CN103904356A - Chargable chemical energy-storage device and application thereof - Google Patents
Chargable chemical energy-storage device and application thereof Download PDFInfo
- Publication number
- CN103904356A CN103904356A CN201210578923.6A CN201210578923A CN103904356A CN 103904356 A CN103904356 A CN 103904356A CN 201210578923 A CN201210578923 A CN 201210578923A CN 103904356 A CN103904356 A CN 103904356A
- Authority
- CN
- China
- Prior art keywords
- electrolyte
- energy storage
- storage device
- chemical energy
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 93
- 239000000126 substance Substances 0.000 title claims abstract description 81
- 239000003792 electrolyte Substances 0.000 claims abstract description 87
- 150000003839 salts Chemical class 0.000 claims abstract description 45
- 239000007864 aqueous solution Substances 0.000 claims abstract description 31
- 239000012047 saturated solution Substances 0.000 claims abstract description 27
- 150000001768 cations Chemical class 0.000 claims abstract description 20
- 239000011368 organic material Substances 0.000 claims abstract description 18
- 150000001450 anions Chemical class 0.000 claims abstract description 14
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 14
- 239000011147 inorganic material Substances 0.000 claims abstract description 14
- 238000007599 discharging Methods 0.000 claims abstract description 13
- -1 salt anions Chemical class 0.000 claims abstract description 11
- 230000002441 reversible effect Effects 0.000 claims abstract description 9
- 238000009830 intercalation Methods 0.000 claims abstract description 8
- 239000002152 aqueous-organic solution Substances 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 40
- 229910052799 carbon Inorganic materials 0.000 claims description 30
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 21
- 229910001416 lithium ion Inorganic materials 0.000 claims description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 19
- 239000011888 foil Substances 0.000 claims description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 17
- 229910020808 NaBF Inorganic materials 0.000 claims description 17
- 229910001220 stainless steel Inorganic materials 0.000 claims description 17
- 239000010935 stainless steel Substances 0.000 claims description 17
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 16
- 239000004744 fabric Substances 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 239000007773 negative electrode material Substances 0.000 claims description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 12
- 239000007774 positive electrode material Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- PWKNBLFSJAVFAB-UHFFFAOYSA-N 1-fluoro-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1F PWKNBLFSJAVFAB-UHFFFAOYSA-N 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 229920001940 conductive polymer Polymers 0.000 claims description 10
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims description 10
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 229920000620 organic polymer Polymers 0.000 claims description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 8
- 238000006116 polymerization reaction Methods 0.000 claims description 8
- 239000011734 sodium Chemical class 0.000 claims description 8
- 238000006467 substitution reaction Methods 0.000 claims description 8
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 claims description 8
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 7
- 229910010941 LiFSI Inorganic materials 0.000 claims description 7
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 7
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 7
- 229920000327 poly(triphenylamine) polymer Polymers 0.000 claims description 7
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 6
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 claims description 6
- 229910021201 NaFSI Inorganic materials 0.000 claims description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 6
- 229940017219 methyl propionate Drugs 0.000 claims description 6
- 239000005486 organic electrolyte Substances 0.000 claims description 6
- 229920000767 polyaniline Polymers 0.000 claims description 6
- 229920000128 polypyrrole Polymers 0.000 claims description 6
- MHEBVKPOSBNNAC-UHFFFAOYSA-N potassium;bis(fluorosulfonyl)azanide Chemical compound [K+].FS(=O)(=O)[N-]S(F)(=O)=O MHEBVKPOSBNNAC-UHFFFAOYSA-N 0.000 claims description 6
- VCCATSJUUVERFU-UHFFFAOYSA-N sodium bis(fluorosulfonyl)azanide Chemical compound FS(=O)(=O)N([Na])S(F)(=O)=O VCCATSJUUVERFU-UHFFFAOYSA-N 0.000 claims description 6
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 6
- 239000003115 supporting electrolyte Substances 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical compound CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 claims description 5
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 5
- 239000008151 electrolyte solution Substances 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 229910001415 sodium ion Inorganic materials 0.000 claims description 5
- PRIYDLUXFBTENF-UHFFFAOYSA-N 5-aminonaphthalene-1,4-dione Chemical compound O=C1C=CC(=O)C2=C1C=CC=C2N PRIYDLUXFBTENF-UHFFFAOYSA-N 0.000 claims description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 4
- QPJVMBTYPHYUOC-UHFFFAOYSA-N Methyl benzoate Natural products COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 4
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 4
- 150000004702 methyl esters Chemical class 0.000 claims description 4
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 4
- YLKTWKVVQDCJFL-UHFFFAOYSA-N sodium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Na+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F YLKTWKVVQDCJFL-UHFFFAOYSA-N 0.000 claims description 4
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 3
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 claims description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 239000010405 anode material Substances 0.000 claims description 3
- 150000001728 carbonyl compounds Chemical class 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004119 disulfanediyl group Chemical group *SS* 0.000 claims description 3
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 claims description 3
- 239000012046 mixed solvent Substances 0.000 claims description 3
- OLAPPGSPBNVTRF-UHFFFAOYSA-N naphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1C(O)=O OLAPPGSPBNVTRF-UHFFFAOYSA-N 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229920001021 polysulfide Polymers 0.000 claims description 3
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 claims description 3
- 159000000000 sodium salts Chemical class 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 claims description 2
- 238000004891 communication Methods 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims description 2
- 230000010287 polarization Effects 0.000 claims description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims 2
- 239000007983 Tris buffer Substances 0.000 claims 1
- 239000003575 carbonaceous material Substances 0.000 claims 1
- 125000001033 ether group Chemical group 0.000 claims 1
- 230000005496 eutectics Effects 0.000 claims 1
- 239000011255 nonaqueous electrolyte Substances 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract description 7
- 230000002687 intercalation Effects 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 description 26
- 229920006395 saturated elastomer Polymers 0.000 description 14
- 239000003365 glass fiber Substances 0.000 description 12
- 239000004745 nonwoven fabric Substances 0.000 description 11
- 229920000742 Cotton Polymers 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 101000738322 Homo sapiens Prothymosin alpha Proteins 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 102100037925 Prothymosin alpha Human genes 0.000 description 5
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 230000037427 ion transport Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- IMAKHNTVDGLIRY-UHFFFAOYSA-N methyl prop-2-ynoate Chemical compound COC(=O)C#C IMAKHNTVDGLIRY-UHFFFAOYSA-N 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- NCPICGMTBCNSGK-UHFFFAOYSA-N 1,1,1-trimethoxy-2-(2-methoxyethoxy)ethane Chemical compound COC(COCCOC)(OC)OC NCPICGMTBCNSGK-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种可充电化学储能器件及其用途,该储能器件正极采用可进行阴离子X-掺杂/去掺杂的有机材料,负极采用可进行阳离子M+嵌入/脱出的有机或无机材料,电解液为溶质MX质量分数达到其饱和溶液中质量分数的80-110%的高盐浓度的水溶液、非水有机溶液或熔盐体系等。本发明利用电解液中溶质盐阴阳离子分别与正负极可逆结合的状态和电位的不同,通过电子的得失实现可逆充电和放电。本发明的可充电化学储能器件具有高功率密度、长寿命、高安全性、低成本等特点,是一种绿色电源,具有广泛的用途,可根据器件构造应用于要求长寿命、低成本、对能量密度要求不高的领域。
The invention discloses a rechargeable chemical energy storage device and its application. The positive electrode of the energy storage device adopts an organic material capable of anion X - doping/dedoping, and the negative electrode adopts an organic or organic material capable of cation M + intercalation/extraction. Inorganic materials, the electrolyte is an aqueous solution with a high salt concentration, a non-aqueous organic solution or a molten salt system, in which the mass fraction of the solute MX reaches 80-110% of the mass fraction in its saturated solution. The invention utilizes the difference in the state and potential of the reversible combination of solute salt anions and cations with the positive and negative electrodes in the electrolyte, and realizes reversible charging and discharging through gain and loss of electrons. The rechargeable chemical energy storage device of the present invention has the characteristics of high power density, long life, high safety, and low cost. Fields that do not require high energy density.
Description
技术领域technical field
本发明涉及一种可充电化学储能器件及其用途,具体为基于有机或无机电极材料的水系或非水有机电解液体系的可充电化学储能器件及其用途。The invention relates to a rechargeable chemical energy storage device and its application, in particular to a rechargeable chemical energy storage device based on an organic or inorganic electrode material in an aqueous or non-aqueous organic electrolyte system and its application.
背景技术Background technique
锂离子电池作为一种可充电化学储能器件,具有较高的能量存储密度和功率密度,已经在便携式电子设备中得到广泛应用,并将大规模应用于电动汽车。锂离子电池的优点是能量密度高(80-230Wh/kg)。锂离子电池的储能机制是通过锂离子与电子在材料的晶格内储存,由于低温和室温下离子在固相的扩散是速率控制步骤,因此锂离子电池的功率特性一般小于3C。离子在晶格内的反复进出,容易引起晶格的膨胀收缩,导致应力分布不均,材料容易产生裂纹,因此影响循环性。再次,由于全球锂资源储量有限,锂离子电池大规模应用于电动汽车和智能电网,且锂离子电池的回收经济型差,必将带来锂离子电池成本上升和资源紧张与不可持续。此外,目前锂离子电池主要采用有机液态或聚合物电解质,电池在过充、过放或大电流充放电过程中存在较大的安全隐患。Lithium-ion batteries, as a rechargeable chemical energy storage device with high energy storage density and power density, have been widely used in portable electronic devices and will be widely used in electric vehicles. The advantage of lithium-ion batteries is their high energy density (80-230Wh/kg). The energy storage mechanism of lithium-ion batteries is to store lithium ions and electrons in the lattice of the material. Since the diffusion of ions in the solid phase at low temperature and room temperature is a rate-controlling step, the power characteristics of lithium-ion batteries are generally less than 3C. Repeated entry and exit of ions in the lattice can easily cause expansion and contraction of the lattice, resulting in uneven stress distribution and cracks in the material, thus affecting the cycle performance. Thirdly, due to the limited reserves of lithium resources in the world, lithium-ion batteries are widely used in electric vehicles and smart grids, and the recycling of lithium-ion batteries is economical, which will inevitably lead to rising costs of lithium-ion batteries and resource shortages and unsustainability. In addition, at present, lithium-ion batteries mainly use organic liquid or polymer electrolytes, and there are major safety hazards in the process of overcharging, overdischarging, or high-current charging and discharging.
因此,高功率密度、长寿命、高安全性、低成本且兼具一定能量密度的的新型可充电化学储能器件系统是规模储能电池的重要发展方向。Therefore, a new rechargeable chemical energy storage device system with high power density, long life, high safety, low cost and certain energy density is an important development direction of large-scale energy storage batteries.
有机材料与传统无机材料相比,具有来源广泛(可由各种生物质合成)、不含贵重金属、合成过程简单、无需高温烧结、低能耗、低成本、高容量(对应多电子转移)等特点,且易于回收。Compared with traditional inorganic materials, organic materials have a wide range of sources (can be synthesized from various biomass), no precious metals, simple synthesis process, no need for high-temperature sintering, low energy consumption, low cost, high capacity (corresponding to multiple electron transfer), etc. , and easy to recycle.
与全球锂资源相比,钠具有与锂相似的物理化学性质,储量丰富,分布广泛,且成本约为锂的二十分之一。Compared with global lithium resources, sodium has similar physical and chemical properties to lithium, is abundant in reserves, widely distributed, and costs about one-twentieth of lithium.
有机电极材料可以具有与传统锂离子电池中嵌入式的无机电极材料不同的储能机制。有机正负极分别通过阴离子的掺杂/去掺杂和阳离子的嵌入/脱出过程中,伴随正负极有机材料中功能基团得失电子的电位不同,储存电量。充放电过程中电解液中溶质盐的阴阳离子分别在正负极之间进行可逆的阴离子的掺杂/去掺杂和阳离子的嵌入/脱出。Organic electrode materials can have different energy storage mechanisms than the embedded inorganic electrode materials in conventional Li-ion batteries. During the doping/dedoping of anions and the intercalation/extraction of cations, the organic positive and negative electrodes store electricity according to the difference in the potential of gaining and losing electrons of the functional groups in the organic materials of the positive and negative electrodes. During the charge and discharge process, the anions and cations of the solute salt in the electrolyte perform reversible doping/dedoping of anions and intercalation/extraction of cations between the positive and negative electrodes, respectively.
因此,发展基于有机电极材料体系或有机、无机结合的高功率密度、长寿命、高安全性、低成本且兼具一定能量密度的的新型可充电化学储能器件(优选钠离子可充电化学储能器件)具有广泛的商业价值和意义。Therefore, the development of new rechargeable chemical energy storage devices based on organic electrode material systems or organic and inorganic combinations with high power density, long life, high safety, low cost and certain energy density (preferably sodium ion rechargeable chemical energy storage devices) Energy devices) have a wide range of commercial value and significance.
发明内容Contents of the invention
本发明的目的是在于提供一种高功率密度、长寿命、高安全性、低成本且兼具一定能量密度的新型可充电化学储能器件。The purpose of the present invention is to provide a new rechargeable chemical energy storage device with high power density, long life, high safety, low cost and certain energy density.
本发明提供的可充电化学储能器件,其原理为:正极为可进行阴离子X-掺杂/去掺杂的有机材料;负极为可进行阳离子M+嵌入/脱出的有机或无机材料;电解液为溶质MX质量分数达到其饱和溶液中质量分数的80-110%的高盐浓度的水溶液、非水有机溶剂或熔盐体系。充电时,电解液中的X-与正极结合,M+嵌入到负极;放电时X-与正极分离进入电解液,M+脱出负极进入电解液,同时释放电能。电解液中阴阳离子分别与正负极材料结合、嵌入的相互作用可以是共价、离子、氢键等一种或几种的混合的化学键作用,或发生弱的静电相互作用。The principle of the rechargeable chemical energy storage device provided by the present invention is as follows: the positive electrode is an organic material capable of anion X - doping/dedoping; the negative electrode is an organic or inorganic material capable of cation M + intercalation/extraction; electrolyte solution It is an aqueous solution with a high salt concentration, a non-aqueous organic solvent or a molten salt system in which the mass fraction of the solute MX reaches 80-110% of the mass fraction in its saturated solution. When charging, X - in the electrolyte is combined with the positive electrode, and M + is embedded in the negative electrode; when discharging, X - is separated from the positive electrode and enters the electrolyte, and M + comes out of the negative electrode and enters the electrolyte, releasing electrical energy at the same time. The anions and cations in the electrolyte are combined and intercalated with the positive and negative materials respectively, which can be one or more mixed chemical bonds such as covalent, ionic, hydrogen bonds, or weak electrostatic interactions.
本发明所述的可充电化学储能器件,其原理不同于传统的“摇椅式”锂离子电池和钠离子电池。传统“摇椅式”锂离子电池中电解液只起到连接正负极,为锂离子在正负极之间往返输运的媒介,不参与储能过程(锂离子电池依靠充放电过程中正极或负极材料中过渡金属元素不同化学价态储存能量)。本发明二次电池利用电解液中溶质盐阴阳离子分别与正负极结合的状态和电位的不同,通过电子的得失实现充电和放电。电解液中溶质盐阴阳离子分别参与正极和负极的可逆结合/去结合过程,实现可逆充放电,电极材料在循环过程中具有较高的结构稳定性和倍率性能。该二次储能电池可以选择不含锂源和过渡金属的正极材料,进一步降低电池成本。The principle of the rechargeable chemical energy storage device described in the present invention is different from traditional "rocking chair" lithium-ion batteries and sodium-ion batteries. The electrolyte in the traditional "rocking chair" lithium-ion battery only serves to connect the positive and negative electrodes, and is the medium for lithium ions to and fro transport between the positive and negative electrodes, and does not participate in the energy storage process (lithium-ion batteries rely on the positive or negative electrodes during charging and discharging). The transition metal elements in the negative electrode material store energy in different chemical valence states). The secondary battery of the present invention utilizes the difference in the states and potentials of the combination of solute salt anions and cations with the positive and negative electrodes respectively in the electrolyte, and realizes charging and discharging through gain and loss of electrons. The solute salt anions and cations in the electrolyte participate in the reversible binding/debonding process of the positive and negative electrodes respectively, realizing reversible charge and discharge. The electrode material has high structural stability and rate performance during the cycle. The secondary energy storage battery can select positive electrode materials free of lithium source and transition metal, further reducing battery cost.
本发明所述的可充电化学储能器件与传统电容器和传统锂离子电池不同,充放电过程中电压E与电量Q的微分dE/dQ值可不为常数或不等于零(电容器特征:dE/dQ=可不为零的常数,锂离子电池特征:dE/dQ可为零)。The rechargeable chemical energy storage device of the present invention is different from traditional capacitors and traditional lithium-ion batteries. The differential dE/dQ value of the voltage E and the electric quantity Q during the charging and discharging process may not be constant or equal to zero (capacitor characteristics: dE/dQ= A non-zero constant, lithium-ion battery characteristics: dE/dQ can be zero).
本发明所述的可充电化学储能器件,具有正极、负极、隔膜和电解液,其中电解液为溶质MX质量分数达到其饱和溶液中质量分数的80-110%的高盐浓度的水溶液、非水有机溶剂或熔盐体系。The rechargeable chemical energy storage device of the present invention has a positive electrode, a negative electrode, a diaphragm and an electrolyte, wherein the electrolyte is an aqueous solution with a high salt concentration in which the mass fraction of the solute MX reaches 80-110% of the mass fraction in its saturated solution, non- Water organic solvent or molten salt system.
本发明所述的正极材料为可进行阴离子X-掺杂/去掺杂的有机材料,如p型有机聚合物、自由基有机物,非共轭有机物、导电聚合物、或有机盐类或无机多孔材料等,优选非限定性实例有:聚-2,2,6,6-四甲基哌啶氮氧自由基-4-基丙烯酰胺(PTAm,编号为Pca1)、聚-2,2,6,6-四甲基哌啶氮氧自由基-4-基甲基丙烯酸甲酯(PTMA,编号为Pca2)、聚-1-氧代-2,2,6,6-四甲基-哌啶-4-基缩水甘油基醚(PTGE,编号为Pca3)、聚-2,2,6,6-四甲基哌啶氮氧自由基-4-乙烯基醚(PTVE,编号为Pca4)、聚炔-2,2,6,6-四甲基-1-哌啶氮氧自由基-4-基对苯甲酸甲酯(编号为Pca5)、聚-萘[1,8-cd:4,5-c’d’]并[1,2]二硫杂茂[四硫代富马酸二甲酯](编号为Pca6)、聚N-乙烯基咔唑(编号为Pca7)、聚三苯胺(编号为Pca8)、聚苯胺(PANI,编号为Pca9)、苯胺/邻硝基苯胺共聚物、聚-2,2,5,5-四甲基-1-吡咯氮氧自由基-3-基丙炔酸甲酯(编号为Pca10)、聚炔-2,2,6,6-四甲基哌啶氮氧自由基-4-基-4-基缩水甘油基醚基乙醚(编号为Pca11)、聚吡咯(PPy,编号为Pca12),或以上化合物的复合、多级聚合、盐或基团取代,其分子结构式见附表1。制作正极时,还可以加入导电材料(如石墨、碳管、乙炔黑、金属粉末、导电聚合物或其它改善电子或离子输运的有机功能分子)和粘结剂(如聚偏氟乙烯PVDF、聚四氟乙烯PTFE、纤维素CMC、水溶性橡胶SBR或其它聚合物),上述材料混合均匀涂布于不锈钢、Al箔、Ti箔、碳毡、碳布等集流体或压成片作为正极。The positive electrode material described in the present invention is an organic material capable of anionic X - doping/dedoping, such as p-type organic polymers, free radical organics, non-conjugated organics, conductive polymers, or organic salts or inorganic porous Materials etc., preferred non-limiting examples are: poly-2,2,6,6-tetramethylpiperidinyl nitroxide-4-yl acrylamide (PTAm, number P ca 1), poly-2,2 ,6,6-tetramethylpiperidinyl nitroxide-4-yl methyl methacrylate (PTMA, code P ca 2), poly-1-oxo-2,2,6,6-tetramethyl Base-piperidin-4-yl glycidyl ether (PTGE, code P ca 3), poly-2,2,6,6-tetramethylpiperidinyl nitroxide-4-vinyl ether (PTVE, No. P ca 4), polyalkyne-2,2,6,6-tetramethyl-1-piperidinyl nitroxide-4-yl methyl p-benzoate (No. P ca 5), poly-naphthalene [1,8-cd:4,5-c'd'][1,2]dithialo[dimethyl tetrathiofumarate] (code P ca 6), poly N-vinyl Carbazole (number P ca 7), polytriphenylamine (number P ca 8), polyaniline (PANI, number P ca 9), aniline/o-nitroaniline copolymer, poly-2,2,5, 5-Tetramethyl-1-pyrrole nitroxide radical-3-ylpropiolate methyl ester (code P ca 10), polyyne-2,2,6,6-tetramethylpiperidine nitroxide radical -4-yl-4-ylglycidyl ether ether (coded as P ca 11), polypyrrole (PPy, coded as P ca 12), or compound, multi-stage polymerization, salt or group substitution of the above compounds, See attached table 1 for its molecular structure formula. When making the positive electrode, conductive materials (such as graphite, carbon tubes, acetylene black, metal powder, conductive polymers or other organic functional molecules that improve electron or ion transport) and binders (such as polyvinylidene fluoride PVDF, Polytetrafluoroethylene PTFE, cellulose CMC, water-soluble rubber SBR or other polymers), the above materials are mixed and evenly coated on stainless steel, Al foil, Ti foil, carbon felt, carbon cloth and other current collectors or pressed into sheets as the positive electrode.
本发明所述的负极材料为可进行阳离子M+嵌入/脱出(水系电解液优选的M+离子为Na+)的有机材料或嵌入型无机材料,如n型有机聚合物、主链型含硫有机聚合物、多硫聚合物、有机羰基化合物、导电聚合物或无机多孔材料等。优选非限定性实例有:1,4,5,8-萘四甲酸酐-聚酰亚胺(NTCDA-PI,编号为Pan1)、聚-2,2’-双硫苯胺(PDTDA,编号为Pan2)、聚α,α'-二硫代-3-氨基-邻-二甲苯(PDTAn,编号为Pan3)、聚二硫化-2,5-二巯基-1,3,4-噻二唑(PDMcT,编号为Pan4)、聚醌(编号为Pan5)、聚-5-氨基-1,4-萘醌(编号为Pan6)、聚对苯-3,5-二氨基-1,2,4-二噻(PPT,编号为Pan7)、聚-4,6-二氢-1H-[1,2]二硫代并[4,5-c]吡咯(MPY,编号为Pan8)、聚三硫化-2,5-二巯基-1,3,4-噻二唑(编号为Pan9)、聚-5,8-二氢-1H,4H-2,3,6,7-四硫蒽(编号为Pan10)、对苯二甲酸二钠(Na2C8H4O4)(编号为Pan11)等,或以上化合物的复合、多级聚合、盐或基团取代等,其分子结构式见附表1;或嵌入式无机材料如石墨(编号为Pan12)、Li4Ti5O12、NaTi2(PO4)3。制作负极时,还可以加入导电材料(如石墨、碳管、乙炔黑、金属粉末、导电聚合物或其它改善电子或离子输运的有机功能分子)和粘结剂(如聚偏氟乙烯PVDF、聚四氟乙烯PTFE、纤维素CMC、水溶性橡胶SBR或其它聚合物),上述材料混合均匀涂布于不锈钢、Al箔、Cu箔、Ti箔、碳毡、碳布集流体或压成片作为负极。The negative electrode material of the present invention is an organic material or an intercalation-type inorganic material that can carry out cation M + intercalation/extraction (the preferred M + ion of the aqueous electrolyte is Na + ), such as n-type organic polymers, main chain type sulfur-containing Organic polymers, polysulfide polymers, organic carbonyl compounds, conductive polymers or inorganic porous materials, etc. Preferred non-limiting examples are: 1,4,5,8-naphthalene tetracarboxylic anhydride-polyimide (NTCDA-PI, code P an 1), poly-2,2'-dithioaniline (PDTDA, code P an 2), poly α, α'-dithio-3-amino-o-xylene (PDTAn, number P an 3), poly disulfide-2,5-dimercapto-1,3,4 -thiadiazole (PDMcT, number P an 4), polyquinone (number P an 5), poly-5-amino-1,4-naphthoquinone (number P an 6), polyparaphenylene-3, 5-diamino-1,2,4-dithia (PPT, number P an 7), poly-4,6-dihydro-1H-[1,2]dithio[4,5-c] Pyrrole (MPY, number P an 8), polytrisulfide-2,5-dimercapto-1,3,4-thiadiazole (number P an 9), poly-5,8-dihydro-1H, 4H-2,3,6,7-tetrasulfanthracene (code P an 10), disodium terephthalate (Na 2 C 8 H 4 O 4 ) (code P an 11), etc., or the above compounds Composite, multi-level polymerization, salt or group substitution, etc., the molecular structure formula is shown in Attached Table 1; or embedded inorganic materials such as graphite (number P an 12), Li 4 Ti 5 O 12 , NaTi 2 (PO 4 ) 3 . When making the negative electrode, conductive materials (such as graphite, carbon tubes, acetylene black, metal powder, conductive polymers or other organic functional molecules that improve electron or ion transport) and binders (such as polyvinylidene fluoride PVDF, Polytetrafluoroethylene PTFE, cellulose CMC, water-soluble rubber SBR or other polymers), the above materials are mixed and evenly coated on stainless steel, Al foil, Cu foil, Ti foil, carbon felt, carbon cloth collector or pressed into sheets as negative electrode.
本发明所述的电解液中溶质盐阴阳离子分别参与正极和负极的可逆结合过程,实现可逆充放电,储存电能。为实现较高的能量密度,电解液选为具有高溶质盐浓度的水系或非水有机体系的电解液或熔盐体。The solute salt anion and cation in the electrolyte solution of the present invention respectively participate in the reversible combination process of the positive electrode and the negative electrode, so as to realize reversible charging and discharging, and store electric energy. In order to achieve higher energy density, the electrolyte is selected as an aqueous or non-aqueous organic electrolyte or molten salt body with a high solute salt concentration.
本发明所述的电解液可根据正负极材料不同选择水系或非水有机体系的电解液。其中,水系电解液可选为非限定的:溶质MX质量分数达到其饱和溶液中质量分数的80-110%的NaNO3、NaCl、Na2SO4、NaOH、NaBF4、NaPF6、NaClO4一种或多种钠盐的水溶液。非水有机系电解液可优选为非限定的:溶质MX质量分数达到其饱和溶液中质量分数的80-110%的NaBF4、NaPF6、NaClO4、NaFSI、NaTFSI、LiBF4、LiPF6、LiTFSI、LiFSI一种或多种有机盐溶于乙烯碳酸酯(EC)、丙烯碳酸酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、四氢呋喃(THF)、二甲氧基乙烷(DME)、二甘醇二甲醚(DG)、缩二乙二醇二甲醚(DGDME)、缩三乙二醇二甲醚(TGDME)、缩四乙二醇二甲醚(TEGDME)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4-MeDOL)、γ-丁内酯(γ-BL)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙腈、丙腈、丙二腈、3-甲氧基丙腈一种或多种混合溶剂、熔盐体系(NaFSI/KFSI或LiFSI/KFSI的共熔体)。The electrolyte solution of the present invention can be selected from water system or non-aqueous organic system electrolyte according to different positive and negative electrode materials. Among them, the water-based electrolyte may be non-limiting: NaNO 3 , NaCl, Na 2 SO 4 , NaOH, NaBF 4 , NaPF 6 , NaClO 4 - An aqueous solution of one or more sodium salts. The non-aqueous organic electrolyte can be preferably non-limiting: NaBF 4 , NaPF 6 , NaClO 4 , NaFSI, NaTFSI, LiBF 4 , LiPF 6 , LiTFSI with the mass fraction of the solute MX reaching 80-110% of the mass fraction in the saturated solution , LiFSI one or more organic salts dissolved in ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), tetrahydrofuran (THF), dimethoxy Ethane (DME), diglyme (DG), diethylene glycol dimethyl ether (DGDME), triethylene glycol dimethyl ether (TGDME), tetraethylene glycol dimethyl ether (TEGDME ), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (4-MeDOL), γ-butyrolactone (γ-BL), methyl formate ( MF), methyl acetate (MA), ethyl acetate (EA), methyl propionate (MP), ethyl propionate (EP), acetonitrile, propionitrile, malononitrile, 3-methoxypropionitrile One or more mixed solvents, molten salt system (e-melt of NaFSI/KFSI or LiFSI/KFSI).
本发明所述的水系或非水有机体系的电解液中,还可加入其它支撑电解液,使本发明所述的二次储能电池在充电的末态电解液仍具有较高的电导率,具体如:含K+、N(C4H9)4 +的电解质盐。支撑电解液的定义为:电解液中溶质盐的阴、阳离子至少一种不参与与正负极的结合/去结合过程,其浓度范围是0.01M~1M。In the electrolyte of the water system or non-aqueous organic system described in the present invention, other supporting electrolytes can also be added, so that the electrolyte of the secondary energy storage battery described in the present invention still has a higher electrical conductivity in the charged final state, Specifically, such as: electrolyte salt containing K + and N(C 4 H 9 ) 4 + . The definition of supporting electrolyte is: at least one of the anion and cation of the solute salt in the electrolyte does not participate in the combination/decombination process with the positive and negative electrodes, and its concentration range is 0.01M~1M.
本发明提供的可充电化学储能器件,在制作正、负极极片时还可以加入电解质盐,该可充电化学储能器件在充电末态,电解液中阴阳离子与正负极结合,电解液电导率下降,正负极片中的电解质盐溶入电解液,提高充电态电解液电导率,以降低充电末态电解液电导率下降带来的电池内部的电场极化。The rechargeable chemical energy storage device provided by the present invention can also add electrolyte salt when making the positive and negative pole pieces. When the rechargeable chemical energy storage device is in the final charging state, the anions and cations in the electrolyte are combined with the positive and negative electrodes, and the electrolyte The conductivity decreases, and the electrolyte salt in the positive and negative electrodes dissolves into the electrolyte to increase the conductivity of the electrolyte in the charged state to reduce the electric field polarization inside the battery caused by the decrease in the conductivity of the electrolyte in the final state of charge.
本发明提供的可充电化学储能器件具有与传统锂离子或钠离子二次电池或电容器不同的储能机制,具有高功率密度、长寿命、高安全性(有机材料在过放过程中比无机材料释放的热量小;且该可充电化学储能器件在充电后电解液离子电导率下降,不存在过充引起材料结构破坏;也不存在过放的问题)、低成本且兼具一定能量密度的的新型可充电化学储能器件(如图2所示),是一种绿色电源,具有广泛的用途,可根据电池构造应用于太阳能发电、风力发电、分布电站、智能建筑、智能电网等规模储能,以及数据中心、通讯基站、工业储能、国家安全等大型储能领域等。The rechargeable chemical energy storage device provided by the present invention has a different energy storage mechanism from traditional lithium-ion or sodium-ion secondary batteries or capacitors, and has high power density, long life, and high safety (organic materials are more stable than inorganic materials in the process of over-discharging). The heat released by the material is small; and the ionic conductivity of the electrolyte of the rechargeable chemical energy storage device decreases after charging, there is no damage to the material structure caused by overcharging; there is also no problem of over-discharging), low cost and a certain energy density Our new rechargeable chemical energy storage device (as shown in Figure 2) is a green power source with a wide range of uses, and can be applied to solar power generation, wind power generation, distributed power stations, smart buildings, smart grids and other scales according to the battery structure Energy storage, as well as large-scale energy storage fields such as data centers, communication base stations, industrial energy storage, and national security.
附图说明Description of drawings
以下,结合附图来详细说明本发明的实施例,其中:Hereinafter, embodiments of the present invention will be described in detail in conjunction with the accompanying drawings, wherein:
图1为可充电化学储能器件工作原理图;Figure 1 is a working principle diagram of a rechargeable chemical energy storage device;
图2为可充电化学储能器件能量密度、功率密度图,并和传统锂离子电池和电容器做对比;Figure 2 is a diagram of the energy density and power density of rechargeable chemical energy storage devices, and compares them with traditional lithium-ion batteries and capacitors;
图3a为PTAm/NTCDA-PI电池在0.5C倍率首周充放电曲线,图3b为PTAm/NTCDA-PI可充电化学储能器件在5C倍率下循环性能曲线;Figure 3a is the first cycle charge and discharge curve of PTAm/NTCDA-PI battery at 0.5C rate, and Figure 3b is the cycle performance curve of PTAm/NTCDA-PI rechargeable chemical energy storage device at 5C rate;
具体实施方式Detailed ways
本发明提供的可充电化学储能器件其原理不同于传统的锂离子电池和钠离子电池。其原理为:正极为可进行阴离子X-掺杂/去掺杂的有机材料;负极为可进行阳离子M+嵌入/脱出的有机或无机材料;电解液为具有高MX盐浓度的水溶液、非水有机溶液(优选为饱和溶液)或熔盐体系等。充电时,电解液中的X-与正极结合,M+嵌入到负极;放电时X-与正极分离进入电解液,M+脱出负极进入电解液,同时释放电能。The principle of the rechargeable chemical energy storage device provided by the invention is different from traditional lithium ion batteries and sodium ion batteries. The principle is: the positive pole is an organic material capable of anion X - doping/dedoping; the negative pole is an organic or inorganic material capable of cationic M + intercalation/extraction; the electrolyte is an aqueous solution with a high MX salt concentration, non-aqueous Organic solution (preferably saturated solution) or molten salt system, etc. When charging, X - in the electrolyte is combined with the positive electrode, and M + is embedded in the negative electrode; when discharging, X - is separated from the positive electrode and enters the electrolyte, and M + comes out of the negative electrode and enters the electrolyte, releasing electrical energy at the same time.
本发明所述的可充电化学储能器件,具有正极、负极、隔膜和电解液。电解液为溶质MX质量分数达到其饱和溶液中质量分数的80-110%的高盐浓度的水溶液、非水有机溶液或熔盐体系。The rechargeable chemical energy storage device of the present invention has a positive pole, a negative pole, a diaphragm and an electrolyte. The electrolyte is an aqueous solution with a high salt concentration, a non-aqueous organic solution or a molten salt system in which the mass fraction of the solute MX reaches 80-110% of the mass fraction in its saturated solution.
本发明所述的正极材料为可进行阴离子X-掺杂/去掺杂的有机材料,如p型有机聚合物、自由基有机物,非共轭有机物、导电聚合物、或有机盐类或无机多孔材料等,优选的非限定性实例有:聚-2,2,6,6-四甲基哌啶氮氧自由基-4-基丙烯酰胺(PTAm,编号为Pca1)、聚-2,2,6,6-四甲基哌啶氮氧自由基-4-基甲基丙烯酸甲酯(PTMA,编号为Pca2)、聚-1-氧代-2,2,6,6-四甲基-哌啶-4-基缩水甘油基醚(PTGE,编号为Pca3)、聚-2,2,6,6-四甲基哌啶氮氧自由基-4-乙烯基醚(PTVE,编号为Pca4)、聚炔-2,2,6,6-四甲基-1-哌啶氮氧自由基-4-基对苯甲酸甲酯(编号为Pca5)、聚-萘[1,8-cd:4,5-c’d’]并[1,2]二硫杂茂[四硫代富马酸二甲酯](编号为Pca6)、聚N-乙烯基咔唑(编号为Pca7)、聚三苯胺(编号为Pca8)、聚苯胺(PANI,编号为Pca9)、苯胺/邻硝基苯胺共聚物、聚-2,2,5,5-四甲基-1-吡咯氮氧自由基-3-基丙炔酸甲酯(编号为Pca10)、聚炔-2,2,6,6-四甲基哌啶氮氧自由基-4-基-4-基缩水甘油基醚基乙醚(编号为Pca11)、聚吡咯(PPy,编号为Pca12),或以上化合物的复合、多级聚合、盐或基团取代等,其分子结构式见附表1。制作正极时,还可以加入导电材料(如石墨、碳管、乙炔黑、金属粉末、导电聚合物或其它改善电子或离子输运的有机功能分子等)和粘结剂(如聚偏氟乙烯PVDF、聚四氟乙烯PTFE、纤维素CMC、水溶性橡胶SBR或其它聚合物等),上述材料混合均匀涂布于不锈钢、Al箔、Ti箔、碳毡、碳布等集流体或压成片作为正极。The positive electrode material described in the present invention is an organic material capable of anionic X - doping/dedoping, such as p-type organic polymers, free radical organics, non-conjugated organics, conductive polymers, or organic salts or inorganic porous Materials etc., preferred non-limiting examples are: poly-2,2,6,6-tetramethylpiperidinyl nitroxide radical-4-yl acrylamide (PTAm, code P ca 1), poly-2, 2,6,6-Tetramethylpiperidinyl nitroxide-4-yl methyl methacrylate (PTMA, code P ca 2), poly-1-oxo-2,2,6,6-tetra Methyl-piperidin-4-yl glycidyl ether (PTGE, code P ca 3), poly-2,2,6,6-tetramethylpiperidinyl nitroxide-4-vinyl ether (PTVE , coded as P ca 4), polyalkyne-2,2,6,6-tetramethyl-1-piperidinyl nitroxide-4-yl methyl p-benzoate (coded as P ca 5), poly- Naphthalene[1,8-cd:4,5-c'd'][1,2]dithialo[dimethyl tetrathiofumarate] (code P ca 6), polyethylene N-ethylene Carbazole (number P ca 7), polytriphenylamine (number P ca 8), polyaniline (PANI, number P ca 9), aniline/o-nitroaniline copolymer, poly-2,2,5 , 5-tetramethyl-1-pyrrole nitroxide radical-3-yl propiolate methyl ester (code P ca 10), polyyne-2,2,6,6-tetramethylpiperidine nitroxide radical Base-4-yl-4-ylglycidyl ether ether (numbered as P ca 11), polypyrrole (PPy, numbered as P ca 12), or compound, multi-stage polymerization, salt or group substitution of the above compounds etc., its molecular structural formula is shown in attached table 1. When making the positive electrode, you can also add conductive materials (such as graphite, carbon tubes, acetylene black, metal powder, conductive polymers or other organic functional molecules that improve electron or ion transport) and binders (such as polyvinylidene fluoride PVDF , polytetrafluoroethylene PTFE, cellulose CMC, water-soluble rubber SBR or other polymers, etc.), the above materials are mixed and evenly coated on stainless steel, Al foil, Ti foil, carbon felt, carbon cloth and other current collectors or pressed into sheets as positive electrode.
本发明所述的负极材料为可进行阳离子M+嵌入/脱出(水系电解液优选的M+离子为Na+)的有机材料或无机材料,如n型有机聚合物、主链型含硫有机聚合物、多硫聚合物、有机羰基化合物、导电聚合物或嵌入型无机材料等。优选非限定性实例有:1,4,5,8-萘四甲酸酐-聚酰亚胺(NTCDA-PI,编号为Pan1)、聚-2,2’-双硫苯胺(PDTDA,编号为Pan2)、聚α,α'-二硫代-3-氨基-邻-二甲苯(PDTAn,编号为Pan3)、聚二硫化-2,5-二巯基-1,3,4-噻二唑(PDMcT,编号为Pan4)、聚醌(编号为Pan5)、聚-5-氨基-1,4-萘醌(编号为Pan6)、聚对苯-3,5-二氨基-1,2,4-二噻(PPT,编号为Pan7)、聚-4,6-二氢-1H-[1,2]二硫代并[4,5-c]吡咯(MPY,编号为Pan8)、聚三硫化-2,5-二巯基-1,3,4-噻二唑(编号为Pan9)、聚-5,8-二氢-1H,4H-2,3,6,7-四硫蒽(编号为Pan10)、对苯二甲酸二钠(Na2C8H4O4)(编号为Pan11),或以上化合物的复合、多级聚合、盐或基团取代等,其分子结构式见附表1;或嵌入式无机材料如石墨(编号为Pan12)、Li4Ti5O12、NaTi2(PO4)3。制作负极时,还可以加入导电材料(如石墨、碳管、乙炔黑、金属粉末、导电聚合物或其它改善电子或离子输运的有机功能分子)和粘结剂(如聚偏氟乙烯PVDF、聚四氟乙烯PTFE、纤维素CMC、水溶性橡胶SBR或其它聚合物),上述材料混合均匀涂布于不锈钢、Al箔、Cu箔、Ti箔、碳毡、碳布等集流体或压成片作为负极。The negative electrode material of the present invention is an organic material or an inorganic material that can carry out cation M + intercalation/extraction (the preferred M + ion of the aqueous electrolyte is Na + ), such as n-type organic polymers, main chain type sulfur-containing organic polymers compounds, polysulfide polymers, organic carbonyl compounds, conductive polymers or embedded inorganic materials, etc. Preferred non-limiting examples are: 1,4,5,8-naphthalene tetracarboxylic anhydride-polyimide (NTCDA-PI, code P an 1), poly-2,2'-dithioaniline (PDTDA, code P an 2), poly α, α'-dithio-3-amino-o-xylene (PDTAn, number P an 3), poly disulfide-2,5-dimercapto-1,3,4 -thiadiazole (PDMcT, number P an 4), polyquinone (number P an 5), poly-5-amino-1,4-naphthoquinone (number P an 6), polyparaphenylene-3, 5-diamino-1,2,4-dithia (PPT, number P an 7), poly-4,6-dihydro-1H-[1,2]dithio[4,5-c] Pyrrole (MPY, number P an 8), polytrisulfide-2,5-dimercapto-1,3,4-thiadiazole (number P an 9), poly-5,8-dihydro-1H, 4H-2,3,6,7-tetrasulfanthracene (code P an 10), disodium terephthalate (Na 2 C 8 H 4 O 4 ) (code P an 11), or a combination of the above compounds , multi-level polymerization, salt or group substitution, etc., the molecular structure formula is shown in Attached Table 1; or embedded inorganic materials such as graphite (number P an 12), Li 4 Ti 5 O 12 , NaTi 2 (PO 4 ) 3 . When making the negative electrode, conductive materials (such as graphite, carbon tubes, acetylene black, metal powder, conductive polymers or other organic functional molecules that improve electron or ion transport) and binders (such as polyvinylidene fluoride PVDF, Polytetrafluoroethylene PTFE, cellulose CMC, water-soluble rubber SBR or other polymers), the above materials are mixed and evenly coated on stainless steel, Al foil, Cu foil, Ti foil, carbon felt, carbon cloth and other current collectors or pressed into sheets as the negative pole.
本发明所述的电解液可根据正负极材料不同选择水系或非水有机体系的电解液。其中,水系电解液可选为非限定的:溶质MX质量分数达到其饱和溶液中质量分数的80-110%的NaNO3、NaCl、Na2SO4、NaOH、NaBF4、NaPF6、NaClO4等一种或多种钠盐的水溶液。非水有机系电解液可优选为非限定的:溶质MX质量分数达到其饱和溶液中质量分数的80-110%的NaBF4、NaPF6、NaClO4、NaFSI、NaTFSI、LiBF4、LiPF6、LiTFSI、LiFSI等一种或多种有机盐溶于乙烯碳酸酯(EC)、丙烯碳酸酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、四氢呋喃(THF)、二甲氧基乙烷(DME)、二甘醇二甲醚(DG)、缩二乙二醇二甲醚(DGDME)、缩三乙二醇二甲醚(TGDME)、缩四乙二醇二甲醚(TEGDME)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4-MeDOL)、γ-丁内酯(γ-BL)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙腈、丙腈、丙二腈、3-甲氧基丙腈一种或多种混合溶剂、或熔盐体系如NaFSI/KFSI或LiFSI/KFSI的共熔体。The electrolyte solution of the present invention can be selected from water system or non-aqueous organic system electrolyte according to different positive and negative electrode materials. Among them, the water-based electrolyte can be selected as non-limiting: NaNO 3 , NaCl, Na 2 SO 4 , NaOH, NaBF 4 , NaPF 6 , NaClO 4 , etc., where the mass fraction of the solute MX reaches 80-110% of the mass fraction in the saturated solution Aqueous solutions of one or more sodium salts. The non-aqueous organic electrolyte can be preferably non-limiting: NaBF 4 , NaPF 6 , NaClO 4 , NaFSI, NaTFSI, LiBF 4 , LiPF 6 , LiTFSI with the mass fraction of the solute MX reaching 80-110% of the mass fraction in the saturated solution , LiFSI and other organic salts are dissolved in ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), tetrahydrofuran (THF), dimethoxy Diethylene glycol dimethyl ether (DME), diglyme (DG), diethylene glycol dimethyl ether (DGDME), triethylene glycol dimethyl ether (TGDME), tetraethylene glycol dimethyl ether ( TEGDME), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (4-MeDOL), γ-butyrolactone (γ-BL), methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), methyl propionate (MP), ethyl propionate (EP), acetonitrile, propionitrile, malononitrile, 3-methoxypropionitrile A co-melt of one or more mixed solvents, or a molten salt system such as NaFSI/KFSI or LiFSI/KFSI.
下面结合具体实施例,进一步阐述本发明。但这些实施例仅限于说明本发明而不用于限制本发明的范围。Below in conjunction with specific embodiment, further illustrate the present invention. However, these examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.
实施例1Example 1
将正极材料PTAm(Pan1)与碳管和粘结剂按80%,15%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。将负极材料NTCDA-PI(Pan1)与碳管和粘结剂按80%,15%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。采用无纺布作为隔膜,10M NaNO3水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C、1C和5C倍率充放电,图2为该可充电化学储能器件0.5C倍率首周充放电曲线及5C倍率下循环性能(500周后容量保持率为95%)。Grind the positive electrode material PTAm (P an 1) with carbon tubes and binders at a ratio of 80%, 15%, and 5%, but not limited to this ratio, grind them evenly, coat them on a stainless steel mesh, and dry the pole pieces stand-by. The negative electrode material NTCDA-PI (P an 1) is mixed with carbon tubes and binders according to the ratio of 80%, 15%, 5%, but not limited to this ratio, ground evenly, coated on the stainless steel mesh, and the pole piece is baked Dry and set aside. Using non-woven fabric as the diaphragm, 10M NaNO 3 aqueous solution as the electrolyte, the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at 0.5C, 1C and 5C rates. Figure 2 shows the rechargeable chemical energy storage device 0.5 C rate charge-discharge curve in the first week and cycle performance at 5C rate (the capacity retention rate after 500 cycles is 95%).
实施例2Example 2
仿照实施例1中电极制备的方法,采用碳毡为集流体,分别制备正极PTMA(Pca2)、负极NTCDA-PI(Pan1)极片,采用无纺布作为隔膜,6M NaCl水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, carbon felt was used as the current collector, and positive electrode PTMA (P ca 2) and negative electrode NTCDA-PI (P an 1) pole pieces were prepared respectively, non-woven fabric was used as separator, and 6M NaCl aqueous solution was used as Electrolyte, assemble the positive and negative electrodes into a rechargeable chemical energy storage device, charge and discharge at 0.5C and 5C rates, see Table 1.
实施例3Example 3
仿照实施例1中电极制备的方法,分别制备正极PTGE(Pca3)、负极NTCDA-PI(Pan1)极片,采用无纺布作为隔膜,NaPF6的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive PTGE (P ca 3) and negative NTCDA-PI (P an 1) pole pieces were prepared respectively, using non-woven fabric as a diaphragm, and a saturated aqueous solution of NaPF 6 as an electrolyte. The negative plate is assembled with a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 1.
实施例4Example 4
仿照实施例1中电极制备的方法,分别制备正极PTVE(Pca4)、负极NTCDA-PI(Pan1)极片,采用无纺布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1 , positive electrode PTVE (P ca 4) and negative electrode NTCDA-PI (P an 1) pole pieces were prepared respectively, non-woven fabric was used as diaphragm, NaBF saturated aqueous solution was used as electrolyte, and positive electrode The negative plate is assembled with a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 1.
实施例5Example 5
仿照实施例1中电极制备的方法,分别制备正极聚三苯胺(Pca8)、负极NTCDA-PI(Pan1)极片,采用无纺布作为隔膜,NaCl的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive polytriphenylamine (P ca 8) and negative NTCDA-PI (P an 1) pole pieces were prepared respectively, using non-woven fabric as separator, and saturated aqueous solution of NaCl as electrolyte. The positive and negative plates are assembled with rechargeable chemical energy storage devices, which are charged and discharged at 0.5C and 5C rates, see Table 1.
实施例6Example 6
仿照实施例1中电极制备的方法,采用碳布为集流体,分别制备正极聚炔-2,2,6,6-四甲基哌啶氮氧自由基-4-基-4-基缩水甘油基醚基乙醚(Pca11)、负极NTCDA-PI(Pan1)极片,采用无纺布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Follow the method for preparing the electrode in Example 1, using carbon cloth as the current collector, and prepare the positive polyacetylene-2,2,6,6-tetramethylpiperidine nitroxide radical-4-yl-4-ylglycidol respectively Ether-based ether (P ca 11), negative NTCDA-PI (P an 1) pole piece, using non-woven fabric as separator, NaBF 4 saturated aqueous solution as electrolyte, the positive and negative pole pieces assembled rechargeable chemical energy storage device , charge and discharge at 0.5C and 5C rates, see Table 1.
实施例7Example 7
仿照实施例1中电极制备的方法,分别制备正极PTMA(Pca2)、负极PDTDA(Pan2)极片,采用无纺布作为隔膜,NaNO3的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive electrode PTMA (P ca 2) and negative electrode PDTDA (P an 2) pole pieces were prepared respectively, using non-woven fabric as separator, NaNO3 saturated aqueous solution as electrolyte, and positive and negative electrodes Chip-assembled rechargeable chemical energy storage devices, charged and discharged at 0.5C and 5C rates, see Table 1.
实施例8Example 8
仿照实施例1中电极制备的方法,分别制备正极PTGE(Pca3)、负极PDTAn(Pan3)极片,采用无纺棉布作为隔膜,NaPF6的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive electrode PTGE (P ca 3) and negative electrode PDTAn (P an 3) pole pieces were prepared respectively, using non-woven cotton cloth as a diaphragm, and a saturated aqueous solution of NaPF 6 as an electrolyte. Chip-assembled rechargeable chemical energy storage devices, charged and discharged at 0.5C and 5C rates, see Table 1.
实施例9Example 9
仿照实施例1中电极制备的方法,分别制备正极PTVE(Pca4)、负极PDMcT(Pan4)极片,采用无纺棉布作为隔膜,10M NaNO3水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive electrode PTVE (P ca 4) and negative electrode PDMcT (P an 4) pole pieces were prepared respectively, using non-woven cotton cloth as separator, 10M NaNO 3 aqueous solution as electrolyte, and positive and negative pole pieces Assemble rechargeable chemical energy storage devices, charge and discharge at 0.5C and 5C rates, see Table 1.
实施例10Example 10
仿照实施例1中电极制备的方法,分别制备正极聚炔-2,2,6,6-四甲基-1-哌啶氮氧自由基-4-基对苯甲酸甲酯(Pca5)、负极聚醌(Pan5)极片,采用无纺棉布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件电池,以0.5C和5C倍率充放电,见表1。Follow the method of electrode preparation in Example 1 to prepare positive polyacetylene-2,2,6,6-tetramethyl-1-piperidinyl nitroxide radical-4-yl methyl p-benzoate (P ca 5) 1. Negative electrode polyquinone (P an 5) pole piece, using non-woven cotton cloth as the diaphragm, NaBF 4 saturated aqueous solution as the electrolyte, the positive and negative pole pieces are assembled into a rechargeable chemical energy storage device battery, charged and discharged at 0.5C and 5C rates , see Table 1.
实施例11Example 11
仿照实施例1中电极制备的方法,分别制备正极聚-萘[1,8-cd:4,5-c’d’]并[1,2]二硫杂茂[四硫代富马酸二甲酯](Pca6)、负极聚5-氨基-1,4-萘醌(Pan6)极片,采用无纺棉布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, the positive electrode poly-naphthalene [1,8-cd:4,5-c'd'] and [1,2] dithiacene [tetrathiofumaric acid di Methyl ester] (P ca 6), negative electrode poly 5-amino-1,4-naphthoquinone (P an 6) pole piece, use non-woven cotton cloth as separator, NaBF 4 saturated aqueous solution as electrolyte, positive and negative pole piece Assemble rechargeable chemical energy storage devices, charge and discharge at 0.5C and 5C rates, see Table 1.
实施例12Example 12
仿照实施例1中电极制备的方法,分别制备正极聚N-乙烯基咔唑(Pca7)、负极PPT(Pan7)极片采用无纺棉布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Follow the method of electrode preparation in Example 1 to prepare positive poly N-vinyl carbazole (P ca 7) and negative PPT (P an 7) pole pieces respectively. Non-woven cotton cloth is used as separator, and saturated aqueous solution of NaBF 4 is used as electrolyte , assemble the positive and negative electrodes into a rechargeable chemical energy storage device, charge and discharge at 0.5C and 5C rates, see Table 1.
实施例13Example 13
如仿照实施例1中电极制备的方法,分别制备正极聚三苯胺(Pca8)、负极MPY(Pan8)极片,采用无纺棉布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。For example, following the method of electrode preparation in Example 1, positive polytriphenylamine (P ca 8) and negative electrode MPY (P an 8) pole pieces were prepared respectively, using non-woven cotton cloth as a separator, and a saturated aqueous solution of NaBF 4 as an electrolyte. The positive and negative plates are assembled with rechargeable chemical energy storage devices, which are charged and discharged at 0.5C and 5C rates, see Table 1.
实施例14Example 14
仿照实施例1中电极制备的方法,分别制备正极聚苯胺(Pca9)、负极NTCDA-PI(Pan1)极片,采用无纺棉布作为隔膜,NaNO3的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive polyaniline (P ca 9) and negative NTCDA-PI (P an 1) pole pieces were prepared respectively, using non-woven cotton cloth as a diaphragm, and a saturated aqueous solution of NaNO3 as an electrolyte. The positive and negative plates are assembled with rechargeable chemical energy storage devices, which are charged and discharged at 0.5C and 5C rates, see Table 1.
实施例15Example 15
仿照实施例1中电极制备的方法,分别制备正极苯胺/邻硝基苯胺共聚物、负极NTCDA-PI(Pan1)极片,采用无纺棉布作为隔膜,NaNO3的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method for electrode preparation in Example 1, positive aniline/o-nitroaniline copolymers and negative NTCDA-PI (P an 1) pole pieces were prepared respectively, using non-woven cotton as a diaphragm, and NaNO The saturated aqueous solution was used as an electrolyte, Assemble the positive and negative electrodes into a rechargeable chemical energy storage device, charge and discharge at 0.5C and 5C rates, see Table 1.
实施例16Example 16
仿照实施例1中电极制备的方法,分别制备正极聚-2,2,5,5-四甲基-1-吡咯氮氧自由基-3-基丙炔酸甲酯(Pca10)、聚三硫化-2,5-二巯基-1,3,4-噻二唑(Pan9)极片,采用无纺棉布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Follow the method of electrode preparation in Example 1 to prepare positive poly-2,2,5,5-tetramethyl-1-pyrrole nitroxide radical-3-yl propiolate methyl ester (P ca 10), poly Trisulfide-2,5-dimercapto-1,3,4-thiadiazole (P an 9) pole pieces, using non-woven cotton as a diaphragm, NaBF 4 saturated aqueous solution as an electrolyte, the positive and negative pole pieces can be assembled Charge chemical energy storage devices, charge and discharge at 0.5C and 5C rates, see Table 1.
实施例17Example 17
仿照实施例1中电极制备的方法,分别制备正极聚吡咯(Pca12)、负极聚-5,8-二氢-1H,4H-2,3,6,7-四硫蒽(Pan10)极片,采用无纺棉布作为隔膜,NaBF4的饱和水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive polypyrrole (P ca 12), negative poly-5,8-dihydro-1H,4H-2,3,6,7-tetrathioanthracene (P an 10 ) pole piece, using non-woven cotton cloth as the diaphragm, and the saturated aqueous solution of NaBF 4 as the electrolyte, the positive and negative pole pieces are assembled into a rechargeable chemical energy storage device, and charged and discharged at 0.5C and 5C rates, see Table 1.
实施例18Example 18
仿照实施例1-17中可充电化学储能器件制备的方法,正极、负极、电解液可以任意组合,以0.5C和5C倍率充放电,见表1。Following the preparation method of the rechargeable chemical energy storage device in Examples 1-17, the positive electrode, negative electrode, and electrolyte can be combined arbitrarily, and charged and discharged at 0.5C and 5C rates, see Table 1.
实施例19Example 19
仿照实施例1中电极制备的方法,采用Al箔为集流体,分别制备正极PTAm(Pca1)、负极对苯二甲酸二钠(Pan11)极片,采用玻璃纤维作为隔膜,NaBF4/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, using Al foil as the current collector, respectively prepare positive electrode PTAm (P ca 1), negative electrode disodium terephthalate (P an 11) pole pieces, use glass fiber as separator, NaBF 4 The saturated solution of /PC is used as the electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 2.
实施例20Example 20
仿照实施例1中电极制备的方法,采用Ti箔为集流体,分别制备正极聚-萘[1,8-cd:4,5-c’d’]并[1,2]二硫杂茂[四硫代富马酸二甲酯](Pca6)、负极对苯二甲酸二钠(Pan11)极片,采用玻璃纤维作为隔膜,NaPF6/TEGDME的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method for preparing the electrode in Example 1, using Ti foil as the current collector, the positive electrode poly-naphthalene[1,8-cd:4,5-c'd'][1,2]dithiacene[ Dimethyl tetrathiofumarate] (P ca 6), negative electrode disodium terephthalate (P an 11) pole piece, using glass fiber as separator, NaPF 6 /TEGDME saturated solution as electrolyte, positive The negative plate is assembled with a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, see Table 2.
实施例21Example 21
仿照实施例1中电极制备的方法,采用不锈钢为集流体,分别制备正极PTGE(Pca3)、负极对苯二甲酸二钠(Pan11)极片,采用玻璃纤维作为隔膜,NaTFSI/γ-BL的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, using stainless steel as the current collector, respectively prepare positive electrode PTGE (P ca 3) and negative electrode disodium terephthalate (P an 11) pole pieces, using glass fiber as the diaphragm, NaTFSI/γ The saturated solution of -BL is used as the electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 2.
实施例22Example 22
仿照实施例1中电极制备的方法,采用Al箔为集流体,分别制备正极聚N-乙烯基咔唑(Pca7)、负极对苯二甲酸二钠(Pan11)极片,采用玻璃纤维作为隔膜,NaBF4/EA的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, using Al foil as the current collector, respectively prepare positive poly N-vinyl carbazole (P ca 7) and negative disodium terephthalate (P an 11) pole pieces, using glass The fiber is used as a separator, the saturated solution of NaBF 4 /EA is used as an electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 2.
实施例23Example 23
仿照实施例1中电极制备的方法,采用Al箔为集流体,分别制备正极聚三苯胺(Pca8)、负极对苯二甲酸二钠(Pan11)极片,采用玻璃纤维作为隔膜,NaBF4/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, using Al foil as a current collector, respectively prepare positive pole polytriphenylamine (P ca 8) and negative pole disodium terephthalate (P an 11) pole pieces, using glass fiber as a diaphragm, The saturated solution of NaBF 4 /PC is used as the electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, see Table 2.
实施例24Example 24
仿照实施例1中电极制备的方法,分别制备正极PTAm(Pca1)(采用Al箔为集流体)、负极石墨(Pan12)极片(采用Cu箔为集流体),采用玻璃纤维作为隔膜,LiTFSI/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, positive electrode PTAm (P ca 1) (using Al foil as current collector) and negative electrode graphite (P an 12) pole piece (using Cu foil as current collector) were prepared respectively, using glass fiber as The diaphragm, the saturated solution of LiTFSI/PC is used as the electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 2.
实施例25Example 25
仿照实施例1中电极制备的方法,分别制备正极PTGE(Pca3)(采用Ti箔为集流体)、负极石墨(Pan12)极片(采用Cu箔为集流体),采用玻璃纤维作为隔膜,LiFSI/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, positive electrode PTGE (P ca 3) (using Ti foil as current collector) and negative electrode graphite (P an 12) pole piece (using Cu foil as current collector) were prepared respectively, using glass fiber as The diaphragm, the saturated solution of LiFSI/PC is used as the electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device, which is charged and discharged at a rate of 0.5C and 5C, as shown in Table 2.
实施例26Example 26
仿照实施例1中电极制备的方法,分别制备正极聚-萘[1,8-cd:4,5-c’d’]并[1,2]二硫杂茂[四硫代富马酸二甲酯](Pca6)(采用Al箔为集流体)、负极石墨(Pan12)极片(采用Cu箔为集流体),采用玻璃纤维作为隔膜,LiPF6/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 1, the positive electrode poly-naphthalene [1,8-cd:4,5-c'd'] and [1,2] dithiacene [tetrathiofumaric acid di Methyl ester] (P ca 6) (using Al foil as the current collector), negative electrode graphite (P an 12) pole piece (using Cu foil as the current collector), using glass fiber as the diaphragm, and the saturated solution of LiPF 6 /PC as the electrolytic Assembled the positive and negative plates into a rechargeable chemical energy storage device, charged and discharged at 0.5C and 5C rates, see Table 2.
实施例27Example 27
仿照实施例1-18中可充电化学储能器件制备正极的方法,负极石墨(Pan12)极片(采用Cu箔为集流体),采用玻璃纤维作为隔膜,LiBF4/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表2。Following the method for preparing the positive electrode of the rechargeable chemical energy storage device in Example 1-18, the negative electrode graphite (P an 12) pole piece (using Cu foil as the current collector), using glass fiber as the separator, and the saturated solution of LiBF 4 /PC as the Electrolyte, assemble the positive and negative electrodes into a rechargeable chemical energy storage device, charge and discharge at 0.5C and 5C rates, see Table 2.
实施例28Example 28
仿照实施例1中电极制备的方法,分别制备正极PTAm(Pca1)、负极NTCDA-PI(Pan1)极片,采用无纺布作为隔膜,10M NaNO3和1M KNO3(作为支持电解质)的水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Example 1, positive pole PTAm (P ca 1), negative pole NTCDA-PI (P an 1) pole pieces were prepared respectively, using non-woven fabric as diaphragm, 10M NaNO 3 and 1M KNO 3 (as supporting electrolyte ) aqueous solution as the electrolyte, the positive and negative electrodes were assembled into a rechargeable chemical energy storage device, and charged and discharged at 0.5C and 5C rates, see Table 1.
实施例29Example 29
仿照实施例1-18中电极制备的方法,采用无纺布作为隔膜,10M NaNO3和0.5M KNO3(作为支持电解质)的水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Following the method of electrode preparation in Examples 1-18, using non-woven fabric as separator, 10M NaNO 3 and 0.5M KNO 3 (as supporting electrolyte) in aqueous solution as electrolyte, the positive and negative electrodes are assembled into a rechargeable chemical energy storage device , Charge and discharge at 0.5C and 5C rates, see Table 1.
实施例30Example 30
将正极材料PTAm(Pan1)与碳管、粘结剂和NaNO3按75%,15%,5%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。将负极材料NTCDA-PI(Pan1)与碳管、粘结剂按80%,15%,5%,10%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。采用无纺布作为隔膜,10M NaNO3水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。The positive electrode material PTAm (P an 1) is mixed with carbon tubes, binders and NaNO 3 according to the ratio of 75%, 15%, 5%, 5%, but not limited to this ratio, ground evenly, and coated on the stainless steel mesh , and the pole pieces are dried for later use. The negative electrode material NTCDA-PI (P an 1) is mixed with carbon tubes and binders according to the ratio of 80%, 15%, 5%, and 10%, but not limited to this ratio, ground evenly, and coated on the stainless steel mesh, The pole piece is ready to use after drying. Using non-woven fabric as the diaphragm, 10M NaNO 3 aqueous solution as the electrolyte, the positive and negative electrodes were assembled into a rechargeable chemical energy storage device, and charged and discharged at 0.5C and 5C rates, see Table 1.
实施例31Example 31
将正极材料PTMA(Pca2)与碳管、粘结剂按80%,15%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。将负极材料NTCDA-PI(Pan1)与碳管、粘结剂和NaNO3按75%,15%,5%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。采用无纺布作为隔膜,10M NaNO3水溶液作为电解液,将正负极片组装可充电化学储能器件,以0.5C和5C倍率充放电,见表1。Grind the positive electrode material PTMA (P ca 2) with carbon tubes and binders at a ratio of 80%, 15%, and 5%, but not limited to this ratio, grind them evenly, coat them on the stainless steel mesh, and dry the pole pieces stand-by. Negative electrode material NTCDA-PI (P an 1) and carbon tubes, binder and NaNO 3 according to the ratio of 75%, 15%, 5%, 5%, but not limited to this ratio, grinding evenly, coating on Stainless steel mesh, pole pieces are dried for later use. Using non-woven fabric as the diaphragm, 10M NaNO 3 aqueous solution as the electrolyte, the positive and negative electrodes were assembled into a rechargeable chemical energy storage device, and charged and discharged at 0.5C and 5C rates, see Table 1.
实施例32Example 32
将正极材料PTGE(Pca3)与碳管、粘结剂和NaPF6按75%,15%,5%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。将负极材料对苯二甲酸二钠(Pan11)与碳管、粘结剂按80%,15%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。采用玻璃纤维作为隔膜,NaPF6/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件。以0.5C和5C倍率充放电,见表2。The positive electrode material PTGE (P ca 3) is mixed with carbon tubes, binders and NaPF 6 according to the ratio of 75%, 15%, 5%, 5%, but not limited to this ratio, ground evenly, and coated on the stainless steel mesh , and the pole pieces are dried for later use. Negative electrode material disodium terephthalate (P an 11) and carbon tube, binder according to the ratio of 80%, 15%, 5%, but not limited to this ratio, grind evenly, coat on the stainless steel mesh, The pole piece is ready to use after drying. Glass fiber is used as a separator, a saturated solution of NaPF 6 /PC is used as an electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device. Charge and discharge at 0.5C and 5C rates, see Table 2.
实施例33Example 33
仿照实施例33中电极制备的方法,分别制备正极PTVE(Pca4)、与碳管、粘结剂按80%,15%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。将负极材料对苯二甲酸二钠(Pan11)与碳管、粘结剂和NaPF6按75%,15%,5%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。采用玻璃纤维作为隔膜,NaPF6/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件。以0.5C和5C倍率充放电,见表2。Following the method of electrode preparation in Example 33, prepare positive electrode PTVE (P ca 4) respectively, and carbon tubes and binders according to the ratio of 80%, 15%, and 5%, but not limited to this ratio, and the grinding is uniform. Coated on the stainless steel mesh, and the pole pieces are dried for later use. Negative electrode material disodium terephthalate (P an 11) and carbon tubes, binder and NaPF 6 according to the ratio of 75%, 15%, 5%, 5%, but not limited to this ratio, grind evenly, Coated on the stainless steel mesh, and the pole pieces are dried for later use. Glass fiber is used as a separator, a saturated solution of NaPF 6 /PC is used as an electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device. Charge and discharge at 0.5C and 5C rates, see Table 2.
实施例34Example 34
将正极材料PTGE(Pca3)与碳管、粘结剂和LiPF6按75%,15%,5%,5%的配比,但不局限于该比例,研磨均匀,涂布于不锈钢网上,极片烘干后待用。将负极材料石墨(Pan12)与碳管、粘结剂80%,15%,5%的配比,但不局限于该比例,研磨均匀,涂布于Cu箔上,极片烘干后待用。采用玻璃纤维作为隔膜,LiPF6/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件。以0.5C和5C倍率充放电,见表2。The positive electrode material PTGE (P ca 3) is mixed with carbon tubes, binder and LiPF 6 according to the ratio of 75%, 15%, 5%, 5%, but not limited to this ratio, ground evenly, and coated on the stainless steel mesh , and the pole pieces are dried for later use. The negative electrode material graphite (P an 12) is mixed with carbon tubes and binders at a ratio of 80%, 15%, and 5%, but not limited to this ratio, ground evenly, and coated on Cu foil, and the pole pieces are dried stand-by. Glass fiber is used as a separator, and a saturated solution of LiPF 6 /PC is used as an electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device. Charge and discharge at 0.5C and 5C rates, see Table 2.
实施例35Example 35
将正极材料聚三苯胺(Pca8)与碳管、粘结剂按80%,15%,5%,的配比,但不局限于该比例,研磨均匀,涂布于Al箔上,极片烘干后待用。将负极材料石墨(Pan12)与碳管、粘结剂和LiPF6按75%,15%,5%,5%的配比,但不局限于该比例,研磨均匀,涂布于Cu箔上,极片烘干后待用。采用玻璃纤维作为隔膜,LiPF6/PC的饱和溶液作为电解液,将正负极片组装可充电化学储能器件。以0.5C和5C倍率充放电,见表2。The anode material polytriphenylamine (P ca 8) is mixed with carbon tubes and binders according to the ratio of 80%, 15%, 5%, but not limited to this ratio, ground evenly, and coated on the Al foil. The slices are dried for later use. The anode material graphite (P an 12) is mixed with carbon tubes, binder and LiPF 6 according to the ratio of 75%, 15%, 5%, 5%, but not limited to this ratio, grind evenly, and coat on Cu foil On, the pole pieces are dried and set aside. Glass fiber is used as a separator, and a saturated solution of LiPF 6 /PC is used as an electrolyte, and the positive and negative electrodes are assembled into a rechargeable chemical energy storage device. Charge and discharge at 0.5C and 5C rates, see Table 2.
表1:实施例1-18,28-31中可充电化学储能器件性能(水系电解液)Table 1: Performance of rechargeable chemical energy storage devices in Examples 1-18, 28-31 (aqueous electrolyte)
表2:实施例19-27,32-35中二次电池性能(非水有机电解液)Table 2: Secondary battery performance in Examples 19-27, 32-35 (non-aqueous organic electrolyte)
附表1:有机分子结构式Attached Table 1: Organic Molecular Structural Formula
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210578923.6A CN103904356A (en) | 2012-12-27 | 2012-12-27 | Chargable chemical energy-storage device and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210578923.6A CN103904356A (en) | 2012-12-27 | 2012-12-27 | Chargable chemical energy-storage device and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103904356A true CN103904356A (en) | 2014-07-02 |
Family
ID=50995576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210578923.6A Pending CN103904356A (en) | 2012-12-27 | 2012-12-27 | Chargable chemical energy-storage device and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103904356A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261758A (en) * | 2015-09-02 | 2016-01-20 | 杭州聚力氢能科技有限公司 | Schiff alkali polymer and synthesis method and application thereof |
CN105368443A (en) * | 2015-09-30 | 2016-03-02 | 浙江工业大学 | Application of oxygen-nitrogen free radical group containing triphenylamine derivate polymer containing as electrochromic material |
TWI553942B (en) * | 2014-10-17 | 2016-10-11 | 鴻海精密工業股份有限公司 | Rechargeable battery |
JP2018137107A (en) * | 2017-02-21 | 2018-08-30 | 株式会社東芝 | Secondary battery, assembled battery, battery pack and vehicle |
CN109496375A (en) * | 2016-07-26 | 2019-03-19 | 株式会社村田制作所 | Electrolyte and electrochemical apparatus |
CN109560339A (en) * | 2018-11-27 | 2019-04-02 | 中国科学院青岛生物能源与过程研究所 | A kind of pre- embedding anion method and full battery |
CN109792087A (en) * | 2016-09-30 | 2019-05-21 | 松下知识产权经营株式会社 | Electrochemical appliance |
CN109912796A (en) * | 2019-02-25 | 2019-06-21 | 嘉兴学院 | A method for preparing high-performance lithium-sulfur battery cathode material, electrode and battery |
CN110546727A (en) * | 2017-03-17 | 2019-12-06 | 宽广位元电池公司 | Electrolytes for supercapacitors and high power battery applications |
CN111063885A (en) * | 2019-12-13 | 2020-04-24 | 深圳先进技术研究院 | Aqueous calcium ion battery cathode material, aqueous calcium ion battery cathode and aqueous calcium ion battery |
CN111063884A (en) * | 2019-11-08 | 2020-04-24 | 宁波锋成先进能源材料研究院 | Water-based ion battery negative electrode material, water-based ion battery negative electrode and preparation method thereof, and water-based ion battery |
CN112701351A (en) * | 2020-12-29 | 2021-04-23 | 中国科学院宁波材料技术与工程研究所 | Non-aqueous electrolyte, preparation method thereof and lithium ion battery |
CN114026730A (en) * | 2019-06-25 | 2022-02-08 | 松下知识产权经营株式会社 | Electrochemical device |
US11639403B2 (en) | 2018-11-09 | 2023-05-02 | Samsung Electronics Co., Ltd. | Polymer, composite positive active material including the same, and lithium secondary battery including electrode including the positive active material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037618A (en) * | 1988-05-06 | 1989-11-29 | 陆桂林 | Simple manufacturing technique of ordinary accumulator with conducting plastic anode |
CN1500293A (en) * | 2001-04-03 | 2004-05-26 | 日本电气株式会社 | Electricity storage device |
CN1529334A (en) * | 2003-10-17 | 2004-09-15 | �廪��ѧ | Polyaniline/carbon nanotube hybrid supercapacitor |
CN101069307A (en) * | 2004-12-06 | 2007-11-07 | 日本电气株式会社 | Process for producing polyradical compound and battery |
CN101882696A (en) * | 2009-05-05 | 2010-11-10 | 中国科学院物理研究所 | A kind of non-aqueous electrolyte material and application thereof containing fluorine-containing sulfonylimide lithium salt |
-
2012
- 2012-12-27 CN CN201210578923.6A patent/CN103904356A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037618A (en) * | 1988-05-06 | 1989-11-29 | 陆桂林 | Simple manufacturing technique of ordinary accumulator with conducting plastic anode |
CN1500293A (en) * | 2001-04-03 | 2004-05-26 | 日本电气株式会社 | Electricity storage device |
CN1529334A (en) * | 2003-10-17 | 2004-09-15 | �廪��ѧ | Polyaniline/carbon nanotube hybrid supercapacitor |
CN101069307A (en) * | 2004-12-06 | 2007-11-07 | 日本电气株式会社 | Process for producing polyradical compound and battery |
CN101882696A (en) * | 2009-05-05 | 2010-11-10 | 中国科学院物理研究所 | A kind of non-aqueous electrolyte material and application thereof containing fluorine-containing sulfonylimide lithium salt |
Non-Patent Citations (1)
Title |
---|
苏育志等: "新型储能材料聚有机二硫化物的研究进展", 《材料科学与工程学报》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI553942B (en) * | 2014-10-17 | 2016-10-11 | 鴻海精密工業股份有限公司 | Rechargeable battery |
CN105261758A (en) * | 2015-09-02 | 2016-01-20 | 杭州聚力氢能科技有限公司 | Schiff alkali polymer and synthesis method and application thereof |
CN105261758B (en) * | 2015-09-02 | 2017-10-03 | 杭州聚力氢能科技有限公司 | A kind of Schiff polymer and its synthetic method and application |
CN105368443A (en) * | 2015-09-30 | 2016-03-02 | 浙江工业大学 | Application of oxygen-nitrogen free radical group containing triphenylamine derivate polymer containing as electrochromic material |
CN105368443B (en) * | 2015-09-30 | 2017-12-29 | 浙江工业大学 | A kind of application of triphenylamine derivative polymer containing aerobic nitrogen free radical group as electrochromic material |
CN109496375A (en) * | 2016-07-26 | 2019-03-19 | 株式会社村田制作所 | Electrolyte and electrochemical apparatus |
CN109792087B (en) * | 2016-09-30 | 2022-05-31 | 松下知识产权经营株式会社 | Electrochemical device |
CN109792087A (en) * | 2016-09-30 | 2019-05-21 | 松下知识产权经营株式会社 | Electrochemical appliance |
JP2018137107A (en) * | 2017-02-21 | 2018-08-30 | 株式会社東芝 | Secondary battery, assembled battery, battery pack and vehicle |
CN110546727A (en) * | 2017-03-17 | 2019-12-06 | 宽广位元电池公司 | Electrolytes for supercapacitors and high power battery applications |
TWI856942B (en) * | 2017-03-17 | 2024-10-01 | 芬蘭商寬廣位元電池公司 | Electrolyte for supercapacitor and high-power battery use |
US12113175B2 (en) | 2017-03-17 | 2024-10-08 | Broadbit Batteries Oy | Electrolyte for supercapacitor and high-power battery use |
US11639403B2 (en) | 2018-11-09 | 2023-05-02 | Samsung Electronics Co., Ltd. | Polymer, composite positive active material including the same, and lithium secondary battery including electrode including the positive active material |
CN109560339B (en) * | 2018-11-27 | 2021-12-03 | 中国科学院青岛生物能源与过程研究所 | Method for pre-embedding anions and full battery |
CN109560339A (en) * | 2018-11-27 | 2019-04-02 | 中国科学院青岛生物能源与过程研究所 | A kind of pre- embedding anion method and full battery |
CN109912796A (en) * | 2019-02-25 | 2019-06-21 | 嘉兴学院 | A method for preparing high-performance lithium-sulfur battery cathode material, electrode and battery |
CN114026730A (en) * | 2019-06-25 | 2022-02-08 | 松下知识产权经营株式会社 | Electrochemical device |
CN111063884A (en) * | 2019-11-08 | 2020-04-24 | 宁波锋成先进能源材料研究院 | Water-based ion battery negative electrode material, water-based ion battery negative electrode and preparation method thereof, and water-based ion battery |
CN111063884B (en) * | 2019-11-08 | 2021-07-13 | 宁波锋成先进能源材料研究院 | Water-based ion battery negative electrode material, water-based ion battery negative electrode and preparation method thereof, and water-based ion battery |
CN111063885A (en) * | 2019-12-13 | 2020-04-24 | 深圳先进技术研究院 | Aqueous calcium ion battery cathode material, aqueous calcium ion battery cathode and aqueous calcium ion battery |
CN112701351A (en) * | 2020-12-29 | 2021-04-23 | 中国科学院宁波材料技术与工程研究所 | Non-aqueous electrolyte, preparation method thereof and lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103904356A (en) | Chargable chemical energy-storage device and application thereof | |
CN106463781B (en) | Aqueous energy storage device with organic electrode materials | |
Li et al. | An aromatic carbonyl compound-linked conjugated microporous polymer as an advanced cathode material for lithium-organic batteries | |
KR20140004773A (en) | Polyimide capacitance battery and manufacturing method thereof | |
CN110429279B (en) | A kind of organic cathode material for lithium ion battery and its application | |
Luo et al. | Synthetic control of electronic property and porosity in anthraquinone-based conjugated polymer cathodes for high-rate and long-cycle-life Na–organic batteries | |
CN107749467B (en) | A shuttle-shaped structure carbon-coated iron phosphide electrode material and preparation method thereof | |
CN103779568B (en) | A kind of post quinone positive electrode for lithium ion battery and application thereof | |
CN103367791B (en) | A kind of new type lithium ion battery | |
CN107256969B (en) | Preparation method of sodium ion battery negative electrode slurry | |
CN104795564B (en) | A kind of positive electrode of Aqueous solution secondary battery, pole piece, secondary cell and purposes | |
CN109256554B (en) | A kind of vulcanized polymer composite material and its preparation method and application | |
CN113328093B (en) | Organic electrode material of metal ion battery, electrode, battery and preparation method | |
CN103022496A (en) | Aromatic condensed ring quinones compound positive pole material for one-class lithium secondary battery | |
CN103515613B (en) | A kind of lithium-sulfur cell additive, the positive electrode containing the additive | |
CN104078676A (en) | Preparation method of sodium vanadyl phosphate/graphene composite material | |
CN106410154A (en) | Preparation method of carbon-coated iron borate material and application of carbon-coated iron borate material in sodium ion batteries | |
CN109390624B (en) | A kind of sodium-based all-carbon battery and preparation method thereof | |
WO2014120970A1 (en) | Organometallic-inorganic hybrid electrodes for lithium-ion batteries | |
CN107887573A (en) | Positive active material and its application with topological structure | |
CN101262076A (en) | An aqueous solution rechargeable lithium battery | |
CN104530424B (en) | Benzazine nitric oxide radical modified polyaniline and its preparation method and use | |
CN102569724B (en) | Preparation method for composite material used for anode of lithium ion battery | |
CN110556537B (en) | A method for improving the electrochemical performance of anion intercalation electrode materials | |
CN110224140A (en) | A kind of organic electrode materials and its application and respective battery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140702 |
|
RJ01 | Rejection of invention patent application after publication |