOE-f DMOE-f   4.8 4.8   89 89   213 213   LiFTFSI(0.1M) LiFTFSI(0.1M)   EMOE EMOE   0.9 0.9   86 86   214 214   LiFTFSI(5M) LiFTFSI(5M)   EMOE-f EMOE-f   5.1 5.1   86 86   215 215   LiTFSI(1M) LiTFSI(1M)   TMP TMP   5.9 5.9   80 80   216 216   LiTFSI(0.1M) LiTFSI(0.1M)   2F-TMP 2F-TMP   0.8 0.8   89 89   217 217   LiTFSI(5M) LiTFSI(5M)   F-TMP F-TMP   6.4 6.4   80 80   218 218   LiFEFSI(1M) LiFEFSI(1M)   BC BC   6.8 6.8   79 79   219 219   LiFEFSI(0.2M) LiFEFSI(0.2M)   THF THF   1.8 1.8   85 85   220 220   LiFEFSI(5M) LiFEFSI(5M)   2-MTHF 2-MTHF   5.8 5.8   81 81

  221 221   LiFPFSI(1M) LiFPFSI(1M)   DOL DOL   5.7 5.7   80 80   222 222   LiFPFSI(0.1M) LiFPFSI(0.1M)   AN AN   0.8 0.8   76 76   223 223   LiFPFSI(5M) LiFPFSI(5M)   PN PN   3.5 3.5   80 80   224 224   LiTFSI(1M) LiTFSI(1M)   PDN PDN   3.8 3.8   82 82   225 225   LiTFSI(0.1M) LiTFSI(0.1M)   MOAN MOAN   1.0 1.0   79 79   226 226   LiTFSI(5M) LiTFSI(5M)   3-MPN 3-MPN   2.9 2.9   74 74   227 227   Li[FSI](0.5M) Li[FSI](0.5M)   TEOBX TEOBX   1.8 1.8   80 80   228 228   Li[FSI](1M) Li[FSI](1M)   PFTEOBX PFTEOBX   2.9 2.9   74 74   229 229   LiFTFSI(1.5M) LiFTFSI(1.5M)   TEBX TEBX   3.0 3.0   71 71   230 230   LiFTFSI(0.1M) LiFTFSI(0.1M)   TABX TABX   2.1 2.1   60 60   231 231   LiTFSI(1M) LiTFSI(1M)   TEB TEB   2.0 2.0   56 56   232 232   LiTFSI(0.5M) LiTFSI(0.5M)   PFTEB PFTEB   0.9 0.9   80 80   233 233   LiFEFSI(1M) LiFEFSI(1M)   TEOBX/DMC TEOBX/DMC   5.0 5.0   83 83   234 234   LiFPFSI(1M) LiFPFSI(1M)   PFTEOBX/MA PFTEOBX/MA   4.1 4.1   84 84   235 235   LiFPFSI(2M) LiFPFSI(2M)   PFTEB/THF/TMP PFTEB/THF/TMP   5.3 5.3   81 81   237 237   Li[FSI](1M) Li[FSI](1M)   二乙醚 Diethyl ether   /(-80℃) /(-80℃)   /(-80℃) /(-80℃)   238 238   Li[FSI](1M) Li[FSI](1M)   二甲氧基乙烷 Dimethoxyethane   / /   / /   239 239   Li[FSI](1M) Li[FSI](1M)   四氢呋喃 Tetrahydrofuran   / /   / /   240 240   Li[FSI](1M) Li[FSI](1M)   二甲基四氢呋喃 Dimethyltetrahydrofuran   / /   / /   241 241   Li[FSI](1M) Li[FSI](1M)   二氧杂环乙烷 Dioxane   / /   / /   242 242   Li[FSI](1M) Li[FSI](1M)   甲基甲酸酯 Methyl formate   / /   / /   243 243   Li[FSI](1M) Li[FSI](1M)   乙基甲酸酯 ethyl formate   / /   / /   244 244   Li[FSI](1M) Li[FSI](1M)   丙烯碳酸酯 Acrylic carbonate   / /   / /   245 245   Li[FSI](1M) Li[FSI](1M)   乙烯碳酸酯 Ethylene carbonate   / /   / /   246 246   LiPF6(1M) LiPF6 (1M)   丁内酯 Butyrolactone   / /   / /   247 247   LiPF6(1M) LiPF6 (1M)   乙腈 Acetonitrile   / /   / /   248 248   LiPF6(1M) LiPF6 (1M)   丙腈 propionitrile   / /   / /

  249 249   LiPF6(1M) LiPF6 (1M)   硝基甲烷 Nitromethane   / /   / /   250 250   LiPF6(1M) LiPF6 (1M)   硝基苯 Nitrobenzene   / /   / /   251 251   LiPF6(1M) LiPF6 (1M)   二甲基甲酰胺 dimethylformamide   / /   / /   252 252   LiBF4(1M)LiBF 4 (1M)   二乙基甲酰胺 Diethylformamide   / /   / /   253 253   LiBF4(1M)LiBF 4 (1M)   N-甲基吡咯烷酮 N-Methylpyrrolidone   / /   / /   254 254   LiBF4(1M)LiBF 4 (1M)   二甲亚砜 Dimethyl sulfoxide   / /   / /   255 255   LiBF4(1M)LiBF 4 (1M)   四亚甲基砜 tetramethylene sulfone   / /   / /   256 256   LiBF4(1M)LiBF 4 (1M)   四乙基磺胺 Tetraethylsulfonamide   / /   / /

注:电导率和容量保持率数据后括号中为温度,无特殊说明则是室温25℃。实施例237-256均为-80度数据。Note: The temperature in parentheses after the conductivity and capacity retention data is room temperature 25°C unless otherwise specified. Examples 237-256 are all -80 degree data.

表2锂离子迁移数比较Table 2 Lithium ion migration number comparison

  序号 serial number   组成(溶剂为体积比) Composition (solvent is volume ratio)   tLi+ t Li+   tX- t X-   1 1   1M Li[FSI]-DMC 1M Li[FSI]-DMC   0.74 0.74   0.26 0.26   2 2   1M Li[FSI]-EC/DMC/EMC(5∶3∶2) 1M Li[FSI]-EC/DMC/EMC (5:3:2)   0.56 0.56   0.44 0.44   3 3   1M Li[FSI]-DMC/Silane(1∶4) 1M Li[FSI]-DMC/Silane(1∶4)   0.65 0.65   0.35 0.35   4 4   1M LiPF6-EC/DMC(1∶1)1M LiPF 6 -EC/DMC (1:1)   0.21 0.21   0.79 0.79   5 5   1M LiBF4-PC/DMC(1∶1)1M LiBF 4 -PC/DMC (1:1)   0.29 0.29   0.71 0.71

已经参照具体实施方式详细地描述了本发明,对本领域技术人员而言,应当理解的是,上述具体实施方式不应该被理解为限定本发明的范围。因此,在不脱离本发明精神和范围的情况下可以对本发明的实施方案作出各种改变和改进。The present invention has been described in detail with reference to specific embodiments, and it should be understood by those skilled in the art that the above specific embodiments should not be construed as limiting the scope of the present invention. Accordingly, various changes and modifications can be made to the embodiments of the invention without departing from the spirit and scope of the invention.

Claims (14)

1.一种非水电解质材料,其特征在于,所述非水电解质材料包含作为导电盐的含氟磺酰亚胺锂盐和介电常数小于30的有机溶剂,所述有机溶剂选自CF3OCO2CF3、CH3OCO2CH2CH3、CF3OCO2CF2CF3、CH3CH2OCO2CH2CH3、CF3CF2OCO2CF2CF3、磷酸酯类、硅氧烷类、硼氧烷类、乙酸酯类、丙酸酯类、丁酸酯类、CF3OCH2CH2OCF3、C2H5OCH2CH2OCH3、C2F5OCH2CH2OCF3、1,3-二氧环戊烷以及碳原子数大于2的脂肪腈类有机溶剂中的一种或几种,并且所述含氟磺酰亚胺锂盐为化学式(I)所示的化合物中的一种或几种,  1. A non-aqueous electrolyte material, characterized in that, the non-aqueous electrolyte material comprises a fluorine-containing sulfonimide lithium salt as a conductive salt and an organic solvent with a dielectric constant less than 30, and the organic solvent is selected from CF 3 OCO 2 CF 3 , CH 3 OCO 2 CH 2 CH 3 , CF 3 OCO 2 CF 2 CF 3 , CH 3 CH 2 OCO 2 CH 2 CH 3 , CF 3 CF 2 OCO 2 CF 2 CF 3 , phosphates, silicon Oxanes, Boroxanes, Acetates, Propionates, Butyrates, CF 3 OCH 2 CH 2 OCF 3 , C 2 H 5 OCH 2 CH 2 OCH 3 , C 2 F 5 OCH 2 CH One or more of 2 OCF 3 , 1,3-dioxolane, and aliphatic nitrile organic solvents with more than 2 carbon atoms, and the fluorine-containing sulfonylimide lithium salt is represented by chemical formula (I) One or more of the compounds shown, 其中,取代基R1=R2=F,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F) 2];或R1=F、R2=CF3,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2CF3)];或R1=F、R2=C2F5,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2C2F5)];或R1=F、R2=C3F7,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2C3F7)];或R1=F、R2=C5F6,此时所述含氟磺酰亚胺锂盐为Li[N(SO2F)(SO2C5F6)]。  Wherein, the substituent R 1 =R 2 =F, at this time, the fluorine-containing sulfonyl imide lithium salt is Li[N(SO 2 F) 2 ]; or R 1 =F, R 2 =CF 3 , at this time The fluorine-containing sulfonyl imide lithium salt is Li[N(SO 2 F)(SO 2 CF 3 )]; or R 1 =F, R 2 =C 2 F 5 , at this time, the fluorine-containing sulfonyl imide Lithium salt of amine is Li[N(SO 2 F)(SO 2 C 2 F 5 )]; or R 1 =F, R 2 =C 3 F 7 , at this time, the lithium salt of fluorine-containing sulfonyl imide is Li [N(SO 2 F)(SO 2 C 3 F 7 )]; or R 1 =F, R 2 =C 5 F 6 , at this time, the lithium fluorine-containing sulfonyl imide is Li[N(SO 2 F) (SO 2 C 5 F 6 )]. 2.根据权利要求1所述的非水电解质材料,其特征在于,所述氟磺酰亚胺锂盐在该非水电解质材料中的摩尔浓度为0.1-5mol/L。  2. The non-aqueous electrolyte material according to claim 1, characterized in that the molar concentration of the lithium fluorosulfonyl imide salt in the non-aqueous electrolyte material is 0.1-5 mol/L. the 3.根据权利要求1所述的非水电解质材料,其特征在于,所述磷酸酯类有机溶剂具有化学式(III)、(IV)或(V)所示结构:  3. non-aqueous electrolyte material according to claim 1, is characterized in that, described phosphate organic solvent has structure shown in chemical formula (III), (IV) or (V): 其中,取代基R5、R6、R7各自独立地选自碳原子数为1至10的饱和或者不饱和烷基、碳原子数为1至10的饱和或者不饱和的卤素部分取代或者全取代烷基、卤素部分取代或者全取代的芳基、碳原子数为1至10的饱和或者不饱和的烷氧基;  Wherein, substituents R 5 , R 6 , and R 7 are each independently selected from saturated or unsaturated alkyl groups with 1 to 10 carbon atoms, saturated or unsaturated halogen with 1 to 10 carbon atoms partially substituted or fully substituted Substituted alkyl, partially substituted or fully substituted aryl with halogen, saturated or unsaturated alkoxy with 1 to 10 carbon atoms; 取代基X1、X2各自独立地为卤素,所述卤素选自F、Cl、Br和I。  Each of the substituents X 1 and X 2 is independently a halogen selected from F, Cl, Br and I. 4.根据权利要求3所述的非水电解质材料,其特征在于,所述取代基R5、R6环化,构成含有2至5个碳原子的环状磷酸酯。  4 . The non-aqueous electrolyte material according to claim 3 , wherein the substituents R 5 and R 6 are cyclized to form a cyclic phosphate ester containing 2 to 5 carbon atoms. 5.根据权利要求3所述的非水电解质材料,其特征在于,所述磷酸酯类有机溶剂选自磷酸三甲酯、磷酸三乙酯、磷酸三正丁基酯、磷酸三辛酯、磷酸三(2-乙基己基)酯、磷酸三苯酯、磷酸二乙一甲酯、磷酸二丁一甲酯、磷酸三氟乙基二甲基酯、磷酸三(三氟甲基)酯、磷酸三(氯乙基)酯、磷酸三(三溴新戊基)酯、磷酸二甲基甲酯、磷酸三(二氯丙基)酯、磷酸三(2、6-二甲基苯基)酯、磷酸二乙一丙酯、磷酸三(三氟乙基)酯、磷酸二丙一乙酯、氟代磷酸二甲酯、二氟磷酸甲酯,及其混合物。  5. The non-aqueous electrolyte material according to claim 3, wherein the phosphate organic solvent is selected from trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, phosphoric acid Tris (2-ethylhexyl) ester, triphenyl phosphate, diethyl monomethyl phosphate, dibutyl monomethyl phosphate, trifluoroethyl dimethyl phosphate, tris (trifluoromethyl) phosphate, tris phosphate (Chloroethyl) ester, tris(tribromoneopentyl) phosphate, dimethyl methyl phosphate, tris(dichloropropyl) phosphate, tris(2,6-dimethylphenyl) phosphate, Diethyl-propyl phosphate, tris(trifluoroethyl) phosphate, dipropyl-ethyl phosphate, dimethyl fluorophosphate, methyl difluorophosphate, and mixtures thereof. the 6.根据权利要求1-5中任一项所述的非水电解质材料,其特征在于,所述硅氧烷类有机溶剂具有化学式(VI)所示结构:  6. according to the non-aqueous electrolyte material according to any one of claim 1-5, it is characterized in that, described siloxane organic solvent has structure shown in chemical formula (VI): 其中,取代基R8、R9、R10、R11相同或不同,各自独立地选自H、碳原子数为1至10的饱和或不饱和烷基、以及OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm和基于乙氧基的聚合物基团,其中,n为1至10的整数,m为大于零的整数,且2n+1-m大于等于零;或者,取代基R8、R9、R10、R11相同或不同,各自独立地为被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳基,所述芳基为苯基和/或萘基,或为被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳族杂环基,所述芳族杂环基为吡啶基、吡唑基和/或嘧啶基,其中,n为1至10的整数,m为大于零的整数,且2n+1-m大于等于零。  Wherein, the substituents R 8 , R 9 , R 10 , and R 11 are the same or different, each independently selected from H, a saturated or unsaturated alkyl group with 1 to 10 carbon atoms, and OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , and ethoxy-based polymer groups, wherein n is an integer from 1 to 10, and m is greater than An integer of zero, and 2n+1-m is greater than or equal to zero; or, the substituents R 8 , R 9 , R 10 , and R 11 are the same or different, each independently represented by F, C n F 2n+1-m H m , OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 not Substituted or monosubstituted or polysubstituted aryl, said aryl is phenyl and/or naphthyl, or is replaced by F, C n F 2n+1-m H m , OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted or monosubstituted or polysubstituted aromatic Heterocyclic group, the aromatic heterocyclic group is pyridyl, pyrazolyl and/or pyrimidinyl, wherein n is an integer from 1 to 10, m is an integer greater than zero, and 2n+1-m is greater than or equal to zero. 7.根据权利要求6所述的非水电解质材料,其特征在于,所述硅氧烷类有机溶剂选自四甲氧基硅、乙基三乙氧基硅氧烷、乙基三乙酰氧基硅氧烷、二苯基甲氧基硅氧烷、三乙基甲硅氧烷基氟代甲烷磺酸盐,及其混合物。  7. The non-aqueous electrolyte material according to claim 6, wherein the siloxane organic solvent is selected from tetramethoxy silicon, ethyl triethoxy siloxane, ethyl triacetoxy Silicone, Diphenylmethoxysiloxane, Triethylsiloxyl Fluoromethanesulfonate, and mixtures thereof. the 8.根据权利要求1-5中任一项所述的非水电解质材料,其特征在于,所述硼氧烷类有机溶剂具有化学式(VII)或(VIII)所示结构:  8. according to the non-aqueous electrolyte material according to any one of claim 1-5, it is characterized in that, described boroxane organic solvent has structure shown in chemical formula (VII) or (VIII): 其中,取代基R12、R13、R14相同或不同,各自独立地为H、碳原子数 为1至10的饱和或不饱和的烷基、以及OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm和基于乙氧基的聚合物基团,其中,n为1至10的整数,m为大于零的整数,且2n+1-m大于等于零;或者,取代基R8、R9、R10、R11相同或不同,各自独立地为被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳基,所述芳基为苯基和/或萘基,或为被F、CnF2n+1-mHm、OCnF2n+1-mHm、OCOCnF2n+1-mHm、OSO2CnF2n+1-mHm、N(CnF2n+1-mHm)2未取代或单取代或多取代的芳族杂环基,所述芳族杂环基为吡啶基、吡唑基和/或嘧啶基。  Wherein, the substituents R 12 , R 13 , and R 14 are the same or different, each independently being H, a saturated or unsaturated alkyl group with 1 to 10 carbon atoms, and OC n F 2n+1-m H m , OCOC n F 2n+1-m H m , OSO 2 CnF 2n+1-m H m , and ethoxy-based polymer groups, wherein n is an integer from 1 to 10, m is an integer greater than zero, and 2n+1-m is greater than or equal to zero; or, the substituents R 8 , R 9 , R 10 , and R 11 are the same or different, each independently being F, C n F 2n+1-m H m , OC n F 2n+ 1-m H m , OCOC n F 2n+1-m H m , OSO 2 CnF 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted or mono-substituted or multi-substituted Aryl, the aryl is phenyl and/or naphthyl, or is F, C n F 2n+1-m H m , OC n F 2n+1-m H m , OCOC n F 2n+1 -m H m , OSO 2 C n F 2n+1-m H m , N(C n F 2n+1-m H m ) 2 unsubstituted or monosubstituted or polysubstituted aromatic heterocyclic groups, the aromatic The heterocyclic group is pyridyl, pyrazolyl and/or pyrimidinyl. 9.根据权利要求8所述的非水电解质材料,其特征在于,所述硼氧烷类有机溶剂选自三乙氧基硼氧烷、全氟取代三乙氧基硼烷、三乙烯基硼氧烷、三炔丙基硼氧烷、三乙基硼酸酯、全氟取代三乙基硼酸酯,及其混合物。  9. The non-aqueous electrolyte material according to claim 8, wherein the boroxane organic solvent is selected from triethoxyboroxane, perfluorinated triethoxyborane, trivinyl boron Oxane, Tripropargylboroxane, Triethylboronate, Perfluorotriethylboronate, and mixtures thereof. the 10.根据权利要求1-5中任一项所述的非水电解质材料,其特征在于,所述乙酸酯类有机溶剂选自CH3CO2CH3、CF3CO2CF3、CH3CO2CH2CH3、CF3CO2CF2CF3、CH3CO2CH2CF3、CF3CO2CH2CH3,及其混合物;所述丙酸酯类有机溶剂选自CH3CH2CO2CH3、CF3CF2CO2CF3、CH3CH2CO2CH2CH3、CF3CF2CO2CF2CF3、CF3CF2CO2CH3,及其混合物;所述丁酸酯类有机溶剂选自CH3CH2CH2CO2CH3、CF3CF2CF2CO2CF3、CH3CH2CH2CO2CH2CH3、CF3CF2CF2CO2CF2CF3、CH3CH2CH2CO2CH2CH2CH3、CF3CF2CF2CO2CF2CF2CF3、CH3CH2CH2CO2CH2CH2CH2CH3、CF3CF2CF2CO2CF2CF2CF2CF3、CH3CH2CH2CO2CH2CF3,及其混合物。  10. The non-aqueous electrolyte material according to any one of claims 1-5, characterized in that, the acetate organic solvent is selected from CH 3 CO 2 CH 3 , CF 3 CO 2 CF 3 , CH 3 CO 2 CH 2 CH 3 , CF 3 CO 2 CF 2 CF 3 , CH 3 CO 2 CH 2 CF 3 , CF 3 CO 2 CH 2 CH 3 , and mixtures thereof; the propionate organic solvent is selected from CH 3 CH 2 CO 2 CH 3 , CF 3 CF 2 CO 2 CF 3 , CH 3 CH 2 CO 2 CH 2 CH 3 , CF 3 CF 2 CO 2 CF 2 CF 3 , CF 3 CF 2 CO 2 CH 3 , and mixtures thereof; The butyrate organic solvent is selected from CH 3 CH 2 CH 2 CO 2 CH 3 , CF 3 CF 2 CF 2 CO 2 CF 3 , CH 3 CH 2 CH 2 CO 2 CH 2 CH 3 , CF 3 CF 2 CF 2 CO 2 CF 2 CF 3 , CH 3 CH 2 CH 2 CO 2 CH 2 CH 2 CH 3 , CF 3 CF 2 CF 2 CO 2 CF 2 CF 2 CF 3 , CH 3 CH 2 CH 2 CO 2 CH 2 CH 2 CH2CH3 , CF3CF2CF2CO2CF2CF2CF2CF3 , CH3CH2CH2CO2CH2CF3 , and mixtures thereof . _ _ _ _ _ _ 11.根据权利要求1-5中任一项所述的非水电解质材料,其特征在于,所述碳原子数大于2的脂肪腈类有机溶剂选自丙腈、丙二腈、甲氧基乙腈、3-甲氧基丙腈,及其混合物。  11. according to the non-aqueous electrolyte material according to any one of claim 1-5, it is characterized in that, the aliphatic nitrile organic solvent that described carbon number is greater than 2 is selected from propionitrile, malononitrile, methoxyacetonitrile , 3-methoxypropionitrile, and mixtures thereof. the 12.权利要求1-11中任一项所述的非水电解质材料在制备锂电池和/或超级电容器中的应用。  12. The application of the non-aqueous electrolyte material described in any one of claims 1-11 in the preparation of lithium batteries and/or supercapacitors. the 13.一种锂电池,包括阳极、阴极和集流片,其特征在于,所述锂电池还包括权利要求1-11中任一项所述的非水电解质材料或用该非水电解质材料浸泡过的锂电池隔膜。  13. A lithium battery, comprising an anode, a cathode and a current collector, characterized in that the lithium battery also comprises the non-aqueous electrolyte material described in any one of claims 1-11 or soaked with the non-aqueous electrolyte material over the lithium battery separator. the 14.一种超级电容器,包括阳极、阴极和集流片,其特征在于,所述超级电容器还包括权利要求1-11中任一项所述的非水电解质材料或用该非水电解质材料浸泡过的锂电池隔膜。  14. A supercapacitor comprising an anode, a cathode and a current collector, characterized in that the supercapacitor also comprises the non-aqueous electrolyte material according to any one of claims 1-11 or soaked with the non-aqueous electrolyte material over the lithium battery separator. the
CN200910083453.4A 2009-05-05 2009-05-05 Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof Active CN101882696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910083453.4A CN101882696B (en) 2009-05-05 2009-05-05 Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910083453.4A CN101882696B (en) 2009-05-05 2009-05-05 Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof

Publications (2)

Publication Number Publication Date
CN101882696A CN101882696A (en) 2010-11-10
CN101882696B true CN101882696B (en) 2014-11-26

Family

ID=43054640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910083453.4A Active CN101882696B (en) 2009-05-05 2009-05-05 Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof

Country Status (1)

Country Link
CN (1) CN101882696B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201074B2 (en) 2019-03-29 2023-01-10 株式会社村田製作所 Electrolyte for secondary battery and secondary battery

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412417A (en) * 2010-09-20 2012-04-11 华中科技大学 Non-aqueous electrolyte for improving high-temperature electrochemical performance of lithium ion battery and application thereof
CN102569891A (en) * 2010-12-31 2012-07-11 张家港市国泰华荣化工新材料有限公司 Energy storage battery of non-aqueous electrolyte solution of fluorine-containing lithium sulfonyl imide
CN102544584A (en) * 2010-12-31 2012-07-04 张家港市国泰华荣化工新材料有限公司 Energy storage battery with non-aqueous electrolyte solution of lithium perfluoro-alkoxy (-phenoxy) sulfonylimide
CN102544570A (en) * 2010-12-31 2012-07-04 张家港市国泰华荣化工新材料有限公司 Lithium sulfur battery using non-water electrolyte solution containing lithium flursulfimide
CN102231442B (en) * 2011-05-25 2013-10-16 杭州万马高能量电池有限公司 Lithium ion battery and lithium ion battery electrolyte for ultralow temperature discharge
CN102983353B (en) * 2011-09-02 2015-09-16 中国科学院物理研究所 A kind of lithium secondary battery and preparation method thereof
CN103219542A (en) * 2012-01-19 2013-07-24 中国科学院物理研究所 High-salinity non-aqueous electrolyte and use thereof
CN103247822B (en) * 2012-02-14 2016-06-08 中国科学院物理研究所 Lithium-sulfur secondary battery system
CN103531839A (en) * 2012-07-04 2014-01-22 中国科学院物理研究所 Rechargeable metal lithium secondary battery capable of preventing from generating lithium dendrites
JP6292120B2 (en) * 2012-08-16 2018-03-14 日本電気株式会社 Lithium secondary battery and manufacturing method thereof
TWI501444B (en) 2012-12-20 2015-09-21 Ind Tech Res Inst Electrolyte additive for lithium secondary battery
CN103904356A (en) * 2012-12-27 2014-07-02 中国科学院物理研究所 Chargable chemical energy-storage device and application thereof
CN103094613B (en) * 2013-01-17 2016-10-19 东莞新能源科技有限公司 Electrolyte for high-voltage power battery and power battery containing the electrolyte
CN104151206B (en) * 2013-05-14 2016-12-28 华中科技大学 The alkali metal salt of a kind of (fluorine sulphonyl) (polyfluoroalkoxy sulphonyl) imines and ionic liquid thereof
CN103474698B (en) * 2013-08-30 2016-04-13 上海交通大学 The chargeable lithium battery electrolyte of the high dissolution efficiency of lithium metal high deposition and preparation thereof
CA2925379C (en) * 2013-09-25 2018-09-11 The University Of Tokyo Electrolytic solution, for electrical storage devices such as batteries and capacitors, containing salt whose cation is alkali metal, alkaline earth metal, or aluminum, and organic solvent having heteroelement, method for producing said electrolytic solution, and capacitor including said electrolytic solution
DE112014004442T5 (en) 2013-09-25 2016-06-23 The University Of Tokyo Non-aqueous electrolyte secondary battery
JP2016189340A (en) * 2013-09-25 2016-11-04 国立大学法人 東京大学 Nonaqueous electrolyte secondary battery
JP5816998B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Electrolytic solution containing a salt having alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element
JP5817006B1 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
CN105580192B (en) * 2013-09-25 2019-03-12 国立大学法人东京大学 Non-aqueous electrolyte secondary battery
JP5965445B2 (en) 2013-09-25 2016-08-03 国立大学法人 東京大学 Nonaqueous electrolyte secondary battery
JP5967781B2 (en) * 2013-09-25 2016-08-10 国立大学法人 東京大学 Nonaqueous electrolyte secondary battery
CN105594053B (en) * 2013-09-25 2019-03-12 国立大学法人东京大学 Non-aqueous secondary battery
JP5828493B2 (en) * 2013-09-25 2015-12-09 国立大学法人 東京大学 Capacitor comprising an electrolytic solution containing a salt having alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element
CN103594729B (en) * 2013-11-28 2015-11-18 深圳新宙邦科技股份有限公司 A kind of electrolyte for lithium ion battery
JP2015172022A (en) * 2014-03-12 2015-10-01 鳴雪 梶原 Novel compound, electrolytic solution additive for lithium secondary battery comprising this compound, and electrolytic solution for lithium secondary battery containing this additive
US10971755B2 (en) * 2014-04-23 2021-04-06 Murata Manufacturing Co., Ltd. Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
EP2950380B1 (en) 2014-05-27 2017-04-12 Samsung Electronics Co., Ltd Electrolyte for lithium air battery and lithium air battery including the same
US10122046B2 (en) 2014-10-03 2018-11-06 Uchicago Argonne, Llc Electrolyte compositions for high voltage lithium-ion batteries
WO2016079919A1 (en) * 2014-11-18 2016-05-26 国立大学法人東京大学 Electrolyte solution
JP6770295B2 (en) * 2015-01-19 2020-10-14 株式会社日本触媒 Non-aqueous electrolyte and storage device equipped with it
JP6555467B2 (en) * 2015-03-10 2019-08-07 株式会社豊田自動織機 Electrolyte
JP6246983B2 (en) * 2015-06-23 2017-12-13 株式会社日本触媒 Conductive material, production method and purification method thereof, and non-aqueous electrolyte and antistatic agent using the conductive material
JP6558694B2 (en) * 2015-09-02 2019-08-14 国立大学法人 東京大学 Flame retardant electrolyte solution for secondary battery, and secondary battery containing the electrolyte solution
CN105428715B (en) 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery
CN106711495A (en) * 2015-11-13 2017-05-24 中国科学院物理研究所 Electrolyte for lithium battery
CN110247114A (en) 2015-12-18 2019-09-17 深圳新宙邦科技股份有限公司 A kind of electrolyte for lithium ion battery and lithium ion battery
JP6663099B2 (en) * 2016-02-26 2020-03-11 株式会社豊田自動織機 Electrolyte
CN107887641A (en) * 2016-09-29 2018-04-06 比亚迪股份有限公司 A kind of solid polyelectrolyte and solid state battery
JP6899312B2 (en) * 2016-12-19 2021-07-07 株式会社Gsユアサ Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
CA2953163A1 (en) * 2016-12-23 2018-06-23 Sce France Compositions based on an element from the boron family and their uses in electrolyte compositions
JP6894973B2 (en) * 2017-06-08 2021-06-30 株式会社日立製作所 Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrodes and secondary battery
WO2019138056A1 (en) * 2018-01-12 2019-07-18 Solvay Sa Non-aqueous electrolyte compositions comprising lithium bis(fluorosulfonyl)imide
JP7257109B2 (en) * 2018-06-01 2023-04-13 株式会社日本触媒 Non-aqueous electrolyte and lithium-ion secondary battery
CN108807009A (en) * 2018-08-28 2018-11-13 深圳清华大学研究院 Dielectric film, capacitor element
CN109786808A (en) * 2018-12-14 2019-05-21 中国科学院青岛生物能源与过程研究所 A kind of lithium metal battery nitrile electrolyte and the lithium metal battery using the electrolyte
JP7243461B2 (en) * 2019-05-31 2023-03-22 株式会社豊田自動織機 Electrolyte and lithium ion secondary battery
CN110828894B (en) * 2019-11-01 2021-10-08 天津市捷威动力工业有限公司 A high-safety electrolyte and lithium-ion battery
CN111430800B (en) * 2020-05-20 2021-08-03 天津市捷威动力工业有限公司 Electrolyte additive and application, non-aqueous electrolyte and battery including the additive
CN112366361A (en) * 2020-09-25 2021-02-12 河南新太行电源股份有限公司 Preparation method of quasi-solid-state lithium ion battery and battery
CN113540565B (en) * 2021-03-19 2023-01-10 深圳市研一新材料有限责任公司 Flame-retardant lithium ion battery electrolyte and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310867A (en) * 1999-06-04 2001-08-29 松下电器产业株式会社 Non-aqueous liquid electrolyte secondary cell and method for manufacturing the same
CN1409430A (en) * 2001-09-20 2003-04-09 丰田自动车株式会社 Secondary battery of non-water electrolyte
CN1501541A (en) * 2002-11-16 2004-06-02 三星Sdi株式会社 Anhydrous electrolyte and lithium battery using it
CN1630956A (en) * 2002-04-10 2005-06-22 日本电气株式会社 Nonaqueous electrolyte cell
CN1758477A (en) * 2004-08-24 2006-04-12 信越化学工业株式会社 Non-aqueous electrolytic solution and battery
CN1961451A (en) * 2004-05-28 2007-05-09 株式会社Lg化学 Additives for Lithium Secondary Batteries
CN101326674A (en) * 2005-12-13 2008-12-17 松下电器产业株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310867A (en) * 1999-06-04 2001-08-29 松下电器产业株式会社 Non-aqueous liquid electrolyte secondary cell and method for manufacturing the same
CN1409430A (en) * 2001-09-20 2003-04-09 丰田自动车株式会社 Secondary battery of non-water electrolyte
CN1630956A (en) * 2002-04-10 2005-06-22 日本电气株式会社 Nonaqueous electrolyte cell
CN1501541A (en) * 2002-11-16 2004-06-02 三星Sdi株式会社 Anhydrous electrolyte and lithium battery using it
CN1961451A (en) * 2004-05-28 2007-05-09 株式会社Lg化学 Additives for Lithium Secondary Batteries
CN1758477A (en) * 2004-08-24 2006-04-12 信越化学工业株式会社 Non-aqueous electrolytic solution and battery
CN101326674A (en) * 2005-12-13 2008-12-17 松下电器产业株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201074B2 (en) 2019-03-29 2023-01-10 株式会社村田製作所 Electrolyte for secondary battery and secondary battery

Also Published As

Publication number Publication date
CN101882696A (en) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101882696B (en) Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof
CN107293789B (en) A kind of lithium-ion battery with good circulation effect and electrolyte thereof
CN103594729B (en) A kind of electrolyte for lithium ion battery
CN102150315B (en) Secondary cell
CN103500850B (en) A kind of low-temperature electrolyte of ferric phosphate lithium cell
CN107293790B (en) A kind of flame retardant lithium ion battery and electrolyte thereof
CN102306838B (en) A kind of non-aqueous electrolyte for lithium ion cell and the battery made thereof
EP2442397A1 (en) Electrolytic solution and lithium ion secondary battery utilizing same
CN102412417A (en) Non-aqueous electrolyte for improving high-temperature electrochemical performance of lithium ion battery and application thereof
CN105514487A (en) Method for matching organic silicon electrolyte with silicon-based electrode material for use
CN103219542A (en) High-salinity non-aqueous electrolyte and use thereof
CN101587777A (en) Difunctional electrolyte and preparation method thereof
CN110957529A (en) Lithium ion battery electrolyte and lithium ion battery
CN110828893A (en) Lithium ion battery electrolyte and lithium ion battery
CN104072533A (en) Silicone-nitrile compounds containing low polyoxyethylene units as well as preparation method thereof and application thereof in lithium battery
CN102035045A (en) Novel low-temperature flame-retardant electrolyte
CN105762410A (en) Non-aqueous electrolyte and lithium-ion battery using same
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
CN115347235A (en) Sodium ion battery electrolyte and high-rate and stable-circulation sodium ion battery
CN103346351B (en) A kind of Novel borate solvent for lithium-ion secondary battery
CN114069047A (en) High-voltage-resistant lithium secondary battery electrolyte and lithium secondary battery
CN116706238B (en) A high and low temperature electrolyte and its preparation method and application
CN117691190A (en) Electrolyte for lithium-rich manganese-based positive electrode high-voltage lithium ion battery and lithium ion battery
US8936882B2 (en) Electrolyte compositions for lithium and lithium-ion batteries
TWI763490B (en) An ionic liquid additive for lithium-ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant