CN101726641B - Manufacturing method of conductive elastomer - Google Patents
Manufacturing method of conductive elastomer Download PDFInfo
- Publication number
- CN101726641B CN101726641B CN2008101704247A CN200810170424A CN101726641B CN 101726641 B CN101726641 B CN 101726641B CN 2008101704247 A CN2008101704247 A CN 2008101704247A CN 200810170424 A CN200810170424 A CN 200810170424A CN 101726641 B CN101726641 B CN 101726641B
- Authority
- CN
- China
- Prior art keywords
- elastic body
- manufacture method
- openings
- photoresist layer
- conducting elastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 229920001971 elastomer Polymers 0.000 title abstract description 20
- 239000000806 elastomer Substances 0.000 title abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 52
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000002245 particle Substances 0.000 claims abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 239000002923 metal particle Substances 0.000 claims description 9
- 238000007639 printing Methods 0.000 claims description 6
- 238000007761 roller coating Methods 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 238000007772 electroless plating Methods 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims 4
- 238000001035 drying Methods 0.000 claims 2
- 238000003384 imaging method Methods 0.000 claims 2
- 238000012360 testing method Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 10
- 238000007766 curtain coating Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000005234 chemical deposition Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 229920003225 polyurethane elastomer Polymers 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Micromachines (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
本发明为一种导电弹性体的制造方法,先于具有复数个凹槽的基板上披覆第一金属牺牲层,次形成第一光阻层于其上,再于第一光阻层上开出复数个第一开口使其分别对应到上述凹槽,接着填入含有导电粒子的凝胶于上述第一开口内,令其固化形成复数个第一弹性柱。然后,重复上述步骤以形成第二金属牺牲层、第二光阻层、复数个第二开口,并再形成复数个第二弹性柱以对应到第一弹性柱上方。最后移除第二光阻层、第二金属牺牲层、第一金属牺牲层、及基板,而只剩下第一光阻层、以及散布于其间的复数第一弹性柱与第二弹性柱其呈现彼此上下相迭。
The present invention is a method for manufacturing a conductive elastomer, wherein a first metal sacrificial layer is coated on a substrate having a plurality of grooves, a first photoresist layer is formed thereon, a plurality of first openings are opened on the first photoresist layer so that they correspond to the grooves respectively, a gel containing conductive particles is then filled into the first openings, and the gel is solidified to form a plurality of first elastic columns. Then, the above steps are repeated to form a second metal sacrificial layer, a second photoresist layer, a plurality of second openings, and a plurality of second elastic columns are formed to correspond to the top of the first elastic columns. Finally, the second photoresist layer, the second metal sacrificial layer, the first metal sacrificial layer, and the substrate are removed, and only the first photoresist layer and the plurality of first elastic columns and second elastic columns dispersed therein are left, which are stacked one on top of the other.
Description
技术领域technical field
本发明是关于一种导电弹性体的制造方法,尤其是指一种采用微机电工艺来制造导电弹性体的制造方法。The invention relates to a method for manufacturing a conductive elastic body, in particular to a method for manufacturing a conductive elastic body by using a micro-electromechanical technology.
背景技术Background technique
芯片封装测试工艺中,为了节省测试时间、及成本,常需要有一次测试多个待测芯片(Device Under Test,简称DUT)的情况,尤其是球栅数组(BGA)等阵列式的锡球测试。公知技术所采的手段皆使用探针(Pogo pin)再配合测试座(Socket)的设计方式来达到测试的目的。然而,随着技术不断的演进,封装锡球间距(Pitch)越来越小的情况下,公知的测试方式受到许多设计与组装上的限制,已无法满足现有的需求。In the chip packaging and testing process, in order to save test time and cost, it is often necessary to test multiple devices under test (DUT) at one time, especially for ball grid array (BGA) and other array solder ball tests. . The means adopted by the known technology all use the design method of the probe (Pogo pin) to cooperate with the test socket (Socket) to achieve the purpose of testing. However, as technology continues to evolve and the pitch of package solder balls (Pitch) becomes smaller and smaller, the known testing methods are subject to many limitations in design and assembly, and cannot meet the existing requirements.
因此,便发展出导电弹性体来取代习知的探针搭配测试座的方式。其工作原理是使用导电弹性体来当作一个导电的互连体(Interposer)或连接体(Connector),而且是一种可以在微小间距的情况下使用,特别是针对非对称的锡球排列。Therefore, a conductive elastomer has been developed to replace the conventional method of matching the probe with the test socket. Its working principle is to use a conductive elastomer as a conductive interconnect (Interposer) or connector (Connector), and it can be used in the case of small pitches, especially for asymmetrical solder ball arrangements.
此外,相较于一般传统的探针,导电弹性体由于路径短、低电感、低阻抗与高寿命,非常适合高频测试。然而,目前测试用的导电弹性体价格非常昂贵,且制造程序相当复杂。故因成本考虑使的许多测试厂并未实际将导电弹性体大量导入测试生产线中,只是针对少数的特定产品来进行测试。In addition, compared with general traditional probes, conductive elastomers are very suitable for high-frequency testing due to their short path, low inductance, low impedance and long life. However, the conductive elastomers currently tested are very expensive and the manufacturing process is quite complicated. Therefore, due to cost considerations, many test factories do not actually introduce a large number of conductive elastomers into the test production line, but only conduct tests on a small number of specific products.
由此可知,如何开发一种低成本、效率高、工艺简单,更可大量生产导电弹性体的制造方法,实在是产业上的一种迫切需要。It can be seen that how to develop a low-cost, high-efficiency, simple process, and a manufacturing method that can mass-produce conductive elastomers is an urgent need in the industry.
发明内容Contents of the invention
本发明的目的在于提供一种导电弹性体的制造方法,以适应现代化产业的需要。The purpose of the present invention is to provide a method for manufacturing a conductive elastomer to meet the needs of modern industries.
为实现上述目的,本发明提供的导电弹性体的制造方法,包括以下步骤:(A)提供基板,而基板的上表面设有复数个凹槽。(B)再披覆一第一金属牺牲层于基板的上表面上、及复数个凹槽内。(C)又形成一第一光阻层于第一金属牺牲层的上表面上。接着,(D)移除第一光阻层以形成复数个第一开口,其中复数个第一开口分别对应于基板的复数个凹槽。(E)并填入含有导电粒子的凝胶于复数个第一开口内,而后固化形成复数个第一弹性柱。To achieve the above object, the method for manufacturing the conductive elastomer provided by the present invention includes the following steps: (A) providing a substrate, and a plurality of grooves are provided on the upper surface of the substrate. (B) Coating a first metal sacrificial layer on the upper surface of the substrate and in the plurality of grooves. (C) forming a first photoresist layer on the upper surface of the first metal sacrificial layer. Next, (D) removing the first photoresist layer to form a plurality of first openings, wherein the plurality of first openings respectively correspond to the plurality of grooves of the substrate. (E) and filling the gel containing conductive particles into the plurality of first openings, and then curing to form a plurality of first elastic columns.
然后,(F)披覆一第二金属牺牲层于第一光阻层的上表面上、及复数个第一第一弹性柱上。(G)又形成一第二光阻层于第二金属牺牲层的上表面上。(H)再移除第二光阻层以形成复数个第二开口,其中复数个第二开口分别对应于复数个第一弹性柱。Then, (F) coating a second metal sacrificial layer on the upper surface of the first photoresist layer and on the plurality of first elastic columns. (G) Forming a second photoresist layer on the upper surface of the second metal sacrificial layer. (H) Removing the second photoresist layer to form a plurality of second openings, wherein the plurality of second openings respectively correspond to the plurality of first elastic pillars.
接着,(I)填入含有导电粒子的凝胶于复数个第二开口内,并固化形成复数个第二弹性柱。(J)并移除第二光阻层、及第二金属牺牲层,又移除第一金属牺牲层、及基板。据此,本发明导电弹性体的制造方法,能大幅降低制造成本、同时又能大量生产制造、且简化整体制造程序、及工艺设备的需求,更易于依不同需求而弹性调整工艺变量。Next, (I) filling the gel containing conductive particles into the plurality of second openings, and curing to form a plurality of second elastic columns. (J) removing the second photoresist layer and the second sacrificial metal layer, and removing the first sacrificial metal layer and the substrate. Accordingly, the manufacturing method of the conductive elastomer of the present invention can greatly reduce the manufacturing cost, simultaneously enable mass production, simplify the overall manufacturing procedure and the requirements for process equipment, and make it easier to flexibly adjust process variables according to different needs.
其中,本发明步骤(E)可将掺杂有金属导电粒子的凝胶刮入复数个第一开口,以及步骤(I)可将掺杂有金属导电粒子的凝胶刮入复数个第二开口内,此亦即所谓的凝胶技术。另外,本发明步骤(B)中披覆第一金属牺牲层、及步骤(F)中披覆第二金属牺牲层的方法可以是下列至少之一:真空溅镀、电镀、化学沉积、无电解电镀、或其它的等效工艺或技术皆可适用于本发明中。此外,本发明步骤(C)中形成第一光阻层、及步骤(G)中形成第二光阻层的方法可以是下列至少之一:印刷、滚轮涂布、喷洒涂布、帘幕式涂布、旋转涂布、或其它的等效工艺或技术。Wherein, step (E) of the present invention can scrape the gel doped with metal conductive particles into a plurality of first openings, and step (I) can scrape the gel doped with metal conductive particles into a plurality of second openings Inside, this is the so-called gel technology. In addition, the method of coating the first metal sacrificial layer in step (B) of the present invention and the method of coating the second metal sacrificial layer in step (F) can be at least one of the following: vacuum sputtering, electroplating, chemical deposition, electroless Electroplating, or other equivalent processes or techniques can be applied in the present invention. In addition, the method for forming the first photoresist layer in step (C) and the second photoresist layer in step (G) of the present invention may be at least one of the following: printing, roller coating, spray coating, curtain coating coating, spin coating, or other equivalent process or technique.
再者,本发明步骤(D)中形成复数个第一开口、及步骤(H)中形成复数个第二开口的方法可利用曝光显影方式,或其它可定义开口大小并移除开口光阻的等效工艺皆可。又,本发明步骤(E)中的复数个第一弹性柱、及步骤(I)的复数个第二弹性柱内掺杂金属粒子材料可以是下列至少之一:金、铜、镍、铝、银、或其它具导电性质的粒子皆可。Furthermore, the method of forming a plurality of first openings in step (D) and forming a plurality of second openings in step (H) of the present invention can use exposure and development methods, or other methods that can define the size of the openings and remove the photoresist of the openings. Equivalent processes are available. Also, the plurality of first elastic pillars in step (E) of the present invention and the plurality of second elastic pillars in step (I) doped with metal particle material can be at least one of the following: gold, copper, nickel, aluminum, Silver, or other conductive particles are acceptable.
较佳的是,本发明步骤(B)中的第一金属牺牲层、及步骤(F)中的第二金属牺牲层使用的材料可以是下列至少之一:铜、镍、铬、钛、或其它等效的金属材质。另外,本发明步骤(E)中复数个第一弹性柱、及步骤(I)中复数个第二弹性柱可为圆柱体、矩形柱、甚至梯形或锥形柱、或其它几何多边形柱皆可。据此,本发明步骤(C)中的第一光阻层的厚度可为150至200微米(μm)、而步骤(B)中的第一金属牺牲层的厚度可为0.2至0.5微米(μm)。Preferably, the material used in the first metal sacrificial layer in step (B) of the present invention and the second metal sacrificial layer in step (F) can be at least one of the following: copper, nickel, chromium, titanium, or Other equivalent metal material. In addition, the plurality of first elastic columns in step (E) of the present invention, and the plurality of second elastic columns in step (I) can be cylinders, rectangular columns, even trapezoidal or tapered columns, or other geometric polygonal columns. . Accordingly, the thickness of the first photoresist layer in step (C) of the present invention can be 150 to 200 microns (μm), and the thickness of the first metal sacrificial layer in step (B) can be 0.2 to 0.5 microns (μm) ).
附图说明Description of drawings
图1A至图1J是本发明一较佳实施例的导电弹性体的剖面示意图。1A to 1J are schematic cross-sectional views of a conductive elastomer according to a preferred embodiment of the present invention.
图2是本发明一较佳实施例的导电弹性体的立体示意图。FIG. 2 is a schematic perspective view of a conductive elastomer according to a preferred embodiment of the present invention.
图3是本发明一较佳实施例于同一基材大量制造的示意图。FIG. 3 is a schematic diagram of a preferred embodiment of the present invention mass-produced on the same substrate.
附图中主要组件符号说明Explanation of main component symbols in the drawings
1基板 11上表面 12凹槽1 Substrate 11 Upper surface 12 Groove
2第一金属牺牲层 21上表面 3第一光阻层2 first metal
31第一开口 32第一弹性柱 33上表面31 first opening 32 first
4第二金属牺牲层 41上表面 5第二光阻层4 second metal
51第二开口 52第二弹性柱 6导电弹性体51 The second opening 52 The second elastic column 6 Conductive elastomer
具体实施方式Detailed ways
请参阅图1A至图1J,为本发明一种导电弹性体的制造方法较佳实施例的剖面示意图。惟本发明是采用微机电工艺以达成低成本、高效率来制造导电弹性体。然本发明非完全局限于微机电工艺,又可利用半导体工艺或其它等效工艺来完成本发明。以下将针对微机电工艺为较佳实施例来进行说明。Please refer to FIG. 1A to FIG. 1J , which are schematic cross-sectional views of a preferred embodiment of a method for manufacturing a conductive elastomer of the present invention. However, the present invention uses micro-electro-mechanical technology to manufacture conductive elastomers with low cost and high efficiency. However, the present invention is not limited to the micro-electro-mechanical process, and the present invention can also be realized by using a semiconductor process or other equivalent processes. The following will describe the micro-electro-mechanical process as a preferred embodiment.
请同时参阅图1A及图3所示,首先提供一基板1,在基板1的上表面11已预先设有复数个凹槽12。其复数个凹槽12可通过CNC工具机预先加工完成。且基板1可以重复使用,达到降低成本的目的。再如图3所示,图3是本发明一较佳实施例于同一基材大量制造的示意图。如图所示本实施例使用微机电技术其可达到阵列式的加工方式,意味着同一片基材上依据弹性体设计的尺寸与基材的大小可以同时加工数片甚至数十片的导电弹性体,可由大量生产来降低成本。Please refer to FIG. 1A and FIG. 3 at the same time. Firstly, a
如图1B所示,又于基板1的上表面11上、及复数个凹槽12内披覆一第一金属牺牲层2。本实施例中是采用真空溅镀方式来进行披覆,当然亦可采用蒸镀、电镀、化学沉积、以及无电解电镀来进行。而本实施例中所披覆的第一金属牺牲层2的材质为镍,当然亦可为铬、铜、钛、或其它金属材质,而其厚度为0.2至0.5微米(μm)。As shown in FIG. 1B , a first
如图1C所示,再于第一金属牺牲层2的上表面21上形成一第一光阻层3。其形成的方法是采用旋转涂布(Spin coating)方式,当然亦可利用印刷(Printing)、滚轮涂布(Roller coating)、喷洒涂布(Spray coating)、帘幕式涂布(Curtain coating)等方式。其第一光阻层3的厚度在本实施例中为150至200微米(μm),当然可以依实际导电弹性体厚度不同的需求来进行变更。然而,本实施例的第一光阻层3采用具弹性性质的光阻材料,其常用型号如下AZ-4620、JSR-120N、JSR-151N、S1813、及SU8。As shown in FIG. 1C , a first photoresist layer 3 is formed on the
如图1D所示,接着利用曝光及显影的方式移除第一光阻层3以形成复数个第一开口31,而其中复数个第一开口31分别对应于基板1的复数个凹槽12。本实施例中以微影技术使用光阻涂布方式以及曝光方式的优点在于:容易控制弹性体的厚度,尤其可配合光罩的设计,任何形状的弹性体结构皆可轻易制造出,如圆柱、矩形柱、或其它几何多边形柱。甚至是上下不同厚度的形体,亦可由调整基材1上的复数凹槽12的深度与第一光阻层3的厚度来控制。另外,更可利用光阻不同的特性与配合曝光机曝光显影的技术,来制造上下两端截面积不同的柱体如锥狀、或梯形的结构,以符合特殊需求的测试。As shown in FIG. 1D , the first photoresist layer 3 is then removed by exposure and development to form a plurality of
如图1E所示,于复数个第一开口31内填入含有导电粒子的凝胶,并固化以形成复数个第一弹性柱32。本实施例是采用凝胶技术(Sol-GelProcess),亦即将掺杂有金属粒子的凝胶刮入而填入复数个第一开口31内,并待其固化而形成复数个第一弹性柱32。然而,本实施例中所采的凝胶为热固型高分子材料,故其具备弹性又可在高温环境下正常运作。As shown in FIG. 1E , the gel containing conductive particles is filled into the plurality of
据此,目前产业较常用的热固型凝胶是以硅橡胶为基材,并会因不同性质需求而添加不同改质剂,来达到不同的效果,如常见添加三元乙丙橡胶(EPDM)、丙烯酸酯橡胶(ACM)、氟橡胶(FKM)、聚氨酯橡胶(PU)、或二烯类橡胶等。而其所掺杂金属粒子的材料为金,当然亦可为镍、铝、银、铜或其它具导电性质的金属粒子,还可同时混入不同材料的粒子,使第一弹性柱32具有更佳导电、或弹性等性质呈现。According to this, the most commonly used thermosetting gel in the industry is based on silicone rubber, and different modifiers are added to achieve different effects due to different property requirements. For example, ethylene-propylene-diene rubber (EPDM ), acrylate rubber (ACM), fluororubber (FKM), polyurethane rubber (PU), or diene rubber, etc. And the material of its doped metal particle is gold, certainly also can be nickel, aluminium, silver, copper or other metal particles with conductive property, also can mix the particle of different materials simultaneously, make the first
如图1F所示,接着于第一光阻层3的上表面33上、及复数个第一弹性柱32上披覆一第二金属牺牲层4。第二金属牺牲层4同前述披覆第一金属牺牲层2,本实施例是采用真空溅镀,同样可采用蒸镀、电镀、化学沉积、以及无电解电镀来进行。而其材质同样为镍,当然亦可为铬、铜、钛、或其它金属材质。As shown in FIG. 1F , a second metal
如图1G所示,于第二金属牺牲层4的上表面41上形成一第二光阻层5。第二光阻层5在此如同第一光阻层3,其形成的方法同样采用旋转涂布,当然亦可利用印刷、滚轮涂布、喷洒涂布、帘幕式涂布等方式。As shown in FIG. 1G , a
如图1H所示,接着同样以曝光及显影的方式来移除第二光阻层5以形成复数个第二开口51,而复数个第二开口51分别对应于复数个第一弹性柱32与基板1的复数个凹槽12。As shown in FIG. 1H, the
如图1I所示,同样于复数个第二开口51内填入含有导电粒子的凝胶,并固化形成复数个第二弹性柱52。其第二弹性柱52同样采用凝胶技术(Sol-Gel Process),亦即将掺杂有金属粒子的凝胶刮入而填入复数个第二开口51,并待其固化而形成复数个第二弹性柱52。其金属粒子的材料为金,同样可为镍、铝、银、铜或其它具导电性质的金属粒子,还可同时混入不同材料的粒子。As shown in FIG. 1I , the gel containing conductive particles is also filled into the plurality of
请同时参阅图1J及图2,最后移除第二光阻层5及第二金属牺牲层4,并移除第一金属牺牲层2及基板1。亦即将第一光阻层3及复数个第一弹性柱32自第一金属牺牲层2举离(Strip or Lift off)。故最终产物导电弹性体6便如图1J和图2所示,其中包括提供弹性支撑的主弹性体亦即特意留下的第一光阻层3、复数个第一弹性柱32、复数个第二弹性柱52及介于第一弹性柱32与第二弹性柱52之间的第二金属牺牲层4。Please refer to FIG. 1J and FIG. 2 at the same time. Finally, the
上述实施例仅为了方便说明而举例而已,本发明所主张的权利范围自应以申请的权利要求范围所述为准,而非仅限于上述实施例。The above-mentioned embodiments are only examples for convenience of description, and the scope of rights claimed by the present invention should be based on the scope of claims in the application, rather than limited to the above-mentioned embodiments.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101704247A CN101726641B (en) | 2008-11-03 | 2008-11-03 | Manufacturing method of conductive elastomer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101704247A CN101726641B (en) | 2008-11-03 | 2008-11-03 | Manufacturing method of conductive elastomer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101726641A CN101726641A (en) | 2010-06-09 |
CN101726641B true CN101726641B (en) | 2011-05-18 |
Family
ID=42447820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101704247A Expired - Fee Related CN101726641B (en) | 2008-11-03 | 2008-11-03 | Manufacturing method of conductive elastomer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101726641B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1106580A (en) * | 1993-11-10 | 1995-08-09 | 惠特克公司 | Production method of anisotropic conductive film and connector using same |
EP1976007A2 (en) * | 2007-03-27 | 2008-10-01 | Fujifilm Corporation | Anisotropically conductive member and method of manufacture |
-
2008
- 2008-11-03 CN CN2008101704247A patent/CN101726641B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1106580A (en) * | 1993-11-10 | 1995-08-09 | 惠特克公司 | Production method of anisotropic conductive film and connector using same |
EP1976007A2 (en) * | 2007-03-27 | 2008-10-01 | Fujifilm Corporation | Anisotropically conductive member and method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
CN101726641A (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8272124B2 (en) | Anchoring carbon nanotube columns | |
CN101750523B (en) | How to make elastic test probe | |
US10859602B2 (en) | Transferring electronic probe assemblies to space transformers | |
US20110043238A1 (en) | Method of manufacturing needle for probe card using fine processing technology, needle manufactured by the method and probe card comprising the needle | |
KR20200012743A (en) | Probe socket device for micro LED inspection and manufacturing method thereof | |
DE102015103286A1 (en) | System and method for a microfabricated break test structure | |
TWI613872B (en) | Method to manufacture a contact space transformer as well as contact space transformer | |
CN101750525B (en) | Manufacturing method of test socket and elastic test probe used therein | |
CN101726641B (en) | Manufacturing method of conductive elastomer | |
KR101715153B1 (en) | Method of fabricating insulated probe pin | |
US9977054B2 (en) | Etching for probe wire tips for microelectronic device test | |
US7637009B2 (en) | Approach for fabricating probe elements for probe card assemblies using a reusable substrate | |
Pan et al. | Fabrication and integration of functional stretchable circuit based on liquid metal | |
TWI431278B (en) | Semiconductor test probe card space transformer | |
KR100827994B1 (en) | Hybrid and high strength tip structures by using binding method of different kinds of electroplating material and a manufacturing method thereof | |
TW201840077A (en) | Method for manufacturing inspection device capable of coping with micro pitches without damaging an object to be inspected | |
TW201835575A (en) | Probe, probe head and probe head manufacturing method | |
TW201017176A (en) | Manufacturing method of conductive elastomer | |
US8624618B2 (en) | Apparatus and method for inspecting circuit of substrate | |
KR101317634B1 (en) | MVP Probe Board Manufacturing Method For Semiconductor Test | |
CN108020695B (en) | Method for manufacturing probe | |
CN101414569B (en) | Manufacturing method and structure of conductive film and probe card with the conductive film | |
KR20030046854A (en) | The probe needle structure for the inspection of LCD panel and the forming process | |
KR20080105264A (en) | Insulation method of probe card probe using glass ink coating method | |
Lim et al. | Regular Paper: Highly Productive Process Technologies of Cantilever-type Microprobe Arrays for Wafer Level Chip Testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110518 Termination date: 20121103 |