CN101615677A - Electrocatalyst for fuel cell membrane electrode, preparation method thereof and fuel cell membrane electrode - Google Patents
Electrocatalyst for fuel cell membrane electrode, preparation method thereof and fuel cell membrane electrode Download PDFInfo
- Publication number
- CN101615677A CN101615677A CN200910041374A CN200910041374A CN101615677A CN 101615677 A CN101615677 A CN 101615677A CN 200910041374 A CN200910041374 A CN 200910041374A CN 200910041374 A CN200910041374 A CN 200910041374A CN 101615677 A CN101615677 A CN 101615677A
- Authority
- CN
- China
- Prior art keywords
- electrocatalyst
- water
- membrane electrode
- fuel cell
- humidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 53
- 239000000446 fuel Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 37
- 210000000170 cell membrane Anatomy 0.000 title claims abstract description 16
- 239000012528 membrane Substances 0.000 claims abstract description 96
- 239000003054 catalyst Substances 0.000 claims abstract description 56
- 239000002131 composite material Substances 0.000 claims abstract description 53
- 239000000126 substance Substances 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 239000010970 precious metal Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 76
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 45
- 239000000377 silicon dioxide Substances 0.000 claims description 38
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 23
- 229910052697 platinum Inorganic materials 0.000 claims description 14
- 229910000510 noble metal Inorganic materials 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 8
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- 238000005470 impregnation Methods 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 239000007790 solid phase Substances 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 abstract description 28
- 230000003020 moisturizing effect Effects 0.000 abstract description 6
- 238000011068 loading method Methods 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 35
- 229910052681 coesite Inorganic materials 0.000 description 21
- 229910052906 cristobalite Inorganic materials 0.000 description 21
- 229910052682 stishovite Inorganic materials 0.000 description 21
- 229910052905 tridymite Inorganic materials 0.000 description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 229910004298 SiO 2 Inorganic materials 0.000 description 15
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000008139 complexing agent Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000001509 sodium citrate Substances 0.000 description 5
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KUWFERPIOIZKRW-UHFFFAOYSA-N [Si]=O.[Mo] Chemical compound [Si]=O.[Mo] KUWFERPIOIZKRW-UHFFFAOYSA-N 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSWAWIZQVYYECP-UHFFFAOYSA-N [Si]=O.[Ce] Chemical compound [Si]=O.[Ce] XSWAWIZQVYYECP-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- HEHINIICWNIGNO-UHFFFAOYSA-N oxosilicon;titanium Chemical compound [Ti].[Si]=O HEHINIICWNIGNO-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
本发明涉及燃料电池领域,公开了一种用于燃料电池膜电极的电催化剂及其制备方法及燃料电池膜电极。一种用于燃料电池膜电极的电催化剂,其特征在于:所述电催化剂是在复合载体上担载贵金属制备而成,所述复合载体是保水物质沉积的碳载体;电催化剂中,保水物质的含量为0.3-10wt%;贵金属的含量为10-60wt%。以本发明的电催化剂为阳极催化剂,按照常规的方式制备电极;即可获得保湿性能优良的膜电极;无需构筑一层保水层,也不需要在质子交换膜中加入保水物质,避免了因为保水层以及质子交换膜中保水物质的加入而引起电池内阻增大等问题,为制备免增湿膜电极的一条简单高效的途径。
The invention relates to the field of fuel cells, and discloses an electrocatalyst for a fuel cell membrane electrode, a preparation method thereof, and a fuel cell membrane electrode. An electrocatalyst for a membrane electrode of a fuel cell, characterized in that: the electrocatalyst is prepared by loading a precious metal on a composite carrier, and the composite carrier is a carbon carrier deposited by a water-retaining substance; in the electrocatalyst, the water-retaining substance The content of the precious metal is 0.3-10wt%; the content of the precious metal is 10-60wt%. Using the electrocatalyst of the present invention as the anode catalyst, the electrode is prepared in a conventional manner; a membrane electrode with excellent moisturizing performance can be obtained; there is no need to build a water-retaining layer, and it is not necessary to add water-retaining substances to the proton exchange membrane, avoiding water retention. It is a simple and efficient way to prepare a humidification-free membrane electrode due to the increase of the internal resistance of the battery caused by the addition of water-retaining substances in the layer and the proton exchange membrane.
Description
技术领域 technical field
本发明涉及燃料电池,制备了一种在燃料电池中具有自增湿作用的电催化剂,并且采用这种电催化剂,制得了具有良好自增湿性能的膜电极。The invention relates to a fuel cell. An electrocatalyst with self-humidification function in the fuel cell is prepared, and a membrane electrode with good self-humidification performance is prepared by using the electrocatalyst.
背景技术 Background technique
在质子交换膜燃料电池(PEMFC)中,水管理对电池性能具有决定性的影响。PEMFC运行时,通常要对反应气体进行外部增湿,保证质子交换膜和电极中有足够的水分,以获得较高的质子传导率和电化学性能。气体增湿一般由复杂的辅助增湿设备完成,增湿系统增加了PEMFC系统的复杂性,提高了PEMFC系统的成本。同时,外部增湿需要消耗大量的能量,降低了燃料电池系统的总输出功率;实际上,质子交换膜燃料电池在运行的过程中在阳极上会产生大量的水,因此,一些研究者希望将这些生成水利用起来,从而实现自增湿或者免增湿的膜电极及相应的燃料电池系统;事实上,开发具有免增湿/自增湿功能的燃料电池膜电极已成为燃料电池领域研究的最为热点的课题之一。In proton exchange membrane fuel cells (PEMFCs), water management has a decisive impact on cell performance. When PEMFC is running, it is usually necessary to humidify the reaction gas externally to ensure that there is enough water in the proton exchange membrane and electrodes to obtain high proton conductivity and electrochemical performance. Gas humidification is generally completed by complex auxiliary humidification equipment. The humidification system increases the complexity of the PEMFC system and increases the cost of the PEMFC system. At the same time, external humidification needs to consume a lot of energy, which reduces the total output power of the fuel cell system; in fact, a large amount of water will be generated on the anode of the proton exchange membrane fuel cell during operation, so some researchers hope to use The generated water is used to realize self-humidification or non-humidification membrane electrodes and corresponding fuel cell systems; in fact, the development of fuel cell membrane electrodes with non-humidification/self-humidification functions has become a research topic in the field of fuel cells. One of the hottest topics.
目前的免增湿/自增湿燃料电池膜电极研究主要集中在如下几个方面:1)通过添加保水物质的途径开发具有保湿功能的复合质子交换膜;2)通过在质子交换膜中添加贵金属催化剂的方式制得具有保湿功能的质子交换膜,其原理是利用渗透到膜中的氢气和氧气发生化学反应在膜中生成水来实现膜的保湿;3)在催化层与质子交换膜之间加上一个保湿层来实现免增湿/自增湿;4)在催化层中加入保水物质来实现膜电极的免增湿/自增湿;遗憾的是:到目前为止,这些方法均不能获得理想的免增湿/自增湿效果。另外,也有研究者希望通过对流场的设计和改造来实现自增湿或者免增湿,但是其效果也远远不能满足高性能燃料电池对免增湿膜电极的需要。The current research on non-humidification/self-humidification fuel cell membrane electrodes mainly focuses on the following aspects: 1) developing a composite proton exchange membrane with moisturizing function by adding water-retaining substances; 2) adding precious metals to the proton exchange membrane The proton exchange membrane with moisturizing function is prepared by catalyst method. The principle is to use the hydrogen and oxygen permeated into the membrane to generate water in the membrane to realize the moisture retention of the membrane; 3) between the catalytic layer and the proton exchange membrane Add a moisturizing layer to achieve non-humidification/self-humidification; 4) add water-retaining substances to the catalytic layer to achieve non-humidification/self-humidification of the membrane electrode; unfortunately: so far, these methods cannot obtain Ideal non-humidification/self-humidification effect. In addition, some researchers hope to achieve self-humidification or non-humidification through the design and modification of the flow field, but the effect is far from meeting the needs of high-performance fuel cells for humidification-free membrane electrodes.
Watanabe等人(Watanabe M.,Uchida H.,Seki Y.,et al.J.Electrochem.Soc.,1996,143:3847-3852.)将Pt颗粒和金属氧化物在Nafion溶液中高度分散重铸成膜,Pt颗粒的作用是催化渗透进入膜的H2和O2反应生成水,氧化物的作用是将生成的水保持在膜中。电池测试显示这种复合膜在常压和低湿度条件下(H2加湿温度为20℃,O2不加湿)具有很高的性能以及很好的稳定性,在电流密度为0.9Acm-2时,电池的功率密度可以达到0.63Wcm-2。此后Watanabe及其合者(Watanabe M.,Uchida H.,Emori M.J.Phys.Chem.B,1998,102:3129-3137,Watanabe M.,Uchida H.,Emori M.J.Electrochem.Soc.,1998,145:1137-1141,Uchida H.,Mizuno Y.,Watanabe M.,et al.J.Electrochem.Soc.,2003,150:A57-A62,Hagihara H.,Uchida H.,Watanabe M.Electrochim.Acta,2006,51:3979-3985)对这种方法进行了深入的研究以及优化。但是这种方法存在制备麻烦,免增湿效果不能达到长期稳定的要求.。Watanabe et al. (Watanabe M., Uchida H., Seki Y., et al. J. Electrochem. Soc., 1996, 143: 3847-3852.) recast highly dispersed Pt particles and metal oxides in Nafion solution In film formation, the role of Pt particles is to catalyze the reaction of H2 and O2 permeating into the membrane to generate water, and the role of oxides is to keep the generated water in the membrane. Battery tests show that this composite membrane has high performance and good stability under normal pressure and low humidity conditions (H 2 humidification temperature is 20 ° C, O 2 is not humidified), and when the current density is 0.9Acm -2 , the power density of the battery can reach 0.63Wcm -2 . Since then Watanabe and his collaborators (Watanabe M., Uchida H., Emori MJPhys.Chem.B, 1998, 102: 3129-3137, Watanabe M., Uchida H., Emori MJ Electrochem.Soc., 1998, 145: 1137- 1141, Uchida H., Mizuno Y., Watanabe M., et al. J. Electrochem. Soc., 2003, 150: A57-A62, Hagihara H., Uchida H., Watanabe M. Electrochim. Acta, 2006, 51 : 3979-3985) conducted in-depth research and optimization on this method. However, this method has troubles in preparation, and the effect of avoiding humidification cannot meet the requirement of long-term stability.
中国专利ZL02103832.5公开了一种质子交换膜燃料电池用自保湿复合膜的制备方法,即将质子交换膜和具有保湿功能的涂层复合制成复合膜。该专利的复合膜的制备方法为:将0.1-10μm的无机物或其氧化物、和有机膜成分相同的有机物以及有机溶剂均匀混合,制成浆料,然后涂覆在有机膜表面,烘干、固化即得自保湿复合膜。该法制备过程复杂,而且保湿涂层中无机物或其氧化物粒径过大,会影响质子的传递,从而降低膜电极的性能,因此,该法并不适合于大规模应用于质子交换膜燃料电池。Chinese patent ZL02103832.5 discloses a method for preparing a self-moisture composite membrane for a proton exchange membrane fuel cell, that is, a proton exchange membrane and a coating with a moisture retention function are combined to form a composite membrane. The preparation method of the composite film of this patent is: uniformly mix 0.1-10 μm inorganic substances or their oxides, organic substances with the same composition as the organic film, and organic solvents to make a slurry, then coat the surface of the organic film, and dry , Curing is obtained from the moisturizing composite film. The preparation process of this method is complicated, and the particle size of the inorganic substance or its oxide in the moisturizing coating is too large, which will affect the transfer of protons, thereby reducing the performance of the membrane electrode. Therefore, this method is not suitable for large-scale application to proton exchange membranes. The fuel cell.
中国专利ZL02122635.0公开了“一种燃料电池用自增湿复合质子交换膜的制备方法”,该专利申请在低沸点有机醇和水的溶剂中加热溶解全氟磺酸膜,制成全氟磺酸树脂溶液,然后向全氟磺酸树脂溶液中加入含Pt的担载型催化剂和高沸点有机溶剂,将溶液滴加在有机多孔膜表面,加热并真空保存即制得自增湿复合膜。该法在膜中加入催化剂,容易造成阴阳极短路,降低电池性能,因此并不适合于实际应用。Chinese patent ZL02122635.0 discloses "a method for preparing a self-humidifying composite proton exchange membrane for fuel cells". This patent application heats and dissolves perfluorosulfonic acid membranes in a solvent of low-boiling organic alcohol and water to produce perfluorosulfonic acid membranes. Acid resin solution, and then add Pt-containing supported catalyst and high-boiling point organic solvent to the perfluorosulfonic acid resin solution, add the solution dropwise on the surface of the organic porous membrane, heat and store in vacuum to obtain a self-humidifying composite membrane. This method adds a catalyst to the membrane, which is likely to cause a short circuit between the cathode and the anode and reduce the performance of the battery, so it is not suitable for practical applications.
中国专利ZL03140527.4公开了一种“自增湿固体电解质复合膜及其制备工艺”,该固体电解质膜的制备工艺为:使磺化树脂在0.5-8MPa、200-650℃下溶解于无水醇类溶剂中得到A溶液,将结晶水合物在100-600MPa在破碎成5-100nm的颗粒,然后在0.5-8MPa、110-300℃下溶解于无水醇类溶剂中得到B溶液,将两种溶液在0.5-8MPa、200-650℃下混合均匀,然后冷却至150-580℃流延法成膜,室温下干燥后置于80-550℃的惰性环境中进行热处理得到成品膜。该法制备过程复杂,而且所制得的固体电解质复合膜电导率较低。Chinese patent ZL03140527.4 discloses a "self-humidifying solid electrolyte composite membrane and its preparation process". The preparation process of the solid electrolyte membrane is to dissolve the sulfonated resin in anhydrous A solution is obtained in an alcoholic solvent, and the crystal hydrate is broken into 5-100nm particles at 100-600MPa, and then dissolved in an anhydrous alcoholic solvent at 0.5-8MPa and 110-300°C to obtain a B solution. The solution is mixed uniformly at 0.5-8MPa and 200-650°C, then cooled to 150-580°C to form a film by casting method, dried at room temperature and then placed in an inert environment at 80-550°C for heat treatment to obtain a finished film. The preparation process of this method is complicated, and the conductivity of the prepared solid electrolyte composite membrane is low.
中国专利ZL200510018545.6公开了一种“燃料电池用免增湿质子交换膜的制备方法”,先将含磺酸侧基的芳杂环聚合物溶解于有机溶剂中形成均匀的聚合物溶液,然后加入氧化物前驱体和无机酸形成的凝胶,超声分散获得均匀的混合液体,最后对膜进行二次掺杂得到免增湿质子交换膜。该法需要二次掺杂,制备繁杂,而且申请者并为给出所制备的免增湿质子交换膜的电池性能。Chinese patent ZL200510018545.6 discloses a "preparation method of non-humidification proton exchange membrane for fuel cells", first dissolving the aromatic heterocyclic polymer containing sulfonic acid side groups in an organic solvent to form a uniform polymer solution, and then The gel formed by adding the oxide precursor and the inorganic acid is ultrasonically dispersed to obtain a uniform mixed liquid, and finally the membrane is doped twice to obtain a non-humidification proton exchange membrane. This method requires secondary doping, and the preparation is complicated, and the applicant did not give the battery performance of the prepared humidity-free proton exchange membrane.
中国专利ZL200510018740.9公开了一种“具有保水功能的质子交换膜燃料电池芯片的制备方法”,该法先在转移介质表面涂覆催化层,然后在催化层表面涂覆具有保水功能的无极纳米粒子层,最后将两张具有保水功能的电极与质子交换膜通过热压制得燃料电池芯片。该法所制备的保水层会增大膜电极的质子转移电阻。Chinese patent ZL200510018740.9 discloses a "preparation method of proton exchange membrane fuel cell chip with water retention function". Particle layer, and finally, two electrodes with water retention function and proton exchange membrane are hot pressed to obtain a fuel cell chip. The water-retaining layer prepared by this method will increase the proton transfer resistance of the membrane electrode.
中国专利ZL200510067575.1公开了“一种自增湿膜电极及其制备方法”,该法通过将亲水性物质加入到阳极催化层,憎水性物质加入到阴极催化层制得自增湿膜电极。该专利所使用的亲水性以及憎水性物质会增大催化层的电荷转移电阻。Chinese patent ZL200510067575.1 discloses "a self-humidifying membrane electrode and its preparation method". In this method, a self-humidifying membrane electrode is prepared by adding a hydrophilic substance to the anode catalytic layer and a hydrophobic substance to the cathode catalytic layer. . The hydrophilic and hydrophobic substances used in this patent will increase the charge transfer resistance of the catalytic layer.
中国专利ZL200610015662.1公开了“一种自增湿质子交换膜燃料电池膜电极”,通过在催化层与气体扩散层之间构筑一层由碳粉、粘合剂、亲水性纤维构成的恒湿层来实现膜电极的自增湿。该法所制备的自增湿膜电极的恒湿层会影响到反应气体的扩散。Chinese patent ZL200610015662.1 discloses "a self-humidifying proton exchange membrane fuel cell membrane electrode". The wet layer is used to realize the self-humidification of the membrane electrode. The constant humidity layer of the self-humidifying membrane electrode prepared by this method will affect the diffusion of the reaction gas.
中国专利ZL200610134078.8公开了“一种碳纳米管增强的自增湿复合质子交换膜及其制备”,该法有两种方案,方案一就是将Pt/CNTs加入到全氟磺酸树脂溶液中,超声分散均匀,铸造成膜,然后在该膜的两侧喷涂一定厚度的全氟磺酸树脂,在120-200℃的真空干燥箱中防止0.5-20h,冷却得到三层复合膜;方案二是将CNTs分别加入到全氟磺酸树脂中,铸造成CNTs的膜,然后将含Pt/SiO2的全氟磺酸树脂溶液喷涂至膜两侧,烘干、冷却得到三层复合膜。该法所制的复合膜由于分层使其电导率降低,而且SiO2的加入会降低膜的质子传导率。Chinese patent ZL200610134078.8 discloses "a carbon nanotube-reinforced self-humidifying composite proton exchange membrane and its preparation". There are two options for this method. The first option is to add Pt/CNTs to the perfluorosulfonic acid resin solution , ultrasonically disperse evenly, cast into a film, and then spray a certain thickness of perfluorosulfonic acid resin on both sides of the film, keep it in a vacuum oven at 120-200°C for 0.5-20h, and cool to obtain a three-layer composite film; scheme two It is to add CNTs to perfluorosulfonic acid resin respectively, cast into a CNTs film, and then spray the perfluorosulfonic acid resin solution containing Pt/ SiO2 on both sides of the film, dry and cool to obtain a three-layer composite film. The conductivity of the composite membrane prepared by this method is reduced due to delamination, and the addition of SiO 2 will reduce the proton conductivity of the membrane.
到目前为止,这些方法均不能获得理想的免增湿/自增湿效果。So far, none of these methods can obtain ideal non-humidification/self-humidification effects.
发明内容 Contents of the invention
本发明的目的在于提供一种用于燃料电池膜电极的电催化剂。The object of the present invention is to provide an electrocatalyst used for fuel cell membrane electrodes.
本发明的目的还在于提供上述用于燃料电池膜电极的电催化剂的制备方法。The object of the present invention is also to provide a method for preparing the above-mentioned electrocatalyst for fuel cell membrane electrodes.
本发明的目的还在于提供一种自增湿/免增湿的燃料电池膜电极,通过使用上述电催化剂来实现膜电极的自增湿/免增湿,使得燃料电池具备优秀的免增湿/自增湿性能。The purpose of the present invention is also to provide a self-humidification/humidification-free fuel cell membrane electrode, by using the above-mentioned electrocatalyst to realize the self-humidification/humidification-free of the membrane electrode, so that the fuel cell has excellent humidification-free/humidification-free Self-humidifying properties.
一种用于燃料电池膜电极的电催化剂,其特征在于:所述电催化剂是在复合载体上担载贵金属制备而成,所述复合载体是保水物质沉积的碳载体;电催化剂中,保水物质的含量为0.3-10wt%;贵金属的含量为10-60wt%。An electrocatalyst for a membrane electrode of a fuel cell, characterized in that: the electrocatalyst is prepared by loading a precious metal on a composite carrier, and the composite carrier is a carbon carrier deposited by a water-retaining substance; in the electrocatalyst, the water-retaining substance The content of the metal is 0.3-10wt%; the content of the noble metal is 10-60wt%.
进一步的,所述保水物质为二氧化硅、二氧化钛、二氧化铈、二氧化锆、三氧化钨及三氧化钼中的一种或一种以上。Further, the water-retaining substance is one or more of silicon dioxide, titanium dioxide, ceria, zirconium dioxide, tungsten trioxide and molybdenum trioxide.
进一步的,所述贵金属是铂。Further, the noble metal is platinum.
一种用于燃料电池膜电极的电催化剂的制备方法,其特征在于包括如下步骤:A method for preparing an electrocatalyst for a fuel cell membrane electrode, characterized in that it comprises the following steps:
(1)将保水物质的有机前驱体溶于易挥发有机溶剂中,然后加入已经过预处理的碳载体,在室温下搅拌使保水物质的有机前驱体在碳载体上混合均匀,然后将其置于40-70℃的真空干燥箱中,通过抽真空除去易挥发有机溶剂,将其取出在惰性气体氛围下在200-600℃热处理1-5h,冷却后得保水物质沉积的碳载体,即复合载体;(1) Dissolve the organic precursor of the water-retaining substance in a volatile organic solvent, then add the pretreated carbon carrier, stir at room temperature to mix the organic precursor of the water-retaining substance evenly on the carbon carrier, and then place it In a vacuum drying oven at 40-70°C, remove the volatile organic solvent by vacuuming, take it out and heat-treat it at 200-600°C for 1-5h under an inert gas atmosphere, and obtain a carbon carrier deposited by a water-retaining substance after cooling, that is, a composite carrier;
(2)以步骤(1)中制备好的复合载体为载体,制备复合载体担载贵金属的电催化剂;电催化剂中,保水物质的含量为0.3-10wt%,贵金属含量为10-60wt%。(2) Using the composite carrier prepared in step (1) as a carrier to prepare an electrocatalyst loaded with precious metals on the composite carrier; in the electrocatalyst, the content of the water-retaining substance is 0.3-10wt%, and the content of the noble metal is 10-60wt%.
步骤(2)可采用有机溶胶法、浸渍法、固相还原法等方法制备复合载体担载贵金属的电催化剂。In step (2), methods such as organosol method, impregnation method, and solid phase reduction method can be used to prepare the electrocatalyst loaded with noble metal on the composite carrier.
所述的碳载体为XC-72R碳黑、活性碳等具有良好导电性的碳材料。所述的易挥发有机溶剂包括无水乙醇、丙酮等低沸点有机物。所述的保水物质为二氧化硅、二氧化钛、二氧化铈、二氧化锆、三氧化钨、三氧化钼等亲水性氧化物,或者两种或两种以上的这些氧化物的复合体。所述的保水物质的有机前驱体为硅、钛等的有机物,如:正硅酸乙酯、钛酸乙酯等。The carbon carrier is XC-72R carbon black, activated carbon and other carbon materials with good conductivity. The volatile organic solvents include low-boiling organic substances such as absolute ethanol and acetone. The water-retaining substance is hydrophilic oxides such as silicon dioxide, titanium dioxide, ceria, zirconium dioxide, tungsten trioxide, molybdenum trioxide, or a composite of two or more of these oxides. The organic precursors of the water-retaining substances are organic substances such as silicon and titanium, such as ethyl orthosilicate, ethyl titanate and the like.
一种燃料电池膜电极,包括质子交换膜、阳极和阴极,质子交换膜夹在两电极之间,其特征在于,以上述的电催化剂为阳极催化剂。A fuel cell membrane electrode includes a proton exchange membrane, an anode and a cathode, the proton exchange membrane is sandwiched between the two electrodes, and the feature is that the above-mentioned electrocatalyst is used as the anode catalyst.
进一步的,膜电极的阴极催化剂也采用上述电催化剂。Further, the cathode catalyst of the membrane electrode also adopts the above-mentioned electrocatalyst.
免增湿膜电极的制备:上述电催化剂为阳极催化剂,以商用催化剂或上述电催化剂为阴极催化剂,采用直接涂膜技术按照常规电极制备程序即可制备出自增湿/自保湿性能良好的膜电极。Preparation of humidification-free membrane electrode: the above-mentioned electrocatalyst is used as the anode catalyst, and the commercial catalyst or the above-mentioned electrocatalyst is used as the cathode catalyst, and the membrane electrode with good self-humidification/self-humidity performance can be prepared by direct coating technology and conventional electrode preparation procedures .
与现有的燃料电池免增湿技术相比,本发明具有如下优点:Compared with the existing fuel cell humidification-free technology, the present invention has the following advantages:
(1)通过特定物质处理催化剂载体的方式,即可获得性能优良的具有自增湿/自保湿功能的燃料电池催化剂,直接采用这种催化剂,按照常规的方式制备电极;即可获得保湿性能优良的膜电极;无需构筑一层保水层,也不需要在质子交换膜中加入保水物质,避免了因为保水层以及质子交换膜中保水物质的加入而引起电池内阻增大等问题,因此该途径为制备免增湿膜电极的一条简单高效的途径;对于大规模制备质子交换膜燃料电池的免增湿膜电极极为有利;(1) A fuel cell catalyst with self-humidification/self-humidification function with excellent performance can be obtained by treating the catalyst carrier with a specific substance. This catalyst is directly used to prepare electrodes in a conventional manner; excellent moisture retention performance can be obtained Membrane electrode; there is no need to build a water-retaining layer, and there is no need to add water-retaining substances in the proton exchange membrane, which avoids the increase of internal resistance of the battery caused by the water-retaining layer and the addition of water-retaining substances in the proton exchange membrane. Therefore, this approach It is a simple and efficient way to prepare humidification-free membrane electrodes; it is extremely beneficial for large-scale preparation of humidification-free membrane electrodes for proton exchange membrane fuel cells;
(2)本发明的方法制备的具有免增湿功能的催化剂,不需要特别的仪器设备,制备过程简单,能够实现催化剂的大规模制备;(2) The catalyst with humidification-free function prepared by the method of the present invention does not require special equipment, the preparation process is simple, and large-scale preparation of the catalyst can be realized;
(3)采用本发明所制备的催化剂制作的膜电极,在以氢为燃料、空气为氧化剂,两种气体均完全不增湿的条件下,表现出的免增湿性能好于以前报道的研究结果。(3) The membrane electrode made of the catalyst prepared by the present invention, under the condition that hydrogen is used as fuel, air is used as oxidant, and the two gases are not humidified at all, the performance of non-humidification is better than that of previous reports. result.
附图说明 Description of drawings
图1是采用含有0.3wt%的二氧化硅的Pt/SiO2/C催化剂作为阳极催化剂制得的膜电极在氢气-空气燃料电池中的性能曲线;Fig. 1 is the performance curve that adopts the Pt/SiO2/C catalyst that contains 0.3wt% silicon dioxide to make as the membrane electrode that anode catalyst makes in hydrogen-air fuel cell;
图2是采用含有3wt%的二氧化硅的Pt/SiO2/C催化剂作为阳极催化剂制得的膜电极在氢气-空气燃料电池中的性能曲线;Fig. 2 is the performance curve of the membrane electrode that adopts the Pt/SiO2/C catalyst that contains 3wt% silicon dioxide to make as anode catalyst in hydrogen-air fuel cell;
图3是采用含有6wt%的二氧化硅的Pt/SiO2/C催化剂作为阳极催化剂制得的膜电极在氢气-空气燃料电池中的性能曲线;Fig. 3 is the performance curve of the membrane electrode that adopts the Pt/SiO2/C catalyst that contains 6wt% silicon dioxide to make as anode catalyst in hydrogen-air fuel cell;
图4是采用含有9wt%的二氧化硅的Pt/SiO2/C催化剂作为阳极催化剂制得的膜电极在氢气-空气燃料电池中的性能曲线;Fig. 4 is the performance curve of the membrane electrode that adopts the Pt/SiO2/C catalyst that contains 9wt% silicon dioxide to make as anode catalyst in hydrogen-air fuel cell;
图5是采用含有3wt%的二氧化硅的Pt/SiO2/C催化剂制得的膜电极和采用商品的Pt/C催化剂作为阳极催化剂制得的膜电极在氢气-空气燃料电池中的性能对比曲线。Fig. 5 is the performance contrast curve of the membrane electrode that adopts the Pt/SiO2/C catalyst that contains 3wt% silicon dioxide to make and the membrane electrode that adopts commodity Pt/C catalyst to make as anode catalyst in hydrogen-air fuel cell .
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but the present invention is not limited thereto.
本发明的具体实施方式按照如下:先以保水物质的有机前驱体与碳载体制备成复合载体,然后以有机溶胶法将贵金属上载至复合载体制备成电催化剂,以本发明的电催化剂为阳极催化剂,商业催化剂或本发明的电催化剂为阴极催化剂,制备成膜电极,然后装配成电池。The specific implementation method of the present invention is as follows: first, the organic precursor of the water-retaining substance and the carbon carrier are used to prepare a composite carrier, and then the precious metal is uploaded to the composite carrier by an organic sol method to prepare an electrocatalyst, and the electrocatalyst of the present invention is used as the anode catalyst , the commercial catalyst or the electrocatalyst of the present invention is a cathode catalyst, and a film-forming electrode is prepared, and then assembled into a battery.
实施例1Example 1
(1)复合载体的制备:取0.0155g正硅酸乙酯加入3ml乙醇中,然后加入1克经过氧化及热处理的XC-72R炭黑,在室温下搅拌15分钟使正硅酸与炭黑均匀分散,然后在40℃的真空干燥箱中,抽真空脱去残余的乙醇,然后在惰性气氛下在300℃热处理3h,冷却;即制得含有二氧化硅的碳复合载体材料;可表示为SiO2/XC-72R或者SiO2/C;(1) Preparation of composite carrier: Take 0.0155g of tetraethyl orthosilicate and add it to 3ml of ethanol, then add 1 gram of XC-72R carbon black that has been oxidized and heat-treated, and stir at room temperature for 15 minutes to make orthosilicate and carbon black uniform Disperse, then in a vacuum drying oven at 40°C, vacuumize to remove residual ethanol, then heat treat at 300°C for 3h under an inert atmosphere, and cool; that is, a carbon composite carrier material containing silicon dioxide is obtained; it can be expressed as SiO2 /XC-72R or SiO2/C;
(2)电催化剂的制备:以步骤(1)中制备好的复合载体为载体,采用专利ZL200510102382.X所述的有机溶胶法制备了复合载体担载贵金属的电催化剂;其具体做法为:以丙酮和乙二醇的混合物为溶剂,以乙二醇为还原剂,以氯铂酸为铂的前驱体,柠檬酸钠为络合剂,120℃下在高压釜中反应8小时,然后经过中和解胶、洗涤、干燥而制得电催化剂;(2) Preparation of electrocatalyst: take the composite carrier prepared in step (1) as the carrier, and adopt the organic sol method described in patent ZL200510102382. A mixture of acetone and ethylene glycol is used as a solvent, ethylene glycol is used as a reducing agent, chloroplatinic acid is used as a precursor of platinum, and sodium citrate is used as a complexing agent. React in an autoclave at 120 ° C for 8 hours, and then pass through a medium and degelling, washing, and drying to obtain an electrocatalyst;
制备的电催化剂中,铂含量为25wt%,SiO2含量为0.3wt%。In the prepared electrocatalyst, the platinum content is 25wt%, and the SiO2 content is 0.3wt%.
(3)免增湿膜电极的制备:使用以上催化剂为阳极及阴极催化剂,采用一种光照下直接涂膜技术(ZL200610035275.4)制备了膜电极,阳极及阴极的铂载量分别为0.1mg/cm2和0.2mg/cm2;具体步骤如下:(A)将经过过氧化氢氧化和硫酸溶液酸处理过的质子交换膜固定在框架模具上;(B)将固定好质子交换膜的模具置于红外灯下,用喷枪均匀地将一定量的催化剂浆料喷洒在质子交换膜的两面,构成阴极和阳极;(C)催化剂的浆料中,催化剂与干Nafion的比例为2.5∶1;采用异丙醇作为溶剂。(3) Preparation of humidification-free membrane electrode: using the above catalysts as anode and cathode catalysts, a membrane electrode was prepared by using a direct film coating technology under light (ZL200610035275.4), and the platinum loading of the anode and cathode were 0.1mg /cm 2 and 0.2mg/cm 2 ; the specific steps are as follows: (A) fix the proton exchange membrane through hydrogen peroxide oxidation and sulfuric acid solution acid treatment on the frame mold; (B) fix the mold with the proton exchange membrane Placed under an infrared lamp, a certain amount of catalyst slurry is evenly sprayed on both sides of the proton exchange membrane with a spray gun to form a cathode and an anode; (C) in the catalyst slurry, the ratio of catalyst to dry Nafion is 2.5:1; Isopropanol was used as solvent.
(4)膜电极的测试:在Arbin FCTS燃料电池电池系统中对制得的膜电极的性能进行了测试,将步骤(3)制得的膜电极装于一个小型测试电池中,先在加湿条件下对膜电极进行活化处理,氢气及空气的加湿温度及电池温度均为60℃,然后将空气及氢气的露点加湿器的温度均降低至室温,即在不增湿的条件下对电极的性能进行测试,电池温度为50℃,记录不同时间时0.6V电压下的电流密度。(4) Test of the membrane electrode: the performance of the membrane electrode prepared was tested in the Arbin FCTS fuel cell system. The membrane electrode is activated under the condition that the humidification temperature of hydrogen and air and the temperature of the battery are both 60°C, and then the temperature of the dew point humidifier of air and hydrogen is lowered to room temperature, that is, the performance of the electrode under the condition of no humidification For testing, the battery temperature is 50°C, and the current density at a voltage of 0.6V is recorded at different times.
得到的结果如图1所示,5小时内,电流密度从900mA/cm2下降至450mA/cm2,然后在20小时基本稳定不变,表现出了一定的免增湿效果。The obtained results are shown in Figure 1. Within 5 hours, the current density dropped from 900mA/cm 2 to 450mA/cm 2 , and then remained basically unchanged for 20 hours, showing a certain effect of avoiding humidification.
实施例2Example 2
除加入的正硅酸乙酯的量为0.155g,最后制得的催化剂中SiO2含量为3%外,其他步骤完全与实施例1相同。Except that the amount of tetraethyl orthosilicate added is 0.155g, and the SiO2 content is 3% in the catalyst prepared at last, other steps are completely identical with embodiment 1.
结果表明:采用SiO2含量为3%的Pt/SiO2/C催化剂制得的膜电极表现出了非常好的免增湿效果,3小时内,电流密度仅降低200A/cm2(从900mA/cm2下降至700mA/cm2),然后在20小时内基本稳定不变(见图2)。The results show that: the membrane electrode made of Pt/SiO 2 /C catalyst with SiO 2 content of 3% shows a very good humidification-free effect, and the current density is only reduced by 200A/cm 2 (from 900mA/ cm 2 decreased to 700mA/cm 2 ), and then basically remained unchanged within 20 hours (see Figure 2).
对比实施例comparative example
除采用不含二氧化硅的商品Pt/C催化剂(Johnson Matthey,Hispec 4100,40wt%Pt)取代实施例1中的复合催化剂外,其他膜电极制备步骤和测试步骤与实施例1中的步骤(3)和(4)相同;Except adopting the commercial Pt/C catalyst (Johnson Matthey, Hisspec 4100,40wt%Pt) that does not contain silicon dioxide to replace the composite catalyst in Example 1, other membrane electrode preparation steps and testing steps are the same as the steps in Example 1 ( 3) is the same as (4);
结果表明:不含二氧化硅的催化剂制得的膜电极没有免增湿能力,3小时内,电流密度即从900mA/cm2下降至100mA/cm2以下(见图5)。The results show that the membrane electrode made of the catalyst without silica has no ability to avoid humidification, and the current density drops from 900mA/cm 2 to below 100mA/cm 2 within 3 hours (see Figure 5).
实施例3Example 3
除加大了正硅酸乙酯的用量,并采用丙酮取代无水乙醇作为正硅酸乙酯的分散介质,使得最后制得的催化剂Pt/SiO2/C中的SiO2含量为6%外,其他同实施例1。In addition to increasing the amount of ethyl orthosilicate, and using acetone to replace absolute ethanol as the dispersion medium of ethyl orthosilicate, so that the SiO2 content in the catalyst Pt/ SiO2 /C that is finally prepared is 6%. , other with embodiment 1.
结果见图3和表1。其免增湿效果低于含二氧化硅3%的催化剂制得的膜电极。The results are shown in Figure 3 and Table 1. Its anti-humidification effect is lower than that of the membrane electrode prepared by the catalyst containing 3% silicon dioxide.
实施例4Example 4
除采用的正硅酸乙酯的量为0.465g,最后制得的催化剂Pt/SiO2/C中的SiO2含量为9%,浸渍正硅酸乙酯后在惰性气氛中焙烧的温度和时间分别为600℃和1小时外,其他同实施例1。Except that the amount of tetraethyl orthosilicate used is 0.465g, the SiO2 content in the catalyst Pt/ SiO2 /C that is finally prepared is 9%, the temperature and time of roasting in an inert atmosphere after impregnating tetraethyl orthosilicate Be respectively 600 ℃ and 1 hour, other are the same as embodiment 1.
结果见图4和表1,其免增湿效果低于含二氧化硅3%的催化剂制得的膜电极,也低于二氧化硅含量为6%的催化剂制得的膜电极。The results are shown in Fig. 4 and Table 1, and the humidification-free effect is lower than that of the membrane electrode prepared by the catalyst containing 3% silicon dioxide, and also lower than that of the membrane electrode prepared by the catalyst containing 6% silicon dioxide.
实施例5Example 5
(1)复合载体的制备:取0.5g正硅酸乙酯加入3ml乙醇中,然后加入1克经过氧化及热处理的XC-72R炭黑,在室温下搅拌15分钟使正硅酸与炭黑均匀分散,然后在70℃的真空干燥箱中,抽真空脱去残余的乙醇,然后在惰性气氛下在200℃热处理5h,冷却;即制得含有二氧化硅的碳复合载体材料;可表示为SiO2/XC-72R或者SiO2/C;(1) Preparation of composite carrier: Take 0.5g ethyl orthosilicate and add it to 3ml ethanol, then add 1 gram of XC-72R carbon black that has been oxidized and heat-treated, and stir at room temperature for 15 minutes to make orthosilicate and carbon black uniform Disperse, then in a vacuum oven at 70°C, evacuate to remove residual ethanol, then heat treat at 200°C for 5h under an inert atmosphere, and cool down; that is, a carbon composite carrier material containing silicon dioxide is obtained; it can be expressed as SiO2 /XC-72R or SiO2/C;
(2)电催化剂的制备:以步骤(1)中制备好的复合载体为载体,采用专利(ZL 200510102382.X)所述的有机溶胶法制备了复合载体担载的贵金属电催化剂;其具体做法为:以丙酮和乙二醇的混合物为溶剂,以乙二醇为还原剂,以氯铂酸为铂的前驱体,柠檬酸钠为络合剂,在高压釜中反应制得催化剂;(2) Preparation of electrocatalyst: with the composite carrier prepared in step (1) as the carrier, the organosol method described in the patent (ZL 200510102382.X) was used to prepare the noble metal electrocatalyst supported by the composite carrier; the specific method The method is: using a mixture of acetone and ethylene glycol as a solvent, ethylene glycol as a reducing agent, chloroplatinic acid as a precursor of platinum, and sodium citrate as a complexing agent to react in an autoclave to prepare a catalyst;
步骤(2)中所述的复合载体担载的贵金属电催化剂的铂含量为10wt%,SiO2含量为10%The platinum content of the precious metal electrocatalyst carried by the composite carrier described in step (2) is 10wt%, and SiO Content is 10%
(3)免增湿膜电极的制备:同实施例1。(3) Preparation of humidification-free membrane electrode: same as Example 1.
(4)膜电极的测试:同实施例1,但是电池温度为60℃。(4) Membrane electrode test: Same as Example 1, but the battery temperature is 60°C.
得到的结果如表1所示,5小时内,电流密度从870mA/cm2下降至430mA/cm2,20小时内降低至310mA/cm2,表现出了一定的免增湿效果。The results obtained are shown in Table 1. Within 5 hours, the current density decreased from 870mA/cm 2 to 430mA/cm 2 , and within 20 hours to 310mA/cm 2 , showing a certain effect of avoiding humidification.
实施例6Example 6
(1)复合载体的制备:取0.155g正硅酸乙酯加入3ml乙醇中,然后加入1克经过氧化及热处理的XC-72R炭黑,在室温下搅拌15分钟使正硅酸与炭黑均匀分散,然后在40℃的真空干燥箱中,抽真空脱去残余的乙醇,然后在惰性气氛下在400℃热处理3h,冷却;即制得含有二氧化硅的碳复合载体材料;可表示为SiO2/XC-72R或者SiO2/C;(1) Preparation of composite carrier: Take 0.155g of tetraethyl orthosilicate and add it to 3ml of ethanol, then add 1 gram of XC-72R carbon black that has been oxidized and heat-treated, and stir at room temperature for 15 minutes to make orthosilicic acid and carbon black uniform Disperse, then in a vacuum oven at 40°C, evacuate to remove residual ethanol, then heat-treat at 400°C for 3h under an inert atmosphere, and cool; that is, a carbon composite carrier material containing silicon dioxide is obtained; it can be expressed as SiO2 /XC-72R or SiO2/C;
(2)电催化剂的制备:以步骤(1)中制备好的复合载体为载体,采用专利(ZL 200510102382.X)所述的有机溶胶法制备了复合载体担载的贵金属电催化剂;其具体做法为:以丙酮和乙二醇的混合物为溶剂,以乙二醇为还原剂,以氯铂酸为铂的前驱体,柠檬酸钠为络合剂,在高压釜中反应制得催化剂;(2) Preparation of electrocatalyst: with the composite carrier prepared in step (1) as the carrier, the organosol method described in the patent (ZL 200510102382.X) was used to prepare the noble metal electrocatalyst supported by the composite carrier; the specific method The method is: using a mixture of acetone and ethylene glycol as a solvent, ethylene glycol as a reducing agent, chloroplatinic acid as a precursor of platinum, and sodium citrate as a complexing agent to react in an autoclave to prepare a catalyst;
步骤(2)中所述的复合载体担载的贵金属电催化剂的铂含量为60wt%,SiO2含量为3wt%;The platinum content of the noble metal electrocatalyst carried by the composite carrier described in step (2) is 60wt%, and the SiO2 content is 3wt%;
(3)免增湿膜电极的制备:同实施例1。(3) Preparation of humidification-free membrane electrode: same as Example 1.
(4)膜电极的测试:同实施例5。(4) Membrane electrode test: Same as Example 5.
得到的结果如表1所示,5小时内,电流密度从920mA/cm2下降至730mA/cm2,20小时内下降至705mA/cm2;表现出良好的免增湿效果。The obtained results are shown in Table 1. Within 5 hours, the current density decreased from 920mA/cm 2 to 730mA/cm 2 , and within 20 hours to 705mA/cm 2 ; showing a good humidification-free effect.
实施例7Example 7
除采用正硅酸乙酯和钛酸正丁酯代替正硅酸乙酯,催化剂组成为Pt/SiTiOx/C,其中Si∶Ti=1∶1,钛硅氧化物的含量为3.5%,铂含量为25wt%外,其它均与实施例1相同。In addition to using ethyl orthosilicate and n-butyl titanate instead of ethyl orthosilicate, the catalyst composition is Pt/SiTiO x /C, wherein Si:Ti=1:1, the content of titanium silicon oxide is 3.5%, platinum Content is 25wt%, other are all identical with embodiment 1.
如表1所示,5小时内,电流密度从900mA/cm2下降至750mA/cm2,然后在20小时基本稳定不变,表现出了良好的免增湿效果。As shown in Table 1, within 5 hours, the current density dropped from 900mA/cm 2 to 750mA/cm 2 , and then remained basically unchanged for 20 hours, showing a good effect of avoiding humidification.
实施例8Example 8
除采用锆酸正丁酯代替钛酸正丁酯外,催化剂组成为Pt/SiZrOx/C,其中Si∶Zr=1∶1,锆硅氧化物的含量为3.5%,其它与实施例7相同。Except that n-butyl zirconate is used instead of n-butyl titanate, the catalyst composition is Pt/SiZrO x /C, wherein Si: Zr=1:1, the content of zirconium silicon oxide is 3.5%, and the others are the same as in Example 7 .
如表1所示,5小时内,电流密度从920mA/cm2下降至730mA/cm2,然后在20小时基本稳定不变,表现出了良好的免增湿效果。As shown in Table 1, within 5 hours, the current density decreased from 920mA/cm 2 to 730mA/cm 2 , and then remained basically unchanged for 20 hours, showing a good effect of avoiding humidification.
实施例9Example 9
除采用有机钼酸酯代替钛酸正丁酯外,催化剂组成为Pt/SiMoOx/C,其中Si∶Mo=1∶1,钼硅氧化物的含量为3.5%,其它与实施例7相同。The catalyst composition is Pt/ SiMoOx /C, wherein Si:Mo=1:1, molybdenum-silicon oxide content is 3.5%, and the others are the same as in Example 7, except that organic molybdate is used instead of n-butyl titanate.
如表1所示,5小时内,电流密度从930mA/cm2下降至760mA/cm2,然后在20小时基本稳定不变,表现出了良好的免增湿效果。As shown in Table 1, within 5 hours, the current density dropped from 930mA/cm 2 to 760mA/cm 2 , and then remained basically unchanged for 20 hours, showing a good effect of avoiding humidification.
实施例10Example 10
除采用有机钨酸酯代替钛酸正丁酯外,催化剂组成为Pt/SiWOx/C,其中Si∶W=1∶1,钼硅氧化物的含量为3.5%,其它与实施例7相同。Except that organic tungstate is used instead of n-butyl titanate, the catalyst composition is Pt/ SiWOx /C, wherein Si:W=1:1, the content of molybdenum silicon oxide is 3.5%, and the others are the same as in Example 7.
如表1所示,5小时内,电流密度从920mA/cm2下降至730mA/cm2,然后在20小时基本稳定不变,表现出了良好的免增湿效果。As shown in Table 1, within 5 hours, the current density decreased from 920mA/cm 2 to 730mA/cm 2 , and then remained basically unchanged for 20 hours, showing a good effect of avoiding humidification.
实施例11Example 11
直接将硝酸铈溶解于乙醇,不采用钛酸正丁酯外,催化剂组成为Pt/SiCeOx/C,其中Si∶Ce=1∶1,铈硅氧化物的含量为3.5%,其它与实施例7相同。Directly dissolving cerium nitrate in ethanol without using n-butyl titanate, the catalyst composition is Pt/SiCeO x /C, wherein Si: Ce=1:1, the content of cerium silicon oxide is 3.5%, and others are the same as in the examples 7 is the same.
如表1所示,5小时内,电流密度从890mA/cm2下降至740mA/cm2,然后在20小时基本稳定不变,表现出了良好的免增湿效果。As shown in Table 1, within 5 hours, the current density dropped from 890mA/cm 2 to 740mA/cm 2 , and then remained basically unchanged for 20 hours, showing a good effect of avoiding humidification.
实施例12Example 12
(1)复合载体的制备:除正硅酸乙酯的量为0.155g外,其它同实施例1。(1) Preparation of the composite carrier: the same as in Example 1 except that the amount of ethyl orthosilicate is 0.155 g.
(2)电催化剂的制备:以步骤(1)中制备好的复合载体为载体,采用固相还原技术制备了复合载体担载贵金属的电催化剂;其具体做法为:一定量的氯铂酸溶于乙醇与水的混合溶剂,加入柠檬酸钠络合剂,加入步骤(1)制得的复合载体,超声15分钟,然后置于70℃真空干燥箱中干燥;搅拌下喷洒甲酸钠溶液,40℃真空干燥箱中干燥,然后升温至100℃使铂还原;制得电催化剂;(2) Preparation of electrocatalyst: with the composite carrier prepared in step (1) as the carrier, the electrocatalyst of composite carrier loaded with noble metal was prepared by solid phase reduction technology; the specific method is: a certain amount of chloroplatinic acid dissolved In the mixed solvent of ethanol and water, add sodium citrate complexing agent, add the composite carrier prepared in step (1), ultrasonic for 15 minutes, and then dry in a vacuum oven at 70°C; spray sodium formate solution under stirring, 40°C Dry in a vacuum oven, then raise the temperature to 100°C to reduce platinum; obtain an electrocatalyst;
制备的电催化剂中,铂含量为25wt%,SiO2含量为3wt%。In the prepared electrocatalyst, the platinum content is 25wt%, and the SiO2 content is 3wt%.
(3)免增湿膜电极的制备:同实施例1。(3) Preparation of humidification-free membrane electrode: same as Example 1.
(4)膜电极的测试:同实施例1。(4) Membrane electrode test: Same as Example 1.
得到的结果如表1所示,5小时内,电流密度从880mA/cm2下降至630mA/cm2,20小时内下降至603mA/cm2,表现出了一定的免增湿效果。但是总体性能不如使用有机溶胶法制得的同类催化剂。The results obtained are shown in Table 1. Within 5 hours, the current density decreased from 880mA/cm 2 to 630mA/cm 2 , and within 20 hours to 603mA/cm 2 , showing a certain effect of avoiding humidification. However, the overall performance is not as good as that of similar catalysts prepared by the organosol method.
实施例13Example 13
(1)复合载体的制备:除正硅酸乙酯的量为0.155g外,其它同实施例1。(1) Preparation of the composite carrier: the same as in Example 1 except that the amount of ethyl orthosilicate is 0.155 g.
(2)电催化剂的制备:以步骤(1)中制备好的复合载体为载体,采用浸渍法制备了复合载体担载贵金属的电催化剂;其具体做法为:一定量的氯铂酸溶于乙醇与水的混合溶剂,加入柠檬酸钠络合剂,加入步骤(1)制得的复合载体,超声15分钟,然后置于70℃真空干燥箱中干燥;干燥过的样品置于管试电炉中,在200℃还原3小时,制得电催化剂;(2) Preparation of electrocatalyst: with the composite carrier prepared in step (1) as the carrier, the electrocatalyst of the composite carrier loaded with noble metal was prepared by impregnation; the specific method is: a certain amount of chloroplatinic acid is dissolved in ethanol Mixed solvent with water, adding sodium citrate complexing agent, adding the composite carrier prepared in step (1), ultrasonication for 15 minutes, and then drying in a vacuum oven at 70°C; the dried sample was placed in a tube electric furnace , and reduced at 200°C for 3 hours to obtain an electrocatalyst;
制备的电催化剂中,铂含量为25wt%,SiO2含量为3wt%。In the prepared electrocatalyst, the platinum content is 25wt%, and the SiO2 content is 3wt%.
(3)免增湿膜电极的制备:同实施例1。(3) Preparation of humidification-free membrane electrode: same as Example 1.
(4)膜电极的测试:同实施例1。(4) Membrane electrode test: Same as Example 1.
得到的结果如表1所示,5小时内,电流密度从910mA/cm2下降至670mA/cm2,20小时内下降至620mA/cm2,表现出了一定的免增湿效果。但是总体性能不如使用有机溶胶法制得的同类催化剂。The results obtained are shown in Table 1. Within 5 hours, the current density decreased from 910mA/cm 2 to 670mA/cm 2 , and within 20 hours to 620mA/cm 2 , showing a certain effect of avoiding humidification. However, the overall performance is not as good as that of similar catalysts prepared by the organosol method.
表1各实施例的测试结果对比The test result contrast of each embodiment of table 1
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910041374A CN101615677A (en) | 2009-07-24 | 2009-07-24 | Electrocatalyst for fuel cell membrane electrode, preparation method thereof and fuel cell membrane electrode |
US13/379,693 US20120107719A1 (en) | 2009-07-24 | 2010-03-30 | Electrode catalyst for membrane electrode of fuel cell and its method of preparation and fuel cell membrane electrode |
PCT/CN2010/071413 WO2011009307A1 (en) | 2009-07-24 | 2010-03-30 | Electrode catalyst for membrane electrode of fuel cell and its method of preparation and fuel cell membrane electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910041374A CN101615677A (en) | 2009-07-24 | 2009-07-24 | Electrocatalyst for fuel cell membrane electrode, preparation method thereof and fuel cell membrane electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101615677A true CN101615677A (en) | 2009-12-30 |
Family
ID=41495186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910041374A Pending CN101615677A (en) | 2009-07-24 | 2009-07-24 | Electrocatalyst for fuel cell membrane electrode, preparation method thereof and fuel cell membrane electrode |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120107719A1 (en) |
CN (1) | CN101615677A (en) |
WO (1) | WO2011009307A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306810A (en) * | 2011-07-21 | 2012-01-04 | 华南理工大学 | Composite catalyst of self-humidifying fuel cell and manufacturing method and application thereof |
CN103858261A (en) * | 2011-10-14 | 2014-06-11 | 凸版印刷株式会社 | Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink |
CN103855408A (en) * | 2012-12-04 | 2014-06-11 | 中国科学院大连化学物理研究所 | Membrane electrode for improving anode water management of proton exchange membrane fuel cell |
CN104716351A (en) * | 2013-12-13 | 2015-06-17 | 中国科学院大连化学物理研究所 | Proton exchange membrane fuel cell self-humidifying membrane electrode and preparation method thereof |
CN105552390A (en) * | 2015-12-15 | 2016-05-04 | 哈尔滨工业大学 | Platinum-based/molybdenum-based compound-carbon catalyst and preparation method therefor |
CN106058276A (en) * | 2016-07-11 | 2016-10-26 | 华南理工大学 | Preparation method of silica-modified multi-spherical-cavity carbon material and application of carbon material to fuel cell membrane electrode |
CN106311227A (en) * | 2015-04-08 | 2017-01-11 | 天津大学 | Synthetic method of material with palladium particles loaded on three-dimensional macroporous molybdenum dioxide |
CN107482228A (en) * | 2017-08-18 | 2017-12-15 | 福建亚南电机有限公司 | What a kind of anode catalyst was constructed exempts from humidifying film electrode and preparation method thereof |
CN108630956A (en) * | 2018-04-26 | 2018-10-09 | 哈尔滨师范大学 | A kind of direct methanoic acid fuel cell palladium-based catalyst carrier and preparation method thereof |
CN109560310A (en) * | 2017-09-25 | 2019-04-02 | 粟青青 | A kind of fuel cell very low platinum carrying amount self-humidifying membrane electrode and preparation method thereof |
CN109830718A (en) * | 2019-01-09 | 2019-05-31 | 合肥工业大学 | A kind of production method of fuel cell membrane electrode |
CN111584888A (en) * | 2020-05-27 | 2020-08-25 | 湖南大学 | Preparation method of silicon dioxide doped/coated platinum-carbon catalyst |
CN112424978A (en) * | 2018-08-09 | 2021-02-26 | 三井金属矿业株式会社 | Electrode catalyst layer for fuel cell and solid polymer fuel cell using same |
CN112838227A (en) * | 2021-01-25 | 2021-05-25 | 中国科学院大连化学物理研究所 | A kind of proton exchange membrane fuel cell anti-reverse anode Pt/WO3-Mn catalyst and preparation method thereof |
CN113745558A (en) * | 2021-07-21 | 2021-12-03 | 深圳金恒辉新材料有限公司 | Alloy metal bipolar plate for proton exchange membrane fuel cell and preparation method thereof |
CN115101792A (en) * | 2022-06-27 | 2022-09-23 | 武汉理工大学 | Solid super acid, proton conductor ceramic based on solid super acid and application |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515620B (en) * | 2012-06-20 | 2015-09-30 | 江苏氢阳能源有限公司 | A kind of electrode material, its application, direct fuel cell and electrochemical hydrogenation electrolysis tank |
KR101406721B1 (en) * | 2013-04-03 | 2014-06-16 | 한국에너지기술연구원 | Manufacturing methods of materials powder for performance improved electrode and using the same electrode and its application. |
CN104600332B (en) * | 2013-11-04 | 2017-10-03 | 中国石油化工股份有限公司 | Without membrane cell catalyst pulp and prepare catalyst pulp and electrode method |
CN114142050B (en) * | 2021-11-29 | 2024-04-23 | 一汽解放汽车有限公司 | Composite anti-counter electrode catalyst and preparation method and application thereof |
CN114874475B (en) * | 2022-07-11 | 2022-10-04 | 佛山市清极能源科技有限公司 | Self-humidifying proton exchange membrane based on hollow polydopamine and preparation method and application thereof |
CN118472285B (en) * | 2024-06-11 | 2024-11-05 | 哈尔滨工业大学 | A method for preparing a membrane electrode suitable for low humidity and low back pressure working conditions |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4044193A (en) * | 1971-06-16 | 1977-08-23 | Prototech Company | Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same |
CN1260842C (en) * | 2002-07-09 | 2006-06-21 | 中国科学院长春应用化学研究所 | Process for praparing non-Pt composite electrocatalyst for cathode of fuel battery |
CN1256783C (en) * | 2004-05-14 | 2006-05-17 | 武汉理工大学 | A high-temperature proton exchange membrane fuel cell membrane electrode and its preparation method |
CN100454636C (en) * | 2007-03-29 | 2009-01-21 | 武汉理工大学 | A kind of preparation method of core assembly of water retention proton exchange membrane fuel cell |
JP5116340B2 (en) * | 2007-03-30 | 2013-01-09 | 国立大学法人群馬大学 | Method for producing metal oxide-supported carbon |
-
2009
- 2009-07-24 CN CN200910041374A patent/CN101615677A/en active Pending
-
2010
- 2010-03-30 US US13/379,693 patent/US20120107719A1/en not_active Abandoned
- 2010-03-30 WO PCT/CN2010/071413 patent/WO2011009307A1/en active Application Filing
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306810A (en) * | 2011-07-21 | 2012-01-04 | 华南理工大学 | Composite catalyst of self-humidifying fuel cell and manufacturing method and application thereof |
CN103858261B (en) * | 2011-10-14 | 2016-10-12 | 凸版印刷株式会社 | Catalyst granules, catalyst ink, electrode catalyst for fuel cell layer, membrane-electrode assembly, polymer electrolyte fuel cells and the method preparing catalyst granules and catalyst ink |
CN103858261A (en) * | 2011-10-14 | 2014-06-11 | 凸版印刷株式会社 | Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink |
CN103855408A (en) * | 2012-12-04 | 2014-06-11 | 中国科学院大连化学物理研究所 | Membrane electrode for improving anode water management of proton exchange membrane fuel cell |
CN103855408B (en) * | 2012-12-04 | 2016-08-10 | 中国科学院大连化学物理研究所 | A Membrane Electrode for Improved Anode Water Management in Proton Exchange Membrane Fuel Cells |
CN104716351A (en) * | 2013-12-13 | 2015-06-17 | 中国科学院大连化学物理研究所 | Proton exchange membrane fuel cell self-humidifying membrane electrode and preparation method thereof |
CN106311227B (en) * | 2015-04-08 | 2018-12-28 | 天津大学 | The synthetic method of three-dimensional macroporous structure molybdenum dioxide supported palladium granular materials |
CN106311227A (en) * | 2015-04-08 | 2017-01-11 | 天津大学 | Synthetic method of material with palladium particles loaded on three-dimensional macroporous molybdenum dioxide |
CN105552390A (en) * | 2015-12-15 | 2016-05-04 | 哈尔滨工业大学 | Platinum-based/molybdenum-based compound-carbon catalyst and preparation method therefor |
CN106058276B (en) * | 2016-07-11 | 2018-07-20 | 华南理工大学 | A kind of preparation method of silicon dioxide modified more spherical cavity carbon materials and its application in fuel cell membrane electrode |
CN106058276A (en) * | 2016-07-11 | 2016-10-26 | 华南理工大学 | Preparation method of silica-modified multi-spherical-cavity carbon material and application of carbon material to fuel cell membrane electrode |
CN107482228A (en) * | 2017-08-18 | 2017-12-15 | 福建亚南电机有限公司 | What a kind of anode catalyst was constructed exempts from humidifying film electrode and preparation method thereof |
CN109560310B (en) * | 2017-09-25 | 2022-04-29 | 粟青青 | Fuel cell ultra-low platinum loading self-humidifying membrane electrode and preparation method thereof |
CN109560310A (en) * | 2017-09-25 | 2019-04-02 | 粟青青 | A kind of fuel cell very low platinum carrying amount self-humidifying membrane electrode and preparation method thereof |
CN108630956A (en) * | 2018-04-26 | 2018-10-09 | 哈尔滨师范大学 | A kind of direct methanoic acid fuel cell palladium-based catalyst carrier and preparation method thereof |
CN108630956B (en) * | 2018-04-26 | 2021-01-29 | 哈尔滨师范大学 | A kind of direct formic acid fuel cell palladium-based catalyst carrier and preparation method thereof |
CN112424978A (en) * | 2018-08-09 | 2021-02-26 | 三井金属矿业株式会社 | Electrode catalyst layer for fuel cell and solid polymer fuel cell using same |
CN112424978B (en) * | 2018-08-09 | 2024-10-15 | 三井金属矿业株式会社 | Electrode catalyst layer for fuel cell and solid polymer fuel cell using same |
CN109830718A (en) * | 2019-01-09 | 2019-05-31 | 合肥工业大学 | A kind of production method of fuel cell membrane electrode |
CN111584888A (en) * | 2020-05-27 | 2020-08-25 | 湖南大学 | Preparation method of silicon dioxide doped/coated platinum-carbon catalyst |
CN112838227A (en) * | 2021-01-25 | 2021-05-25 | 中国科学院大连化学物理研究所 | A kind of proton exchange membrane fuel cell anti-reverse anode Pt/WO3-Mn catalyst and preparation method thereof |
CN113745558A (en) * | 2021-07-21 | 2021-12-03 | 深圳金恒辉新材料有限公司 | Alloy metal bipolar plate for proton exchange membrane fuel cell and preparation method thereof |
CN113745558B (en) * | 2021-07-21 | 2023-06-16 | 深圳金恒辉新材料有限公司 | Alloy metal bipolar plate for proton exchange membrane fuel cell and preparation method |
CN115101792A (en) * | 2022-06-27 | 2022-09-23 | 武汉理工大学 | Solid super acid, proton conductor ceramic based on solid super acid and application |
Also Published As
Publication number | Publication date |
---|---|
WO2011009307A1 (en) | 2011-01-27 |
US20120107719A1 (en) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101615677A (en) | Electrocatalyst for fuel cell membrane electrode, preparation method thereof and fuel cell membrane electrode | |
CN110190310B (en) | A method for improving the durability of fuel cell catalysts and membrane electrodes | |
CN106784943A (en) | A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof | |
CN103165915B (en) | A kind of catalyst layer structure of effective reduction fuel cell Pt load amount | |
CN111146482A (en) | Self-humidifying proton exchange membrane and preparation method and application thereof | |
CN103078122A (en) | Self-humidification membrane electrode for proton exchange membrane fuel cell and preparation method thereof | |
CN110504472A (en) | A direct methanol fuel cell membrane electrode for improving catalyst utilization and its preparation method | |
CN112786937B (en) | A kind of fuel cell membrane electrode and preparation method thereof | |
CN102437343A (en) | Membrane electrode containing hydrophilic high polymer in anode catalytic layer and preparation method thereof | |
CN102306810A (en) | Composite catalyst of self-humidifying fuel cell and manufacturing method and application thereof | |
CN109713330B (en) | Fuel cell anode catalyst and preparation method thereof | |
CN107611452A (en) | A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer | |
CN107681163A (en) | A kind of fuel cell membrane electrode and its preparation method and application | |
CN102422472A (en) | Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell | |
CN101276919A (en) | Preparation Technology of Membrane Electrode for Proton Exchange Membrane Fuel Cell | |
CN109065923A (en) | Add the high-performance high power density membrane electrode and preparation method thereof of hydrophily carbon material preparation having from humidifying capacity | |
CN100454636C (en) | A kind of preparation method of core assembly of water retention proton exchange membrane fuel cell | |
CN107808969B (en) | A kind of preparation method of high temperature proton exchange membrane | |
CN100446314C (en) | Multilayer composite proton exchange membrane for self-humidifying fuel cell and synthesis method | |
CN102479959A (en) | Self-humidifying proton exchange film for fuel cell, and preparation method thereof | |
CN101702439B (en) | Fuel cell catalyst coated membrane electrode with self-humidification function and preparation method | |
CN100517841C (en) | A kind of preparation method of water retention diffusion layer for high temperature proton exchange membrane fuel cell | |
Wang et al. | Dual-functional phosphoric acid-loaded covalent organic framework for PEMFC self-humidification: optimization on membrane electrode assembly | |
WO2013054689A1 (en) | Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink | |
CN101267041A (en) | A method for preparing direct alcohol fuel cell membrane electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20091230 |