CN105514487A - Method for matching organic silicon electrolyte with silicon-based electrode material for use - Google Patents
Method for matching organic silicon electrolyte with silicon-based electrode material for use Download PDFInfo
- Publication number
- CN105514487A CN105514487A CN201511030116.0A CN201511030116A CN105514487A CN 105514487 A CN105514487 A CN 105514487A CN 201511030116 A CN201511030116 A CN 201511030116A CN 105514487 A CN105514487 A CN 105514487A
- Authority
- CN
- China
- Prior art keywords
- silicon
- electrolyte
- electrode material
- based electrode
- organosilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 145
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 70
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000010703 silicon Substances 0.000 title claims abstract description 54
- 239000007772 electrode material Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 24
- 150000003961 organosilicon compounds Chemical class 0.000 claims abstract description 28
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 12
- 229920000570 polyether Chemical group 0.000 claims abstract description 12
- 239000004721 Polyphenylene oxide Chemical group 0.000 claims abstract description 11
- 125000005843 halogen group Chemical group 0.000 claims abstract description 10
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims abstract description 5
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 5
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 5
- 125000001302 tertiary amino group Chemical group 0.000 claims abstract description 5
- 125000000524 functional group Chemical group 0.000 claims abstract description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 28
- 229910001416 lithium ion Inorganic materials 0.000 claims description 28
- -1 esters organo-silicon compound Chemical class 0.000 claims description 18
- 229910052744 lithium Inorganic materials 0.000 claims description 16
- 239000010405 anode material Substances 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 6
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 6
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052736 halogen Chemical group 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910013188 LiBOB Inorganic materials 0.000 claims description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 2
- 229910010941 LiFSI Inorganic materials 0.000 claims description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 239000006184 cosolvent Substances 0.000 claims description 2
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 125000003107 substituted aryl group Chemical group 0.000 claims description 2
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims 3
- 125000000217 alkyl group Chemical group 0.000 claims 3
- 125000001424 substituent group Chemical group 0.000 claims 3
- 238000005868 electrolysis reaction Methods 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 125000003277 amino group Chemical group 0.000 claims 1
- 239000003990 capacitor Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 150000002148 esters Chemical group 0.000 claims 1
- 235000013312 flour Nutrition 0.000 claims 1
- 238000007306 functionalization reaction Methods 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 6
- 239000002000 Electrolyte additive Substances 0.000 abstract description 4
- 239000007773 negative electrode material Substances 0.000 abstract description 4
- 239000011863 silicon-based powder Substances 0.000 abstract description 2
- 239000002153 silicon-carbon composite material Substances 0.000 abstract description 2
- HJMZMZRCABDKKV-UHFFFAOYSA-N carbonocyanidic acid Chemical group OC(=O)C#N HJMZMZRCABDKKV-UHFFFAOYSA-N 0.000 abstract 1
- 125000001033 ether group Chemical group 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 45
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 30
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 15
- 229910052786 argon Inorganic materials 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- 238000011056 performance test Methods 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 238000010998 test method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000009830 intercalation Methods 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000012983 electrochemical energy storage Methods 0.000 description 3
- 239000002001 electrolyte material Substances 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229940105289 carbon black Drugs 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- UUEVFMOUBSLVJW-UHFFFAOYSA-N oxo-[[1-[2-[2-[2-[4-(oxoazaniumylmethylidene)pyridin-1-yl]ethoxy]ethoxy]ethyl]pyridin-4-ylidene]methyl]azanium;dibromide Chemical compound [Br-].[Br-].C1=CC(=C[NH+]=O)C=CN1CCOCCOCCN1C=CC(=C[NH+]=O)C=C1 UUEVFMOUBSLVJW-UHFFFAOYSA-N 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种有机硅电解液和硅基电极材料配合使用的方法,硅基负极材料为硅粉、氧化亚硅或硅-碳复合电极材料,有机硅电解液包含锂盐、电解液添加剂和有机硅化合物,所述有机硅化合物如下述通式所示:其中,R’,R”,R”’选自相同或不同的C1-C10烷基、烷氧基或卤素取代基(-F);M为C1-C20烷基或结构为-(CH2)nO[(CH2)mO]x(CH2)y结构的链段,n、m为0-10的整数,x、y为0-10的整数;FG为氰基、碳酸酯、聚醚链、或叔胺基功能基团。本发明利用有机硅电解液和硅基电极材料的“相似相容”性质,制出的电池具有低阻抗、优良的循环稳定性和倍率性能、以及安全性。
The invention relates to a method for cooperating an organosilicon electrolyte with a silicon-based electrode material. The silicon-based negative electrode material is silicon powder, silicon oxide or a silicon-carbon composite electrode material, and the organosilicon electrolyte contains lithium salt, electrolyte additives and Organosilicon compound, described organosilicon compound is as shown in following general formula: Among them, R', R", R"' are selected from the same or different C1-C10 alkyl, alkoxy or halogen substituents (-F); M is C1-C20 alkyl or the structure is -(CH 2 ) A segment of n O[(CH 2 ) m O]x(CH 2 )y structure, n and m are integers from 0 to 10, x and y are integers from 0 to 10; FG is cyano, carbonate, poly Ether chain, or tertiary amino functional group. The invention utilizes the "similar and compatible" properties of organic silicon electrolyte and silicon-based electrode materials, and the manufactured battery has low impedance, excellent cycle stability and rate performance, and safety.
Description
技术领域technical field
本发明属于电化学储能技术领域,具体涉及一种有机硅电解液和硅基电极材料配合使用的方法。The invention belongs to the technical field of electrochemical energy storage, and in particular relates to a method for cooperating an organic silicon electrolyte and a silicon-based electrode material.
背景技术Background technique
随着化石能源的日益枯竭以及地球气候的日趋恶化,开发新型清洁能源和加强节能减排成为世界各国的重点发展方向。近年来随着混合动力汽车和纯电动汽车以及新能源(太阳能、风电)并网发电站项目建设步伐加快,高性能动力(储能)电池成为大力发展的核心技术之一,目前锂离子电池因其高电压、大容量、循环性能佳、低污染等优点成为最有竞争力的电源解决方案。研发性能优异的负极材料是提高锂离子电池性能的关键之一。碳材料是最早在商业锂电池中得到广泛应用的负极材料,但是,电容量密度低、不可逆损失大、高温时安全性低、过充电时容易短路等缺点限制了碳负极材料的发展。因此,开发容量密度高、循环性能优良和安全性能优异的新型锂离子电池负极材料迫在眉睫。With the depletion of fossil energy and the deterioration of the earth's climate, the development of new clean energy and the strengthening of energy conservation and emission reduction have become the key development directions of countries all over the world. In recent years, with the accelerated construction of hybrid electric vehicles, pure electric vehicles and new energy (solar, wind power) grid-connected power station projects, high-performance power (energy storage) batteries have become one of the core technologies for vigorous development. At present, lithium-ion batteries are due to Its advantages such as high voltage, large capacity, good cycle performance and low pollution have become the most competitive power solution. The development of anode materials with excellent performance is one of the keys to improving the performance of lithium-ion batteries. Carbon materials are the earliest anode materials widely used in commercial lithium batteries. However, the disadvantages of low capacitance density, large irreversible loss, low safety at high temperature, and easy short circuit during overcharging limit the development of carbon anode materials. Therefore, it is imminent to develop new lithium-ion battery anode materials with high capacity density, excellent cycle performance and excellent safety performance.
在众多新型锂离子电池负极材料中,硅基负极材料具有其它负极材料无法匹敌的高容量优势(Li22Si5,理论储锂容量4200mAh/g),是公认的下一代具有商业化前景的负极材料。硅基负极材料是目前商业碳负极材料理论容量的11倍,锂嵌入硅的电位(低于0.5V)低于一般溶剂分子的共嵌入电压,高于锂的析出电位。因此,硅基负极材料可以解决溶剂分子嵌入以及锂枝晶析出的问题。但是,硅基材料导电性差,同时其在嵌脱锂过程中存在严重的体积效应,体积变化率约为400%,会造成电极材料粉化以及电极材料与集流体分离。硅基材料的上述缺陷严重限制了其商业化的应用。为克服硅的体积效应,人们多采用制备纳米结构的硅基材料,硅薄膜材料,多孔硅材料和硅基复合材料来提高硅基电极材料的循环性能,但是此类复合材料中的硅会裸露于电解液中,由于充放电过程中的体积效应,硅基电极材料不断形成新鲜表面,因此持续消耗电解液以生成SEI膜,降低了电极材料的循环性能。近年,有关硅基电极材料相匹配的电解液也有相继报道,如AurbachD.,MullinsCB分别发现氟代碳酸乙烯酯作为电解液的溶剂时,能大幅提高纳米硅基电极锂离子电池的循环性能(J.Langmuir,2012,28,965-976;2014,30,7414-7424;Chem.Commun.2012,48,7268-7270)。因此,通过研发与硅基电极材料匹配的电解液体系以提高硅基负极锂离子电池的电化学性能,进而开发出高比容量、高充放电效率、长循环寿命的新型锂离子电池,具有一定的理论价值和实践意义,对推动锂离子电池产业的技术升级和新能源产业、电动汽车及混合电动车产业的发展无疑具有重要的意义。Among the many new lithium-ion battery anode materials, silicon-based anode materials have the advantage of high capacity (Li 22 Si 5 , theoretical lithium storage capacity 4200mAh/g), which is unmatched by other anode materials, and is recognized as the next generation of anode materials with commercial prospects Material. Silicon-based negative electrode materials are 11 times the theoretical capacity of current commercial carbon negative electrode materials. The potential of lithium intercalation into silicon (less than 0.5V) is lower than the co-intercalation voltage of general solvent molecules, and higher than the precipitation potential of lithium. Therefore, silicon-based anode materials can solve the problems of solvent molecule intercalation and lithium dendrite precipitation. However, the conductivity of silicon-based materials is poor, and at the same time, there is a serious volume effect in the process of intercalation and extraction of lithium, and the volume change rate is about 400%, which will cause powdering of electrode materials and separation of electrode materials and current collectors. The above-mentioned defects of silicon-based materials severely limit their commercial applications. In order to overcome the volume effect of silicon, people often use silicon-based materials with nanostructures, silicon thin film materials, porous silicon materials and silicon-based composite materials to improve the cycle performance of silicon-based electrode materials, but the silicon in these composite materials will be exposed. In the electrolyte, due to the volume effect during the charging and discharging process, the silicon-based electrode material continuously forms a fresh surface, so the electrolyte is continuously consumed to form an SEI film, which reduces the cycle performance of the electrode material. In recent years, there have also been reports on electrolytes that match silicon-based electrode materials, such as AurbachD., MullinsCB found that fluoroethylene carbonate can greatly improve the cycle performance of nano-silicon-based electrode lithium-ion batteries when they are used as a solvent for the electrolyte (J . Langmuir, 2012, 28, 965-976; 2014, 30, 7414-7424; Chem. Commun. 2012, 48, 7268-7270). Therefore, by developing an electrolyte system that matches silicon-based electrode materials to improve the electrochemical performance of silicon-based negative electrode lithium-ion batteries, and then develop new lithium-ion batteries with high specific capacity, high charge-discharge efficiency, and long cycle life, it has a certain The theoretical value and practical significance are undoubtedly of great significance to promote the technological upgrading of the lithium-ion battery industry and the development of the new energy industry, electric vehicles and hybrid electric vehicles.
有机硅化合物具有优良的热稳定性、高电导率、无毒性、低可燃性和高分解电压等优点,与目前商业化的有机碳酸酯电解液比较具有更好的安全性能,在电化学储能器件中有巨大的商业应用前景。本专利发明人近年来申请了一系列锂离子电池用有机硅电解液材料,包括有机硅氰化合物(ZL201010182978.6)、有机硅离子液体(CN102372732A)、有机硅碳酸酯(ZL201210358351.0,PCTCN2012084205)、有机硅胺化合物(ZL201010607369.0和US9,085,591B2)、有机硅氟聚醚化合物(CN2012103896591/PCLBN2012084192)。鉴于硅基电极材料是下一代可能大规模商业化的高容量负极,以及应用硅基电极材料的锂离子电池的巨大市场,使用有机硅化合物作为电解液应用于硅基电极也显得尤为重要。Organosilicon compounds have the advantages of excellent thermal stability, high electrical conductivity, non-toxicity, low flammability, and high decomposition voltage. Compared with the current commercial organic carbonate electrolyte, they have better safety performance and are used in electrochemical energy storage The device has great commercial application prospects. The inventor of this patent has applied for a series of organosilicon electrolyte materials for lithium-ion batteries in recent years, including organosilicon cyanide compounds (ZL201010182978.6), organosilicon ionic liquids (CN102372732A), organosilicon carbonates (ZL201210358351.0, PCTCN2012084205) , organosilicon amine compounds (ZL201010607369.0 and US9,085,591B2), organosilicon fluoropolyether compounds (CN2012103896591/PCLBN2012084192). In view of the fact that silicon-based electrode materials are the next generation of high-capacity anodes that may be commercialized on a large scale, and the huge market for lithium-ion batteries using silicon-based electrode materials, it is also particularly important to use organosilicon compounds as electrolytes for silicon-based electrodes.
发明内容Contents of the invention
本发明是利用有机硅电解液材料和硅基电极材料“相似相容”性质,通过不同的功能基团修饰(如氰基、碳酸酯基、聚醚链、卤素基团、叔胺基等)来提高有机硅化合物与硅基负极的相容性性,提供一种有机硅电解液和硅基电极材料配合使用的方法,有机硅化合物作为电解液应用于硅基电极表现突出的技术效果,具有低阻抗、优良的循环稳定性和倍率性能、以及安全性。The present invention utilizes the "similar and compatible" properties of organosilicon electrolyte materials and silicon-based electrode materials to modify them with different functional groups (such as cyano groups, carbonate groups, polyether chains, halogen groups, tertiary amino groups, etc.) To improve the compatibility of organosilicon compounds and silicon-based negative electrodes, and provide a method for the use of organosilicon electrolytes and silicon-based electrode materials in combination, organosilicon compounds as electrolytes have outstanding technical effects when applied to silicon-based electrodes, and have Low impedance, excellent cycle stability and rate performance, and safety.
为实现上述发明目的,本发明的技术方案如下:For realizing the above-mentioned purpose of the invention, the technical scheme of the present invention is as follows:
一种有机硅电解液和硅基电极材料配合使用的方法,所述硅基电极材料为硅粉、氧化亚硅或硅-碳复合电极材料,所述有机硅电解液包含锂盐、电解液添加剂和有机硅化合物,所述有机硅化合物如下述通式所示:A method in which an organosilicon electrolyte is used in conjunction with a silicon-based electrode material, the silicon-based electrode material being silicon powder, silicon oxide or a silicon-carbon composite electrode material, the organosilicon electrolyte comprising a lithium salt, an electrolyte additive And organosilicon compound, described organosilicon compound is as shown in following general formula:
其中,R’,R”,R”’选自相同或不同的C1-C10烷基、烷氧基或卤素取代基(-F),其中烷氧基团为如下结构-(CH2)nO(CH2CH2O)mCH3,n、m为0-10的整数;M为C1-C20烷基或结构为-(CH2)nO[(CH2)mO]x(CH2)y结构的链段,n、m为0-10的整数,x、y为0-10的整数;FG为氰基、碳酸酯、聚醚链、或叔胺基等功能基团。Among them, R', R", R"' are selected from the same or different C1-C10 alkyl, alkoxy or halogen substituents (-F), wherein the alkoxy group is the following structure -(CH 2 ) n O (CH 2 CH 2 O) m CH 3 , n and m are integers from 0 to 10; M is C1-C20 alkyl or the structure is -(CH 2 ) n O[(CH 2 ) m O]x(CH 2 ) is a chain segment of y structure, n and m are integers of 0-10, x and y are integers of 0-10; FG is a functional group such as cyano group, carbonate ester, polyether chain, or tertiary amino group.
优选地,所述有机硅化合物的结构式为含氰基有机硅化合物:Preferably, the structural formula of the organosilicon compound is a cyano-containing organosilicon compound:
其中,R1,R2,R3选自相同或不同的C1-C10烷基、烷氧基或卤素取代基(-F),其中烷氧基为如下结构-(CH2)nO(CH2CH2O)mCH3,n、m为0-10的整数;R4为C1-C20烷基。含氰基有机硅化合物包括以下结构:Among them, R 1 , R 2 , R 3 are selected from the same or different C1-C10 alkyl, alkoxy or halogen substituents (-F), wherein the alkoxy is the following structure -(CH 2 ) n O(CH 2 CH 2 O) m CH 3 , n and m are integers from 0 to 10; R 4 is a C1-C20 alkyl group. Cyano-containing organosilicon compounds include the following structures:
优选地,所述有机硅化合物的结构式为卤硅烷功能化碳酸酯有机硅化合物:Preferably, the structural formula of the organosilicon compound is a halosilane functionalized carbonate organosilicon compound:
其中,R5选自如下基团:[-(CH2)m-,m=1~3]或[-(CH2)mO(CH2)n-,m,n=1~3];R6,R7,R8选自如下基团:[-(CH2)mCH3,m=0~3],芳基或取代芳基,或卤素取代基,且R6,R7,R8至少有一个卤素取代基团。卤硅烷功能化碳酸酯有机硅化合物优选以下结构:Wherein, R 5 is selected from the following groups: [-(CH 2 ) m -, m=1~3] or [-(CH 2 ) m O(CH 2 ) n -, m, n=1~3]; R 6 , R 7 , R 8 are selected from the following groups: [-(CH 2 ) m CH 3 , m=0~3], aryl or substituted aryl, or halogen substituent, and R 6 , R 7 , R 8 has at least one halogen substituent. The halosilane functionalized carbonate organosilicon compound preferably has the following structure:
优选地,所述有机硅化合物的结构式为卤硅烷功能化聚醚有机硅化合物:Preferably, the structural formula of the organosilicon compound is a halosilane functionalized polyether organosilicon compound:
其中,R9、R10、R11选自相同或不同的-(CH2)xCH3,x=0~5,或卤素取代基,所述卤素选自F或Cl,且R9、R10、R11中至少有一个卤素取代基;R12是结构式为-NR13R14的叔胺基,R13、R14选自相同或不同C1-C5的烷基;m为1-20的整数,n为0-5的整数。卤硅烷功能化聚醚有机硅化合物优选以下结构:Wherein, R 9 , R 10 , R 11 are selected from the same or different -(CH 2 )xCH 3 , x=0~5, or halogen substituents, the halogen is selected from F or Cl, and R 9 , R 10 , R 11 has at least one halogen substituent; R 12 is a tertiary amino group with the structural formula -NR 13 R 14 , R 13 and R 14 are selected from the same or different C1-C5 alkyl groups; m is an integer of 1-20 , n is an integer of 0-5. The halosilane functionalized polyether organosilicon compound preferably has the following structure:
优选地,所述有机硅化合物的结构式为含聚醚链有机硅胺类化合物:Preferably, the structural formula of the organosilicon compound is an organosilicon amine compound containing a polyether chain:
其中,R15,R16选自相同或不同的C1-C10烷基;A为如(CH2)nO[(CH2)mO]x(CH2)y结构的聚醚链段,n,m为0-10的整数,x为1-10的整数;R17,R18和R19选自相同或不同的C1-C10的烷基或烷氧基团,或结构等同于ANR15R16,或-O-SiR20R21R22,R20,R21和R22为相同或不同C1-C10的烷基。含聚醚链有机硅胺类化合物优选以下结构:Among them, R 15 and R 16 are selected from the same or different C1-C10 alkyl groups; A is a polyether chain segment such as (CH 2 ) n O[(CH 2 ) m O]x(CH 2 )y structure, n , m is an integer of 0-10, x is an integer of 1-10; R 17 , R 18 and R 19 are selected from the same or different C1-C10 alkyl or alkoxy groups, or the structure is equivalent to ANR 15 R 16 , or -O-SiR 20 R 21 R 22 , R 20 , R 21 and R 22 are the same or different C1-C10 alkyl groups. The polyether chain-containing organosilicon amine compound preferably has the following structure:
优选地,所述锂盐选自LiClO4,LiPF6,LiBF4,LiTFSI,LiFSI,LiBOB,LiODFB,LiCF3SO3,LiAsF6中的一种或多种;所述电解液添加剂选自氟代碳酸乙烯酯、丙磺酸内酯、碳酸亚乙烯酯、丁二腈、LiBOB、LiODFB中的一种或多种。Preferably, the lithium salt is selected from one or more of LiClO 4 , LiPF 6 , LiBF 4 , LiTFSI, LiFSI, LiBOB, LiODFB, LiCF 3 SO 3 , LiAsF 6 ; the electrolyte additive is selected from fluorinated One or more of ethylene carbonate, propane sultone, vinylene carbonate, succinonitrile, LiBOB, LiODFB.
优选地,所述有机硅化合物作为电解质添加剂或共溶剂存在于所述有机硅电解液中。有机硅化合物用于电解液溶剂的质量含量为1-100%,其余溶剂为常用碳酸酯有机溶剂(如碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、γ-丁内酯,等)、醚类有机溶剂(如1,3-二氧环戊烷,二甲氧甲烷、1,2-二甲氧乙烷、二甘醇二甲醚,等)中的任意一种或几种。Preferably, the organosilicon compound is present in the organosilicon electrolyte as an electrolyte additive or co-solvent. Organosilicon compound is used for the mass content of electrolyte solvent of 1-100%, and all the other solvents are common carbonate organic solvents (such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, etc.), ether organic solvents (such as 1,3-dioxolane, dimethoxymethane, 1,2-dimethoxyethane, diglyme, etc.) any one or more of them.
优选地,该方法应用于电化学储能器件,所述电化学储能器件包括使用硅基电极材料的硫基锂电池、金属离子电池、金属空气电池和超级电容。利用本发明的有机硅电解液和硅基电极材料配合制出的电池具有低阻抗、优良的循环稳定性和倍率性能、以及安全性。Preferably, the method is applied to electrochemical energy storage devices, including sulfur-based lithium batteries, metal-ion batteries, metal-air batteries and supercapacitors using silicon-based electrode materials. The battery produced by using the organosilicon electrolyte and the silicon-based electrode material has low impedance, excellent cycle stability and rate performance, and safety.
优选地,该方法应用于锂离子电池。Preferably, the method is applied to lithium-ion batteries.
本发明的有益效果是:本发明利用硅基负极材料和有机硅电解液材料的“相似相容”性质,有机硅化合物作为电解液应用于硅基负极表现出突出的技术效果,利用其制出的电池具有低阻抗、优良的循环稳定性和倍率性能、以及安全性。The beneficial effects of the present invention are: the present invention utilizes the "similar and compatible" properties of silicon-based negative electrode materials and organosilicon electrolyte materials, and organosilicon compounds are used as electrolytes to show outstanding technical effects when applied to silicon-based negative electrodes. The battery has low impedance, excellent cycle stability and rate performance, and safety.
附图说明Description of drawings
附图1:Si/C电极使用添加不同含量BNS电解液的电池充放电循环性能测试曲线;Figure 1: Si/C electrode using battery charge and discharge cycle performance test curve with different content of BNS electrolyte;
附图2:电解液1MLiPF6/BNS测试Si负极的CV曲线;Accompanying drawing 2: Electrolyte 1MLiPF 6 /BNS tests the CV curve of Si negative electrode;
附图3:Si和Si/C电极使用电解液LB303,LB303+10%FEC,LB303+10%BNS电池循环测试曲线;Figure 3: Si and Si/C electrodes use electrolyte LB303, LB303+10%FEC, LB303+10%BNS battery cycle test curves;
图4:电解液LB303、以及添加10wt.%SN1的Si/Li半电池的阻抗测试Figure 4: Impedance test of electrolyte LB303 and Si/Li half-cell with 10wt.% SN1 added
图5:电解液LB303、以及添加1wt.%,5wt.%SN1的Si/Li半电池的阻抗测试Figure 5: Impedance test of electrolyte LB303 and Si/Li half-cells with 1wt.%, 5wt.% SN1 added
图6:Si电极使用电解液LB303,LB303+0.1wt.%DMSCN电池循环测试曲线Figure 6: Si electrode using electrolyte LB303, LB303+0.1wt.% DMSCN battery cycle test curve
图7:电解液LB303,以及添加FEC,MFGC,TFGC的Si/Li半电池充放电循环性能测试曲线Figure 7: Electrolyte LB303, and Si/Li half-cell charge-discharge cycle performance test curves with FEC, MFGC, and TFGC added
图8:电解液LB303,以及添加5wt%TN2的Si/Li半电池充放电循环性能测试曲线Figure 8: Electrolyte LB303, and Si/Li half-cell charge-discharge cycle performance test curve with 5wt% TN2 added
图9:电解液LB303、以及添加0.5wt.%,1wt.%DN1的Si/Li半电池的阻抗测试Figure 9: Impedance test of electrolyte LB303 and Si/Li half-cells with 0.5wt.%, 1wt.% DN1 added
图10:Si电极使用电解液LB303,LB303+0.5wt.%DN2电池循环测试曲线;Figure 10: Si electrode using electrolyte LB303, LB303+0.5wt.% DN2 battery cycle test curve;
图11:电解液LB303,以及添加5wt%和10wt%DFSM2的Si/Li半电池充放电循环性能测试曲线。Figure 11: Electrolyte LB303, and Si/Li half-cell charge-discharge cycle performance test curves with 5wt% and 10wt% DFSM2 added.
具体实施方式detailed description
下面结合具体实例,进一步阐明本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。Below in conjunction with specific example, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention, not to limit the protection scope of the present invention. Improvements and adjustments made by skilled personnel according to the present invention in practical applications still belong to the protection scope of the present invention.
除特别说明,本发明使用的设备和试剂为本技术领域常规市购产品。Unless otherwise specified, the equipment and reagents used in the present invention are conventional commercial products in the technical field.
纳米Si和Si/C复合电池负极极片制作Fabrication of Nano-Si and Si/C Composite Battery Negative Electrodes
在所进行的实验中,将纳米Si(30~50nm)和Si/C材料分别作为活性材料、CMC作为粘结剂,乙炔黑作为导电剂,按质量百分比为7:1:2混合,球磨1h制备混合浆料,涂膜在铜箔基流体上,置于真空烘箱中80℃干燥24小时,制备得到Si和Si/C电极。In the experiments carried out, nano-Si (30-50nm) and Si/C materials were used as active materials, CMC as binder, and acetylene black as conductive agent, mixed at a mass percentage of 7:1:2, and ball milled for 1 h The mixed slurry was prepared, the coating film was placed on the copper foil base fluid, and dried in a vacuum oven at 80°C for 24 hours to prepare Si and Si/C electrodes.
实施例1Example 1
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量5%,10%和20%的BNS制备混合电解液,然后以Si或Si/C负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用混合电解液分别制备扣式半电池(CR2025)。电池具体测试方法:在室温25℃,将硅基负极半电池在深圳新威电池充放电测试系统上进行恒定电流充放电测试,充放电截止电压范围为0~1.5V,充放电电流密度为400mA/g,循环100次。测试结果见图1和图2。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; add BNS accounting for 5%, 10% and 20% of the total mass of the electrolyte to the above basic electrolyte to prepare a mixed electrolyte, then use Si or Si/C negative as the working electrode, and lithium sheet as the counter electrode, Using polyethylene film as a diaphragm, the button half-cells (CR2025) were prepared with mixed electrolytes. The specific test method of the battery: at room temperature 25 ° C, the silicon-based negative half-cell was subjected to constant current on the Shenzhen Xinwei battery charge and discharge test system Charge and discharge test, charge and discharge cut-off voltage range is 0 ~ 1.5V, charge and discharge current density is 400mA/g, cycle 100 times. The test results are shown in Figure 1 and Figure 2.
图1为Si/C电极使用添加不同含量BNS电解液的电池充放电循环性能测试曲线,由图可见添加10%BNS电池具有最好的循环性能,首次库伦效率82%,首次放电比容量1389mAh/g,100次循环后比容量为1035mAh/g,容量保持率74.5%。图2是电解液1MLiPF6/BNS测试Si负极的CV曲线,图中可见,电解液首次循环还原过程中,在1.7V和1.1V位置有明显的还原峰,应该是BNS在电极表面分解形成SEI膜,并在第二圈循环消失。Figure 1 is the charge-discharge cycle performance test curve of the battery with Si/C electrodes added with different contents of BNS electrolyte. It can be seen from the figure that the battery with 10% BNS has the best cycle performance, the first coulombic efficiency is 82%, and the first discharge specific capacity is 1389mAh/ g, the specific capacity after 100 cycles is 1035mAh/g, and the capacity retention rate is 74.5%. Figure 2 is the CV curve of the Si negative electrode tested with the electrolyte 1MLiPF 6 /BNS. It can be seen in the figure that during the first cycle reduction process of the electrolyte, there are obvious reduction peaks at 1.7V and 1.1V. It should be that BNS decomposes on the electrode surface to form SEI membrane, and disappears in the second loop cycle.
对比例1Comparative example 1
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液。然后以Si或Si/C负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用该基础电解液制备扣式半电池(CR2025)。电池具体测试方法同实施例1,测试结果见图3。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte. Then with Si or Si/C negative electrode as working electrode, with lithium sheet as counter electrode, with polyethylene film as diaphragm, prepare button half cell (CR2025) with this basic electrolyte.Battery specific test method is with embodiment 1. The test results are shown in Figure 3.
对比例2Comparative example 2
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液;向上述基础电解液中加入占电解液总质量10%的氟代碳酸乙烯酯(FEC)制备混合电解液,然后以Si或Si/C负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用该混合电解液制备扣式半电池(CR2025)。电池具体测试方法同实施例1,测试结果见图3。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte: add fluoroethylene carbonate (FEC) accounting for 10% of the total mass of the electrolyte to the above-mentioned basic electrolyte to prepare a mixed electrolyte, then use Si or Si/C as the negative electrode as the working electrode, and the lithium sheet as the counter electrode, With polyethylene film as diaphragm, button type half cell (CR2025) is prepared with this mixed electrolyte.Battery specific test method is the same as embodiment 1, and test result is shown in Fig. 3.
图3为Si和Si/C电极使用电解液LB303,LB303+10%FEC,LB303+10%BNS电池循环测试曲线,由图可见,使用电解液LB303,LB303+FEC,LB303+BNS,Si电极电池的首次放电比容量分别为3509,3575,3894mAh/g,首次库伦效率分别为77.1,86.4,86.2%,经过100次循环后放电比容量分别为136,1305,2047mAh/g,容量保持率分别为5.0,41.7,60.8%。而对于Si/C电极电池经过100次循环后的放电比容量分别为502,876,1035mAh/g,容量保持率为46.9,78.6,88.1%。所以对于Si和Si/C电极,使用LB303+BNS电解液电池都具有最好的循环性能。Figure 3 is the battery cycle test curves of Si and Si/C electrodes using electrolyte LB303, LB303+10%FEC, LB303+10%BNS. It can be seen from the figure that using electrolyte LB303, LB303+FEC, LB303+BNS, Si electrode batteries The first discharge specific capacities are 3509, 3575, 3894mAh/g, the first coulombic efficiencies are 77.1, 86.4, 86.2%, and after 100 cycles, the discharge specific capacities are 136, 1305, 2047mAh/g, and the capacity retention rates are respectively 5.0, 41.7, 60.8%. For the Si/C electrode battery after 100 cycles, the discharge specific capacity is 502, 876, 1035mAh/g, and the capacity retention rate is 46.9, 78.6, 88.1%. So for both Si and Si/C electrodes, the LB303+BNS electrolyte battery has the best cycle performance.
实施例2Example 2
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量3%的BNS制备混合电解液,然后以氧化亚硅负极为工作电极(氧化亚硅来源于深圳贝特瑞公司,Si/Carbonblack/Binder=60/30/10),以锂片为对电极,以聚乙烯膜为隔膜,用混合电解液分别制备扣式半电池(CR2025)。电池具体测试方法:在室温25℃,将氧化亚硅半电池在深圳新威电池充放电测试系统上进行恒定电流充放电测试,充放电截止电压范围为0~1.5V,充放电电流密度为100mA/g。测试结果见表1。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; add BNS accounting for 3% of the total mass of the electrolyte to the above-mentioned basic electrolyte to prepare a mixed electrolyte, and then use silicon oxide as a negative electrode as a working electrode (silicon oxide comes from Shenzhen Beiterui Company, Si/Carbonblack/ Binder=60/30/10), using lithium sheet as the counter electrode, polyethylene film as the diaphragm, and mixed electrolytes to prepare button half-cells (CR2025). The specific test method of the battery: at room temperature 25 ° C, put The silicon half-cell was subjected to a constant current charge-discharge test on the Shenzhen Xinwei battery charge-discharge test system, the charge-discharge cut-off voltage range was 0-1.5V, and the charge-discharge current density was 100mA/g. The test results are shown in Table 1.
对比例3Comparative example 3
采用实施例2相同的方法制作电池,以3%碳酸亚乙烯酯(VC)添加测试电池的循环性能作为对比,测试结果见表1,表1为氧化亚硅电极使用LB303,LB303+3%VC,LB303+3%BNS的循环数据,如表1所示。The same method as in Example 2 was used to make the battery, and the cycle performance of the battery was tested by adding 3% vinylene carbonate (VC) as a comparison. The test results are shown in Table 1. Table 1 shows that the silicon oxide electrode uses LB303, LB303+3%VC , the circulation data of LB303+3%BNS, as shown in Table 1.
表1Table 1
从表1可以看出,氧化亚硅电池在添加了3%BNS后,在首次容量、充放电效率方面有突出效果。It can be seen from Table 1 that after the addition of 3% BNS, the silicon oxide battery has outstanding effects in terms of initial capacity and charge-discharge efficiency.
实施例3Example 3
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量10%的SN1制备混合电解液,然后以Si负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用混合电解液分别制备扣式半电池(CR2025)。电池具体测试方法:在室温25℃,将硅负极半电池在电化学工作站上进行阻抗测试,测试结果见图4,添加SN1后电池的阻抗明显减小。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; add SN1 accounting for 10% of the total mass of the electrolyte to the above basic electrolyte to prepare a mixed electrolyte, then use the Si negative electrode as the working electrode, the lithium sheet as the counter electrode, and the polyethylene film as the separator. The button half-cells (CR2025) were prepared respectively. The specific test method of the battery: at room temperature 25 ° C, the impedance test of the silicon negative half-cell was carried out on the electrochemical workstation. The test results are shown in Figure 4. After adding SN1, the impedance of the battery decreased significantly .
实施例4Example 4
以DESCN和DMSCN为添加剂,按照实施例1的方式配置电解液、制作电池、并进行测试,测试结果如图5、图6所示。图5为Si电极使用电解液LB303,以及添加DESCN电解液的电池经过3次充放电循环后交流阻抗测试。阻抗谱可见,添加DESCN后,电池的阻抗值明显减小:含1%DESCN电池阻抗值约为36Ω;含5%DESCN电池阻抗值约为80Ω。而LB303电池膜阻抗值约为200Ω。更小的膜阻抗有利于锂离子的快速传输。Using DESCN and DMSCN as additives, the electrolyte was configured according to the method of Example 1, a battery was fabricated, and tested. The test results are shown in Figures 5 and 6. Figure 5 shows the AC impedance test of the Si electrode using the electrolyte LB303 and adding the DESCN electrolyte after 3 charge and discharge cycles. It can be seen from the impedance spectrum that after adding DESCN, the impedance value of the battery is significantly reduced: the impedance value of the battery containing 1% DESCN is about 36Ω; the impedance value of the battery containing 5% DESCN is about 80Ω. The LB303 battery membrane impedance value is about 200Ω. Smaller membrane resistance is conducive to the rapid transport of lithium ions.
图6为电解液LB303,以及添加0.1%DMSCN的Si/Li半电池充放电循环性能测试曲线。图上可见,添加0.1%DMSCN,33个循环前后的充电比容量分别为3130mAh/g和1921mAh/g,而LB303的电池循环前后的充电比容量分别为2440mAh/g和1502mAh/g。可见添加少量的DMSCN可以明显提高电池的容量,改善电池性能。Fig. 6 is the electrolyte LB303, and the Si/Li half-cell charge-discharge cycle performance test curve with 0.1% DMSCN added. It can be seen from the figure that with the addition of 0.1% DMSCN, the charging specific capacities before and after 33 cycles are 3130mAh/g and 1921mAh/g respectively, while the charging specific capacities of the LB303 battery before and after cycles are 2440mAh/g and 1502mAh/g respectively. It can be seen that adding a small amount of DMSCN can significantly increase the capacity of the battery and improve the performance of the battery.
实施例5Example 5
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量3%的MFGC,然后以Si负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用该电解液制备扣式半电池(CR2025)。电池具体测试方法:在室温25℃,将硅基负极半电池在深圳新威电池充放电测试系统上进行恒定电流充放电测试,充放电截止电压范围为0~1.5V,充放电电流密度为500mA/g,循环100次。测试结果见图7。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; add MFGC accounting for 3% of the total mass of the electrolyte to the above-mentioned basic electrolyte, then use the Si negative electrode as the working electrode, the lithium sheet as the counter electrode, and the polyethylene film as the diaphragm, and use the electrolyte to prepare a button type Half-battery (CR2025).Battery specific test method: At room temperature 25°C, the silicon-based negative electrode half-battery is subjected to a constant current charge-discharge test on the Shenzhen Xinwei battery charge-discharge test system. The charge-discharge cut-off voltage range is 0-1.5V. The charge and discharge current density is 500mA/g, and the cycle is 100. The test results are shown in Figure 7.
实施例6Example 6
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量3%的TFGC。电池组装及测试同实施例1,测试结果见图7。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303: Add TFGC accounting for 3% of the total mass of the electrolyte to the basic electrolyte. The battery assembly and test are the same as in Example 1. The test results are shown in Figure 7.
对比例4Comparative example 4
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液。电池组装及测试同实施例1,测试结果见图7。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte. Battery assembly and testing are the same as in Example 1, and the test results are shown in Figure 7.
对比例5Comparative example 5
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量3%的FEC。电池组装及测试同实施例1,测试结果见图7。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303: Add FEC accounting for 3% of the total mass of the electrolyte to the basic electrolyte. Battery assembly and testing are the same as in Example 1, and the test results are shown in Figure 7.
图7为电解液LB303,以及添加FEC,MFGC,TFGC的Si/Li半电池充放电循环性能测试曲线,由图可见,电解液LB303,以及添加FEC,MFGC,TFGC的电池首次放电比容量分别为2945.7,3039,260.4,2720.9mAh/g,100次循环后放电比容量分别为808.9,1149.6,1127.1,1458.6mAh/g,容量保持率分别为27.5,37.8,38.0,53.6%。添加TFGC对电池的循环性能有了明显提高,表现为最好的循环稳定性。FEC和MFGC在100次循环后比容量接近,但都高于不含添加剂的LB303。表明三种添加剂对电池循环性能都有改善。Figure 7 is the electrolyte LB303, and the Si/Li half-cell charge-discharge cycle performance test curves with FEC, MFGC, and TFGC added. It can be seen from the figure that the electrolyte LB303, and the first discharge specific capacity of the battery with FEC, MFGC, and TFGC are respectively 2945.7, 3039, 260.4, 2720.9mAh/g, the discharge specific capacity after 100 cycles is 808.9, 1149.6, 1127.1, 1458.6mAh/g, and the capacity retention rate is 27.5, 37.8, 38.0, 53.6%. Adding TFGC has significantly improved the cycle performance of the battery, showing the best cycle stability. The specific capacities of FEC and MFGC are close after 100 cycles, but both are higher than that of LB303 without additives. It shows that all three additives can improve the cycle performance of the battery.
实施例7Example 7
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量5%的TN2制备混合电解液。电池组装及测试同实施例1,测试结果见图8。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303: Add 5% TN2 of the total mass of electrolyte to the above basic electrolyte to prepare mixed electrolyte. Battery assembly and testing are the same as in Example 1, and the test results are shown in Figure 8.
对比例6Comparative example 6
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303。电池组装及测试同实施例1,测试结果见图8。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303. Battery assembly and testing are the same as in Example 1, and the test results are shown in FIG. 8 .
图8为电解液LB303,以及添加5wt%TN2的Si/Li半电池充放电循环性能测试曲线。由图可见,添加TN2的电池前40圈循环容量有明显的提高,高于基础电解液,但其衰减较快,40圈后容量与基础电解液持平。Figure 8 is the electrolyte LB303, and the Si/Li half-cell charge-discharge cycle performance test curve with 5wt% TN2 added. It can be seen from the figure that the cycle capacity of the battery added with TN2 is significantly improved in the first 40 cycles, which is higher than that of the basic electrolyte, but its attenuation is faster, and the capacity after 40 cycles is equal to that of the basic electrolyte.
实施例8Example 8
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量0.5%的DN1制备混合电解液,然后以Si负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用混合电解液分别制备扣式半电池(CR2025)。电池具体测试方法:在室温25℃,将硅负极半电池在电化学工作站上进行阻抗测试,测试结果见图9。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; add DN1 accounting for 0.5% of the total mass of the electrolyte to the above basic electrolyte to prepare a mixed electrolyte, then use the Si negative electrode as the working electrode, the lithium sheet as the counter electrode, and the polyethylene film as the separator. The button-type half-cell (CR2025) was prepared separately. The specific test method of the battery: at a room temperature of 25 ° C, the impedance test of the silicon negative half-cell was carried out on the electrochemical workstation, and the test results are shown in Figure 9.
实施例9Example 9
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量0.5%的DN2制备混合电解液。电池组装同实施例7,在深圳新威电池充放电测试系统上恒定电流充放电测试,充放电截止电压范围为0~1.5V,充放电电流密度为500mA/g,循环200次,测试结果见图10。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; In above-mentioned basic electrolyte, add and account for 0.5% DN of electrolyte gross mass Prepare mixed electrolyte.Battery assembly is the same as embodiment 7, constant current charge-discharge test on Shenzhen Xinwei battery charge-discharge test system, charge-discharge The cut-off voltage range is 0-1.5V, the charge-discharge current density is 500mA/g, and the cycle is 200 times. The test results are shown in Figure 10.
图9分别为电解液LB303,以及添加0.5wt%DN1的Si/Li半电池循环前的阻抗测试图,由图可见,添加DN1后电池的阻抗明显减小。图10分别为电解液LB303,以及添加0.5wt%DN2的Si/Li半电池充放电循环性能测试曲线。由图可见,并且充放电起始循环容量与基础电解液持平,但循环稳定性有明显的提高,60圈循环容量仍远高于基础电解液。Figure 9 is the impedance test diagram of the electrolyte LB303 and the Si/Li half-cell with 0.5wt% DN1 added before cycling. It can be seen from the figure that the impedance of the battery is significantly reduced after the addition of DN1. Figure 10 is the electrolyte LB303, and the Si/Li half-cell charge-discharge cycle performance test curves with 0.5wt% DN2 added. It can be seen from the figure that the initial cycle capacity of charging and discharging is the same as that of the basic electrolyte, but the cycle stability has been significantly improved, and the 60-cycle cycle capacity is still much higher than that of the basic electrolyte.
实施例10Example 10
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303;向上述基础电解液中加入占电解液总质量5%,10%的DFSM2制备混合电解液,然后以Si负极为工作电极,以锂片为对电极,以聚乙烯膜为隔膜,用混合电解液分别制备扣式半电池(CR2025)。电池具体测试方法:在室温25℃,将硅基负极半电池在深圳新威电池充放电测试系统上进行恒定电流充放电测试,充放电截止电压范围为0~1.5V,充放电电流密度为500mA/g,循环200次。测试结果见图11。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303; add 5% and 10% DFSM2 to the above basic electrolyte to prepare a mixed electrolyte, then use Si as the negative electrode as the working electrode, lithium sheet as the counter electrode, and polyethylene film as the separator. Prepare button half-cells (CR2025) with mixed electrolytes. The specific battery test method: at room temperature 25 ° C, the silicon-based negative electrode half-cells are subjected to constant current charge-discharge tests on the Shenzhen Xinwei battery charge-discharge test system, and the charge-discharge cut-off The voltage range is 0-1.5V, the charge and discharge current density is 500mA/g, and the cycle is 200. The test results are shown in Figure 11.
对比例7Comparative example 7
在水份和氧含量小于10ppm的氩气手套箱中,配制锂离子电池电解液:将1MLiPF6/(EC:DEC:DMC(v:v:v=1:1:1)的电解液作为基础电解液LB303。电池组装及测试同实施例1,测试结果见图11。In an argon glove box with moisture and oxygen content less than 10ppm, prepare lithium-ion battery electrolyte: use 1MLiPF 6 /(EC:DEC:DMC (v:v:v=1:1:1) electrolyte as the basis Electrolyte LB303. Battery assembly and testing are the same as in Example 1, and the test results are shown in FIG. 11 .
图11为电解液LB303,以及添加5wt%和10wt%DFSM2的Si/Li半电池充放电循环性能测试曲线。由图可见,添加DFSM2对电池的循环性能有明显改善。LB303,添加5wt%和10wt%DFSM2的电池首次放电比容量分别为2702.7,2263.8,2883.7mAh/g,100次循环后容量保持率分别为32.8,52.6,55%(86圈)。特别是添加了10%DFSM2后,无论是在放电容量还是循环稳定性方面,均明显优于基础电解液。Figure 11 is the electrolyte LB303, and the Si/Li half-cell charge-discharge cycle performance test curves added with 5wt% and 10wt% DFSM2. It can be seen from the figure that the cycle performance of the battery is significantly improved by adding DFSM2. LB303, the first discharge specific capacities of the batteries added with 5wt% and 10wt% DFSM2 were 2702.7, 2263.8, 2883.7mAh/g, and the capacity retention rates after 100 cycles were 32.8, 52.6, 55% (86 cycles). Especially after adding 10% DFSM2, it is obviously better than the basic electrolyte in terms of discharge capacity and cycle stability.
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利保护范围中。The above detailed description is a specific description of the feasible embodiment of the present invention. This embodiment is not used to limit the patent scope of the present invention. Any equivalent implementation or change that does not deviate from the present invention should be included in the patent protection of this case. in range.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511030116.0A CN105514487A (en) | 2015-12-30 | 2015-12-30 | Method for matching organic silicon electrolyte with silicon-based electrode material for use |
CN201711087762.XA CN107732304B (en) | 2015-12-30 | 2015-12-30 | A kind of method that organic silicon electrolyte and silicon-based electrode material are used together |
PCT/CN2016/073061 WO2017113473A1 (en) | 2015-12-30 | 2016-02-01 | Method for using organic silicon electrolyte in cooperation with silicon-based electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511030116.0A CN105514487A (en) | 2015-12-30 | 2015-12-30 | Method for matching organic silicon electrolyte with silicon-based electrode material for use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711087762.XA Division CN107732304B (en) | 2015-12-30 | 2015-12-30 | A kind of method that organic silicon electrolyte and silicon-based electrode material are used together |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105514487A true CN105514487A (en) | 2016-04-20 |
Family
ID=55722289
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711087762.XA Active CN107732304B (en) | 2015-12-30 | 2015-12-30 | A kind of method that organic silicon electrolyte and silicon-based electrode material are used together |
CN201511030116.0A Pending CN105514487A (en) | 2015-12-30 | 2015-12-30 | Method for matching organic silicon electrolyte with silicon-based electrode material for use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711087762.XA Active CN107732304B (en) | 2015-12-30 | 2015-12-30 | A kind of method that organic silicon electrolyte and silicon-based electrode material are used together |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN107732304B (en) |
WO (1) | WO2017113473A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109687025A (en) * | 2019-01-25 | 2019-04-26 | 宁德新能源科技有限公司 | Electrolyte, electrochemical appliance and electronic device comprising the electrolyte |
CN109786834A (en) * | 2019-01-25 | 2019-05-21 | 宁德新能源科技有限公司 | Electrolyte and Electrochemical Device |
CN109786824A (en) * | 2019-01-25 | 2019-05-21 | 宁德新能源科技有限公司 | Electrolyte and electrochemical device using the same |
CN109888393A (en) * | 2019-04-08 | 2019-06-14 | 珠海冠宇电池有限公司 | A kind of lithium-ion battery electrolytes and the lithium ion battery using the electrolyte |
CN111200161A (en) * | 2018-11-16 | 2020-05-26 | 中国科学院上海硅酸盐研究所 | A kind of electrolyte for lithium-air battery or lithium-lithium symmetrical battery |
CN111293364A (en) * | 2018-12-10 | 2020-06-16 | 张家港市国泰华荣化工新材料有限公司 | Non-aqueous electrolyte and lithium ion battery |
CN111883844A (en) * | 2020-07-24 | 2020-11-03 | 香河昆仑化学制品有限公司 | Electrolyte containing organic silicon compound, battery cathode and electrochemical energy storage device |
JPWO2021095574A1 (en) * | 2019-11-13 | 2021-05-20 | ||
CN112993399A (en) * | 2019-12-13 | 2021-06-18 | 中国科学院广州能源研究所 | Method for inhibiting corrosion of aluminum foil of current collector of lithium battery |
CN113381069A (en) * | 2021-04-29 | 2021-09-10 | 万向一二三股份公司 | Lithium ion battery electrolyte with high-temperature stable circulation and lithium ion battery |
CN114792844A (en) * | 2021-01-26 | 2022-07-26 | 通用汽车环球科技运作有限责任公司 | Electrolytes for electrochemical cells with silicon-containing electrodes |
WO2024012597A1 (en) * | 2022-10-19 | 2024-01-18 | 中国科学院广州能源研究所 | Amino-functionalized polysiloxane compound and electrochemical energy storage device using same as electrolyte solution |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020027004A1 (en) * | 2018-07-31 | 2020-02-06 | 日立化成株式会社 | Electrolyte and electrochemical device |
CN109830749B (en) | 2019-01-25 | 2021-06-04 | 宁德新能源科技有限公司 | An electrolyte and electrochemical device |
EP4156366A4 (en) * | 2020-05-19 | 2025-01-01 | Mitsubishi Chemical Corporation | NON-AQUEOUS ELECTROLYTE SOLUTION AND BATTERY WITH NON-AQUEOUS ELECTROLYTE SOLUTION |
CN113161619B (en) * | 2021-04-29 | 2023-04-11 | 厦门大学 | Weak-polarity system electrolyte and application thereof |
CN114400379A (en) * | 2022-01-20 | 2022-04-26 | 湖南科技大学 | Preparation method of high-safety high-voltage electrolyte containing nitrile compounds |
CN119627087B (en) * | 2025-02-12 | 2025-05-30 | 浙江天能储能科技发展有限公司 | A silicon-based negative electrode material for all-solid-state battery and its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859913A (en) * | 2010-05-19 | 2010-10-13 | 中国科学院广州能源研究所 | Cyanogroup-containing high dielectric constant organosilicon electrolyte material |
CN102074736A (en) * | 2010-06-07 | 2011-05-25 | 中国科学院广州能源研究所 | Organic silicon amine electrolyte material containing polyether chain and application thereof in lithium battery electrolyte |
CN102964372A (en) * | 2012-09-24 | 2013-03-13 | 中国科学院广州能源研究所 | Halogenosilane functionalized carbonate electrolyte material, its preparation method and application in lithium-ion battery electrolyte solution |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569890A (en) * | 2012-02-13 | 2012-07-11 | 东莞新能源科技有限公司 | Lithium ion secondary battery and electrolyte thereof |
CN102924495B (en) * | 2012-10-15 | 2015-10-28 | 中国科学院广州能源研究所 | Containing polyether chain organohalosilanes and the application in nonaqueous lithium ionization cell electrolytic solution thereof |
CN103594730B (en) * | 2013-11-29 | 2016-04-06 | 张家港市国泰华荣化工新材料有限公司 | For electrolyte and the silicium cathode lithium battery of silicium cathode lithium battery |
-
2015
- 2015-12-30 CN CN201711087762.XA patent/CN107732304B/en active Active
- 2015-12-30 CN CN201511030116.0A patent/CN105514487A/en active Pending
-
2016
- 2016-02-01 WO PCT/CN2016/073061 patent/WO2017113473A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859913A (en) * | 2010-05-19 | 2010-10-13 | 中国科学院广州能源研究所 | Cyanogroup-containing high dielectric constant organosilicon electrolyte material |
CN102074736A (en) * | 2010-06-07 | 2011-05-25 | 中国科学院广州能源研究所 | Organic silicon amine electrolyte material containing polyether chain and application thereof in lithium battery electrolyte |
CN102964372A (en) * | 2012-09-24 | 2013-03-13 | 中国科学院广州能源研究所 | Halogenosilane functionalized carbonate electrolyte material, its preparation method and application in lithium-ion battery electrolyte solution |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111200161B (en) * | 2018-11-16 | 2021-05-25 | 中国科学院上海硅酸盐研究所 | A kind of electrolyte for lithium-air battery or lithium-lithium symmetrical battery |
CN111200161A (en) * | 2018-11-16 | 2020-05-26 | 中国科学院上海硅酸盐研究所 | A kind of electrolyte for lithium-air battery or lithium-lithium symmetrical battery |
CN111293364A (en) * | 2018-12-10 | 2020-06-16 | 张家港市国泰华荣化工新材料有限公司 | Non-aqueous electrolyte and lithium ion battery |
CN109786824B (en) * | 2019-01-25 | 2021-09-24 | 宁德新能源科技有限公司 | Electrolyte and electrochemical device using the same |
CN109786824A (en) * | 2019-01-25 | 2019-05-21 | 宁德新能源科技有限公司 | Electrolyte and electrochemical device using the same |
US11637319B2 (en) | 2019-01-25 | 2023-04-25 | Ningde Amperex Technology Limited | Electrolytic solution and electrochemical device |
CN109687025A (en) * | 2019-01-25 | 2019-04-26 | 宁德新能源科技有限公司 | Electrolyte, electrochemical appliance and electronic device comprising the electrolyte |
US11165097B2 (en) | 2019-01-25 | 2021-11-02 | Ningde Amperex Technology Limited | Electrolyte, electrochemical device and electronic device containing the same |
CN109786834A (en) * | 2019-01-25 | 2019-05-21 | 宁德新能源科技有限公司 | Electrolyte and Electrochemical Device |
CN109687025B (en) * | 2019-01-25 | 2024-09-03 | 宁德新能源科技有限公司 | Electrolyte, electrochemical device and electronic device containing the same |
US11735771B2 (en) | 2019-01-25 | 2023-08-22 | Ningde Amperex Technology Limited | Electrolyte solution and electrochemical device using the same |
CN109888393A (en) * | 2019-04-08 | 2019-06-14 | 珠海冠宇电池有限公司 | A kind of lithium-ion battery electrolytes and the lithium ion battery using the electrolyte |
JPWO2021095574A1 (en) * | 2019-11-13 | 2021-05-20 | ||
JP7315870B2 (en) | 2019-11-13 | 2023-07-27 | ダイキン工業株式会社 | Electrodes and electrochemical devices |
CN112993399A (en) * | 2019-12-13 | 2021-06-18 | 中国科学院广州能源研究所 | Method for inhibiting corrosion of aluminum foil of current collector of lithium battery |
CN111883844A (en) * | 2020-07-24 | 2020-11-03 | 香河昆仑化学制品有限公司 | Electrolyte containing organic silicon compound, battery cathode and electrochemical energy storage device |
CN114792844A (en) * | 2021-01-26 | 2022-07-26 | 通用汽车环球科技运作有限责任公司 | Electrolytes for electrochemical cells with silicon-containing electrodes |
CN113381069A (en) * | 2021-04-29 | 2021-09-10 | 万向一二三股份公司 | Lithium ion battery electrolyte with high-temperature stable circulation and lithium ion battery |
WO2024012597A1 (en) * | 2022-10-19 | 2024-01-18 | 中国科学院广州能源研究所 | Amino-functionalized polysiloxane compound and electrochemical energy storage device using same as electrolyte solution |
Also Published As
Publication number | Publication date |
---|---|
CN107732304A (en) | 2018-02-23 |
WO2017113473A1 (en) | 2017-07-06 |
CN107732304B (en) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107732304B (en) | A kind of method that organic silicon electrolyte and silicon-based electrode material are used together | |
CN110707361B (en) | Electrolyte for high-voltage soft-package lithium ion battery suitable for high-rate charge and discharge | |
CN103594729B (en) | A kind of electrolyte for lithium ion battery | |
CN103022556B (en) | Lithium-ion battery and electrolyte thereof | |
CN104466247B (en) | A kind of lithium ion battery of nonaqueous electrolytic solution and the application electrolyte | |
CN111384443B (en) | Battery electrolyte additive and electrolyte and lithium-ion battery using the additive | |
CN107017432A (en) | Nonaqueous electrolytic solution and lithium ion battery | |
CN103219542A (en) | High-salinity non-aqueous electrolyte and use thereof | |
CN110112465A (en) | Lithium-rich manganese-based cathode material system battery electrolyte and lithium-ion battery | |
CN110120554A (en) | A kind of electrolyte and the secondary cell containing the electrolyte | |
WO2022213667A1 (en) | Electrolyte additive, non-aqueous electrolyte containing same, and lithium ion battery | |
CN116190795B (en) | Additive, electrolyte comprising additive and lithium ion battery | |
CN115347235B (en) | Sodium ion battery electrolyte and sodium ion battery with high multiplying power and stable circulation | |
CN112531213A (en) | Non-aqueous electrolyte with high-temperature characteristics and normal-temperature cycle, application thereof and lithium ion battery | |
CN114421015B (en) | Carbonate-based electrolyte with ether oxygen bond functional group and application thereof | |
CN105098235A (en) | Lithium ion secondary battery and electrolyte thereof | |
CN115332626A (en) | An electrolyte and a battery comprising the electrolyte | |
WO2023115810A1 (en) | Additive, and electrolyte and lithium ion battery using same | |
CN103413972A (en) | Alkoxy silane electrolyte material containing oligopolyethylene glycol chain and application of electrolyte material in lithium battery propylene carbonate based electrolyte | |
CN109802176B (en) | Electrolyte and Lithium-Ion Batteries Containing Electrolyte | |
CN103500849B (en) | Lithium rechargeable battery and its electrolyte | |
CN113964385B (en) | Electrolyte, preparation method and application thereof | |
CN109962292A (en) | A lithium ion battery electrolyte and a lithium ion battery comprising the same | |
CN112490497A (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery using same | |
CN114335729B (en) | High-voltage additive for lithium battery and electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160420 |
|
RJ01 | Rejection of invention patent application after publication |