CN107611452A - A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer - Google Patents
A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer Download PDFInfo
- Publication number
- CN107611452A CN107611452A CN201710699034.8A CN201710699034A CN107611452A CN 107611452 A CN107611452 A CN 107611452A CN 201710699034 A CN201710699034 A CN 201710699034A CN 107611452 A CN107611452 A CN 107611452A
- Authority
- CN
- China
- Prior art keywords
- membrane electrode
- layer
- cathode
- carbon
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 88
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000006555 catalytic reaction Methods 0.000 title claims 12
- 239000003054 catalyst Substances 0.000 claims abstract description 68
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 230000003197 catalytic effect Effects 0.000 claims abstract description 55
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000009792 diffusion process Methods 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000007789 gas Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 26
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 16
- -1 polytetrafluoroethylene Polymers 0.000 claims description 16
- 239000000839 emulsion Substances 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims 5
- 239000000428 dust Substances 0.000 claims 5
- 238000002047 photoemission electron microscopy Methods 0.000 claims 5
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 claims 5
- 239000012752 auxiliary agent Substances 0.000 claims 4
- 239000000243 solution Substances 0.000 claims 4
- 150000003460 sulfonic acids Chemical class 0.000 claims 3
- 230000009514 concussion Effects 0.000 claims 2
- 230000010355 oscillation Effects 0.000 claims 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 238000002604 ultrasonography Methods 0.000 claims 2
- PRPAGESBURMWTI-UHFFFAOYSA-N [C].[F] Chemical compound [C].[F] PRPAGESBURMWTI-UHFFFAOYSA-N 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000002041 carbon nanotube Substances 0.000 abstract description 26
- 229910021393 carbon nanotube Inorganic materials 0.000 abstract description 26
- 239000000126 substance Substances 0.000 abstract description 16
- 239000012495 reaction gas Substances 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 17
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 15
- 239000000446 fuel Substances 0.000 description 14
- 239000002002 slurry Substances 0.000 description 13
- 239000012948 isocyanate Substances 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 238000011068 loading method Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 239000002238 carbon nanotube film Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种含有三维疏水阴极催化层的膜电极的制备方法。方法采用高铂含量催化剂及超薄质子交换膜,通过在阴极催化层添加三维结构助剂和疏水性物质,制备了含有三维疏水阴极催化层的高性能、高功率密度膜电极。本发明中阴极催化层通过添加碳纳米管等构筑催化层的三维结构,提高催化层孔隙率和催化剂利用率、提高气体扩散能力和电子的传输能力;而添加的疏水性物质可以有效改善阴极的水管理,特别是在大电流密度下,能够有效地将阴极反应产生的水排出,保证阴极反应气体可以顺畅扩散到阴极催化层和催化剂发生反应。本发明制备方法步骤简单,可行性强,实用易操作,成本低;膜电极的体积小、质量轻、容易制备,可以实现膜电极的规模化生产。
The invention discloses a method for preparing a membrane electrode containing a three-dimensional hydrophobic cathode catalyst layer. Methods A high-performance, high-power-density membrane electrode with a three-dimensional hydrophobic cathode catalytic layer was prepared by using a catalyst with high platinum content and an ultra-thin proton exchange membrane. In the present invention, the cathode catalytic layer constructs the three-dimensional structure of the catalytic layer by adding carbon nanotubes, etc., so as to improve the porosity of the catalytic layer and the utilization rate of the catalyst, as well as the gas diffusion ability and the transport ability of electrons; and the added hydrophobic substance can effectively improve the performance of the cathode. Water management, especially under high current density, can effectively discharge the water produced by the cathode reaction, ensuring that the cathode reaction gas can smoothly diffuse to the cathode catalytic layer and react with the catalyst. The preparation method of the invention has simple steps, strong feasibility, practicality and easy operation, and low cost; the membrane electrode is small in volume, light in weight, easy to prepare, and can realize large-scale production of the membrane electrode.
Description
技术领域technical field
本发明涉及质子交换膜燃料电池领域,具体涉及一种含有三维疏水阴极催化层的膜电极的制备方法。The invention relates to the field of proton exchange membrane fuel cells, in particular to a method for preparing a membrane electrode containing a three-dimensional hydrophobic cathode catalyst layer.
背景技术Background technique
质子交换膜燃料电池(PEMFC)是一种直接将化学能转化为电能的绿色能源,它具有转化效率高、低温下快速启动、无污染等优点,在便携式电子设备和动力汽车上具有广泛的应用前景。膜电极(MEA)是质子交换膜燃料电池的核心部件,由阳极气体扩散层、阳极催化层、质子交换膜、阴极催化层和阴极气体扩散层组成,膜电极的性能直接决定着燃料电池的性能,制备高性能高功率密度的膜电极对于燃料电池的商业化进展具有重要意义。Proton exchange membrane fuel cell (PEMFC) is a green energy that directly converts chemical energy into electrical energy. It has the advantages of high conversion efficiency, fast start-up at low temperature, and no pollution. It has a wide range of applications in portable electronic devices and power vehicles. prospect. Membrane electrode (MEA) is the core component of a proton exchange membrane fuel cell. It consists of an anode gas diffusion layer, an anode catalyst layer, a proton exchange membrane, a cathode catalyst layer and a cathode gas diffusion layer. The performance of the membrane electrode directly determines the performance of the fuel cell. , the preparation of membrane electrodes with high performance and high power density is of great significance for the commercialization of fuel cells.
由于氧气的还原比氢气的氧化要困难得多,加上水在阴极生成和排出,在阴极上同时存在气体和水的扩散,以及水的排出。因此阴极催化层的结构和性能对于燃料电池的性能具有十分重要的影响。Since the reduction of oxygen is much more difficult than the oxidation of hydrogen, plus water is generated and discharged at the cathode, there is simultaneous diffusion of gas and water at the cathode, and the discharge of water. Therefore, the structure and performance of the cathode catalytic layer have a very important impact on the performance of the fuel cell.
膜电极催化层是发生化学反应的场所,催化剂的利用率和反应气体在催化层中的扩散对膜电极的性能有很大的影响。如果催化剂不能够完全被利用,那么就会导致催化剂的浪费,难以使膜电极的性能得到提升。同样反应过程中产生的电子不能及时进行传导,以及反应气体不能够及时扩散至催化层中与催化剂反应,也会限制反应的进行。提高催化层中催化剂的利用率、提高催化层中电子的传导能力和促进反应气体在催化层中的扩散是很有意义的研究工作。另外膜电极阴极催化层中反应生成水,如果产生的水没有及时排出,就会产生水淹现象,导致催化剂活性降低、阴极反应气体扩散受阻,特别是在大电流密度下,从而使膜电极性能大幅度降低。膜电极阴极水管理也是近年来大家研究的热点,以期通过有效的方式改进阴极水管理,防止水淹现象的发生,提高膜电极的性能。The catalytic layer of the membrane electrode is the place where chemical reactions occur, and the utilization rate of the catalyst and the diffusion of the reaction gas in the catalytic layer have a great influence on the performance of the membrane electrode. If the catalyst cannot be fully utilized, the catalyst will be wasted, making it difficult to improve the performance of the membrane electrode. Similarly, the electrons generated during the reaction cannot be conducted in time, and the reaction gas cannot diffuse into the catalytic layer to react with the catalyst in time, which will also limit the progress of the reaction. Improving the utilization rate of the catalyst in the catalytic layer, improving the conductivity of electrons in the catalytic layer and promoting the diffusion of the reaction gas in the catalytic layer are very meaningful research work. In addition, water is generated by the reaction in the cathode catalytic layer of the membrane electrode. If the produced water is not discharged in time, water flooding will occur, resulting in reduced catalyst activity and hindered diffusion of the cathode reaction gas, especially at high current densities. significantly reduced. Membrane electrode cathode water management is also a research hotspot in recent years, in order to improve cathode water management in an effective way, prevent the occurrence of water flooding, and improve the performance of membrane electrodes.
中国专利申请200710125266.9公开了一种“燃料电池膜电极及其制备方法”,该专利中的气体扩散层包括一碳纳米管薄膜结构,该碳纳米管薄膜结构包括至少一个碳纳米管层,且该碳纳米管层中的碳纳米管沿同一方向择优取向排列。该碳纳米管薄膜作为微孔层可以形成大量均匀且规则分布的微孔结构,而且具有极大的比表面积,这种结构可以有效均匀地扩散反应气体和燃料。另外该碳纳米管薄膜的电阻率低,可以有效地传导电子。但是该专利申请仅仅涉及在微孔层(扩散层)中添加碳纳米管,而不涉及在催化剂层添加这类物质。Chinese patent application 200710125266.9 discloses a "fuel cell membrane electrode and its preparation method", the gas diffusion layer in this patent includes a carbon nanotube film structure, the carbon nanotube film structure includes at least one carbon nanotube layer, and the The carbon nanotubes in the carbon nanotube layer are preferentially aligned along the same direction. As a microporous layer, the carbon nanotube film can form a large number of uniform and regularly distributed microporous structures, and has a large specific surface area. This structure can effectively and uniformly diffuse reaction gases and fuels. In addition, the carbon nanotube film has low resistivity and can effectively conduct electrons. But this patent application only involves the addition of carbon nanotubes in the microporous layer (diffusion layer), not the addition of such substances in the catalyst layer.
中国专利申请201410358042.2公开了“燃料电池膜电极”,该专利中用到的气体扩散层包括一碳纤维膜,该碳纤维膜包括多个碳纳米管和多个石墨片,该碳纳米管首尾相连且沿同一方向延伸形成一膜状,每一根碳纳米管被多个石墨片包围,且每一石墨片与碳纳米管的外壁之间形成一角度。这种气体扩散层增大了碳纤维膜的比表面积,提高了气体扩散层均匀扩散反应气体的能力,而且碳纤维膜的电阻率较小,提高了气体扩散传导电子的能力,进一步提高了燃料电池膜电极的反应活性等电化学性能。该专利申请也仅仅只涉及在气体扩散层中添加碳纤维,不涉及催化层。Chinese patent application 201410358042.2 discloses "fuel cell membrane electrode". The gas diffusion layer used in this patent includes a carbon fiber membrane, and the carbon fiber membrane includes a plurality of carbon nanotubes and a plurality of graphite sheets. The carbon nanotubes are connected end to end and along the Extending in the same direction to form a film, each carbon nanotube is surrounded by a plurality of graphite sheets, and an angle is formed between each graphite sheet and the outer wall of the carbon nanotube. This gas diffusion layer increases the specific surface area of the carbon fiber membrane, improves the ability of the gas diffusion layer to evenly diffuse the reaction gas, and the resistivity of the carbon fiber membrane is small, which improves the ability of the gas to diffuse and conduct electrons, and further improves the performance of the fuel cell membrane. Electrochemical properties such as the reactivity of the electrode. This patent application also only involves the addition of carbon fibers in the gas diffusion layer, not the catalytic layer.
中国专利申请201310353990.2公开了“质子交换膜燃料电池用催化剂、其制备方法及质子交换膜燃料电池”,该专利中用到的催化剂载体为活性炭、碳纳米管和螺旋状碳纳米管中的一种或多种以上,制备出来的催化剂能够形成三维网络状结构,具有连续的反应物/产物传输通道、质子迁移通道和电子传导通道,不仅改善了电子导电性能,也能够改善传质效果,减小各项极化损失。采用使用碳纳米管载体的催化剂来制备催化层,尝尝存在疏水性及孔隙率不可调节的问题。Chinese patent application 201310353990.2 discloses "catalyst for proton exchange membrane fuel cell, its preparation method and proton exchange membrane fuel cell". The catalyst carrier used in this patent is one of activated carbon, carbon nanotube and helical carbon nanotube or more, the prepared catalyst can form a three-dimensional network structure with continuous reactant/product transport channels, proton migration channels and electron conduction channels, which not only improves the electronic conductivity, but also improves the mass transfer effect and reduces the Various polarization losses. The use of catalysts supported by carbon nanotubes to prepare the catalytic layer has the problem of unadjustable hydrophobicity and porosity.
中国专利申请99112826.5公开了“薄层疏水催化层电极、膜电极三合一组件的制备方法”,该专利提出往阴极催化层中添加用疏水性物质如PTFE处理的碳粉,添加疏水性物质后有利于在电极催化层中形成气体通道,有利于反应气体或产物气体在催化层中的扩散。申请提出的方法能起到较好的效果,但是制备PTFE处理的碳粉比较麻烦,调控催化层的孔隙率也比较困难。Chinese patent application 99112826.5 discloses "Preparation method of three-in-one assembly of thin-layer hydrophobic catalytic layer electrode and membrane electrode". The patent proposes to add carbon powder treated with hydrophobic substances such as PTFE to the cathode catalytic layer. It is conducive to the formation of gas channels in the electrode catalytic layer and the diffusion of reaction gas or product gas in the catalytic layer. The method proposed in the application can achieve better results, but it is troublesome to prepare PTFE-treated carbon powder, and it is also difficult to control the porosity of the catalytic layer.
中国专利申请200810228028.5公开了“一种薄层憎水催化层的制备方法”,该专利中将催化剂和憎水剂调制成墨水,然后喷涂到耐热介质上,进行高温焙烧实现憎水化;焙烧后再喷涂质子导体聚合物实现电极立体化。这种方法制备的膜电极具有良好的疏水孔道,避免燃料电池高电流密度区的水淹现象,性能有较大的提高。但是该专利申请只是设计催化层中添加疏水性物质,没有能够很好地提高催化剂的利用率。Chinese patent application 200810228028.5 discloses "a method for preparing a thin-layer hydrophobic catalytic layer". In this patent, the catalyst and hydrophobic agent are prepared into ink, which is then sprayed on a heat-resistant medium, and subjected to high-temperature roasting to achieve hydrophobicity; roasting Then spray the proton conductor polymer to realize three-dimensional electrode. The membrane electrode prepared by this method has good hydrophobic channels, avoids the flooding phenomenon in the high current density area of the fuel cell, and greatly improves the performance. However, this patent application is only designed to add hydrophobic substances to the catalytic layer, which fails to improve the utilization rate of the catalyst.
中国专利申请201610717402.2公开了“亲水/疏水复合型多层膜电极及其制备方法”,该专利发明了阴极催化层为具有亲水性梯度的三层复合结构,靠近质子膜的一层为亲水改性层,靠近气体扩散层的一侧为疏水改性层,两层中间是未改性层,亲水层能够在低相对湿度下对质子交换膜以及催化层中离子聚合物起保湿作用,从而降低膜电极的离子传导电阻,而疏水层降低了催化层与气体扩散层之间的毛细管压力梯度,抑制了高相对湿度下水由扩散层向催化层扩散,该发明能够达到优化催化层内水分布的目的。但是制备复合型多层膜电极工序稍微复杂,也提高了膜电极的制备成本。Chinese patent application 201610717402.2 discloses "Hydrophilic/Hydrophobic Composite Multilayer Membrane Electrode and Its Preparation Method". The patent invented that the cathode catalytic layer is a three-layer composite structure with a hydrophilic gradient, and the layer close to the proton membrane is a hydrophilic Water-modified layer, the side close to the gas diffusion layer is a hydrophobic modified layer, and the middle of the two layers is an unmodified layer. The hydrophilic layer can moisturize the proton exchange membrane and the ionic polymer in the catalytic layer at low relative humidity , thereby reducing the ion conduction resistance of the membrane electrode, and the hydrophobic layer reduces the capillary pressure gradient between the catalytic layer and the gas diffusion layer, and inhibits the diffusion of water from the diffusion layer to the catalytic layer under high relative humidity. purpose of water distribution. However, the process of preparing a composite multilayer membrane electrode is slightly complicated, which also increases the preparation cost of the membrane electrode.
尽管上述报道均认识到构筑具有良好疏水性的阴极催化层的重要性,并做了一些尝试,但是这些方法仍存在许多的不足之处,膜电极催化层中催化剂的利用率仍有待进一步提高,催化层中电子的传导能力需要继续提高,催化层中反应气体的扩散及阴极的水管理依旧存在一些问题,致使质子交换膜燃料电池膜电极不能够在低铂载量的情况下达到高性能效果。所以对于膜电极催化层和水管理的研究有待进一步提高,尤其是对膜电极阴极催化层的研究。Although the above reports have recognized the importance of constructing a cathode catalytic layer with good hydrophobicity and made some attempts, there are still many deficiencies in these methods, and the utilization rate of the catalyst in the membrane electrode catalytic layer still needs to be further improved. The conductivity of electrons in the catalytic layer needs to be continuously improved, and there are still some problems in the diffusion of reaction gases in the catalytic layer and the water management of the cathode, so that the membrane electrode of the proton exchange membrane fuel cell cannot achieve high performance under the condition of low platinum loading. . Therefore, the research on the membrane electrode catalytic layer and water management needs to be further improved, especially the research on the membrane electrode cathode catalytic layer.
发明内容Contents of the invention
为了解决现有相关技术存在的缺陷和不足,本发明提出了一种含有三维疏水阴极催化层的膜电极的制备方法,该催化层具有高的催化剂利用率、优异的电子传导能力,高效的反应气体扩散能力和产物水的传输能力。In order to solve the defects and deficiencies in the existing related technologies, the present invention proposes a method for preparing a membrane electrode containing a three-dimensional hydrophobic cathode catalytic layer. The catalytic layer has high catalyst utilization, excellent electron conductivity, and efficient reaction Gas diffusion capacity and product water transport capacity.
本发明催化层中添加的三维结构助剂一方面能构筑催化层的三维结构,提高催化剂的利用率和反应气体的扩散;另一方面由于所添加的三维结构助剂具有低的电阻率,能够提高催化层中电子的传导能力;而催化层中添加的疏水性物质可以有效改善阴极催化层的水管理能力,进一步提升催化层反应气体扩散能力。可用做膜电极的阴极催化层,能够极大地提升膜电极的性能并简化制作步骤和制造工艺。The three-dimensional structure aid added in the catalyst layer of the present invention can build the three-dimensional structure of the catalyst layer on the one hand, improve the utilization rate of the catalyst and the diffusion of the reaction gas; on the other hand, because the added three-dimensional structure aid has low resistivity, it can Improve the conductivity of electrons in the catalytic layer; and the hydrophobic substance added to the catalytic layer can effectively improve the water management ability of the cathode catalytic layer, and further enhance the diffusion capacity of the catalytic layer reaction gas. It can be used as the cathode catalytic layer of the membrane electrode, which can greatly improve the performance of the membrane electrode and simplify the manufacturing steps and manufacturing process.
本发明的目的至少通过如下技术方案之一实现。The object of the present invention is achieved at least by one of the following technical solutions.
一种含有三维疏水阴极催化层的膜电极的制备方法,包括如下步骤:A method for preparing a membrane electrode containing a three-dimensional hydrophobic cathode catalyst layer, comprising the steps of:
(1)质子交换膜先后用去离子水、双氧水和硫酸进行预处理;(1) The proton exchange membrane is pretreated successively with deionized water, hydrogen peroxide and sulfuric acid;
(2)将三维结构助剂进行预处理;(2) Pretreat the three-dimensional structure additive;
(3)将碳载铂催化剂、全氟磺酸聚合物、三维结构助剂、疏水性物质及易挥发性溶剂按10:2-4:0.1-2:0.1-0.5:500-1500的质量比混合后,经过超声波震荡后分散成墨水状溶液,再将该墨水状溶液涂敷在质子交换膜一侧作为膜电极的阴极催化层,然后将涂敷好的质子交换膜在40-60 ℃下热处理20-40分钟,即制得含有三维疏水性的阴极催化层;所述阴极催化层中活性组分Pt载量为0.1-0.3mgPt·cm-2;(3) Put the carbon-supported platinum catalyst, perfluorosulfonic acid polymer, three-dimensional structure aid, hydrophobic substance and volatile solvent at a mass ratio of 10:2-4:0.1-2:0.1-0.5:500-1500 After mixing, disperse into an ink-like solution after ultrasonic vibration, and then apply the ink-like solution on one side of the proton exchange membrane as the cathode catalyst layer of the membrane electrode, and then put the coated proton exchange membrane at 40-60 ℃ Heat treatment for 20-40 minutes to prepare a three-dimensional hydrophobic cathode catalytic layer; the active component Pt loading in the cathode catalytic layer is 0.1-0.3mgPt·cm -2 ;
(4)将碳载铂催化剂、全氟磺酸聚合物和易挥发性溶剂按10:2-4:500-1500的质量比混合后,经超声波震荡后分散成墨水状溶液,将该溶液涂敷在经步骤(3)处理之后的质子交换膜的另一侧,然后将涂敷好的质子交换膜在40-60 ℃下热处理20-40分钟,制得膜电极的阳极催化层;所述阳极催化层中Pt的载量控制在0.05-0.15mgPt·cm-2;(4) Mix the carbon-supported platinum catalyst, perfluorosulfonic acid polymer and volatile solvent at a mass ratio of 10:2-4:500-1500, disperse into an ink-like solution after ultrasonic vibration, and apply the solution coated on the other side of the proton exchange membrane treated in step (3), and then heat-treated the coated proton exchange membrane at 40-60°C for 20-40 minutes to prepare the anode catalyst layer of the membrane electrode; The loading of Pt in the anode catalytic layer is controlled at 0.05-0.15mgPt·cm -2 ;
(5)将碳纸浸入聚四氟乙烯乳液中进行输水处理;(5) Immerse the carbon paper in the polytetrafluoroethylene emulsion for water transfer treatment;
(6)将碳粉、聚四氟乙烯乳液、易挥发性溶剂按10:1-3: 500-1500的质量比混合,超声波震荡分散成墨水状溶液,将该溶液涂敷到经过疏水化处理的碳纸的一侧,碳材料的总量控制在2.0-4.0 mg cm-2,将涂敷好的碳纸在40-60℃下热处理20-40分钟,干燥后在300-400℃下焙烧1-3小时,制得阴极气体扩散层;(6) Mix carbon powder, polytetrafluoroethylene emulsion, and volatile solvent at a mass ratio of 10:1-3:500-1500, disperse into an ink-like solution by ultrasonic vibration, and apply the solution to the surface after hydrophobic treatment. One side of the carbon paper, the total amount of carbon material is controlled at 2.0-4.0 mg cm -2 , the coated carbon paper is heat-treated at 40-60°C for 20-40 minutes, dried and baked at 300-400°C 1-3 hours, made the cathode gas diffusion layer;
(7)将碳粉、聚四氟乙烯乳液和易挥发性溶剂按10:1-3: 500-1500的质量比混合,超声波震荡分散成墨水状溶液,将该溶液涂敷到经过疏水化处理的碳纸的一侧,将涂敷好的碳纸在40-60℃下热处理20-40分钟,干燥后在300-400℃下焙烧1-3小时,制得阳极气体扩散层;(7) Mix carbon powder, polytetrafluoroethylene emulsion and volatile solvent at a mass ratio of 10:1-3: 500-1500, disperse into an ink-like solution by ultrasonic vibration, and apply the solution to the surface after hydrophobic treatment On one side of the carbon paper, heat-treat the coated carbon paper at 40-60°C for 20-40 minutes, dry it and bake it at 300-400°C for 1-3 hours to prepare the anode gas diffusion layer;
(8)将经(6)和(7)处理之后的两张气体扩散层分别贴合在经步骤(4)处理之后的质子交换膜的两侧,即制得阴阳极催化层、气体扩散层的膜电极。(8) Paste the two gas diffusion layers treated in (6) and (7) respectively on both sides of the proton exchange membrane after the treatment in step (4) to prepare the cathode and anode catalyst layers and the gas diffusion layer the membrane electrode.
上述方法中,所述的质子交换膜为厚度20—100微米厚度的全氟磺酸树脂膜。In the above method, the proton exchange membrane is a perfluorosulfonic acid resin membrane with a thickness of 20-100 microns.
上述方法中,所述易挥发性溶剂为蒸馏水、乙醇、异丙醇中的一种以上。In the above method, the volatile solvent is more than one of distilled water, ethanol, and isopropanol.
上述方法中,所述全氟磺酸聚合物包括Nafion212或Nafion211质子交换膜。In the above method, the perfluorosulfonic acid polymer includes Nafion212 or Nafion211 proton exchange membrane.
上述方法中,所述三维结构助剂包括碳纳米管、氮化碳纳米管、碳纤维或氮化碳纤维;所述三维结构助剂添加量为阴极催化层质量的1.0%-20.0%。In the above method, the three-dimensional structure aid includes carbon nanotubes, carbon nitride nanotubes, carbon fibers or carbon nitride fibers; the added amount of the three-dimensional structure aid is 1.0%-20.0% of the mass of the cathode catalytic layer.
上述方法中,步骤(2)中,所述将三维结构助剂进行预处理包括如下步骤:In the above method, in step (2), the pretreatment of the three-dimensional structure aid includes the following steps:
将三维结构助剂置于丙酮中,常温下搅拌8-12小时,过滤后再将其置于0.1-2mol L-1的硫酸溶液中,50-70摄氏度的条件下搅拌8-12小时除去可能毒化催化剂层的金属离子,过滤并用去离子水洗涤至中性,烘干。Put the three-dimensional structure aid in acetone, stir at room temperature for 8-12 hours, filter and then place it in 0.1-2mol L -1 sulfuric acid solution, stir for 8-12 hours at 50-70 degrees Celsius to remove possible The metal ions in the poisoned catalyst layer were filtered, washed with deionized water until neutral, and dried.
上述方法中,步骤(3)中,在阴极催化层中添加三维结构助剂的同时,添加疏水性物质,所述疏水性物质包括聚四氟乙烯(PTFE)乳液、聚偏氟乙烯(PVDF)乳液或氟碳树脂;所述疏水性物质的添加量为阴极催化层质量的1-5%。In the above method, in step (3), while adding a three-dimensional structure aid to the cathode catalyst layer, a hydrophobic substance is added, and the hydrophobic substance includes polytetrafluoroethylene (PTFE) emulsion, polyvinylidene fluoride (PVDF) Emulsion or fluorocarbon resin; the added amount of the hydrophobic substance is 1-5% of the mass of the cathode catalytic layer.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明所采用的三维结构助剂和疏水性物质是直接添加在阴极催化剂浆料中与催化剂浆料混合均匀即可,在阴极催化层中添加三维结构助剂能够构筑催化层的三维结构,提高催化剂的利用率,提升电子的传导能力和促进反应气体的扩散;而添加疏水性物质可以有效地改进阴极的水管理,将阴极产生的水排出,能够保证阴极催化层催化剂的活性、反应气体顺畅扩散至催化层,从而提高膜电极的性能,尤其是在大电流密度区的膜电极性能;1. The three-dimensional structure aids and hydrophobic substances used in the present invention can be directly added to the cathode catalyst slurry and mixed evenly with the catalyst slurry. Adding the three-dimensional structure aids in the cathode catalyst layer can build the three-dimensional structure of the catalyst layer , improve the utilization rate of the catalyst, enhance the conductivity of the electrons and promote the diffusion of the reaction gas; and the addition of hydrophobic substances can effectively improve the water management of the cathode, discharge the water generated by the cathode, and ensure the activity and reaction of the catalyst in the cathode catalytic layer. The gas diffuses smoothly to the catalytic layer, thereby improving the performance of the membrane electrode, especially in the high current density area;
2.本发明所制备的膜电极高性能体现在:三维结构助剂的添加一方面提高了催化剂的利用率,促进反应气体的扩散;另一方面由于三维结构助剂具有低的电阻率,能够提高催化层中电子的传导能力提高了催化剂的利用率、促进了气体的扩散;在大电流密度区,具有疏水性的阴极催化层可以将产生的水快速地转移到气体扩散层并排出,同时加速反应气体扩散至催化层中参与反应,在三维结构助剂和疏水性物质两者的协同作用下,达到提高膜电极输出性能的目的;2. The high performance of the membrane electrode prepared by the present invention is reflected in: on the one hand, the addition of the three-dimensional structure aid improves the utilization rate of the catalyst and promotes the diffusion of the reaction gas; Improving the conductivity of electrons in the catalytic layer improves the utilization rate of the catalyst and promotes the diffusion of gas; in the high current density region, the hydrophobic cathode catalytic layer can quickly transfer the generated water to the gas diffusion layer and discharge it. Accelerate the diffusion of the reaction gas into the catalytic layer to participate in the reaction, and achieve the purpose of improving the output performance of the membrane electrode under the synergistic effect of the three-dimensional structure aid and the hydrophobic substance;
3.本发明往阴极催化层中添加三维结构助剂和疏水性物质的方法简单易操作,不需要经过特殊的、繁琐的操作步骤;3. The method of adding three-dimensional structure aids and hydrophobic substances to the cathode catalytic layer of the present invention is simple and easy to operate, and does not need to go through special and cumbersome operation steps;
4.本发明所述的膜电极所组装的单电池性能好,在工作电压为0.6-0.7V的条件下,电流密度明显高于阴极催化层未添加三维结构助剂和疏水性物质的膜电极;在大电流密度区,其性能更加明显优于阴极催化层没有添加三维结构助剂和疏水性物质的膜电极。4. The single cell assembled by the membrane electrode of the present invention has good performance. Under the condition of working voltage of 0.6-0.7V, the current density is significantly higher than that of the membrane electrode without adding three-dimensional structure aids and hydrophobic substances to the cathode catalytic layer ; In the high current density area, its performance is more obviously better than that of the membrane electrode without adding three-dimensional structure aids and hydrophobic substances in the cathode catalytic layer.
附图说明Description of drawings
图1为实施例1至实施例3制备的膜电极与对比实施例所制备的空白膜电极在氢-空气电池温度为70摄氏度,阴阳极背压为30psi,相对湿度为100%下的单电池极化曲线对比图;Figure 1 shows the membrane electrodes prepared in Examples 1 to 3 and the blank membrane electrodes prepared in Comparative Examples in a hydrogen-air battery at a temperature of 70 degrees Celsius, a cathode and anode back pressure of 30 psi, and a relative humidity of 100%. Polarization curve comparison chart;
图2为实施例1至实施例3制备的膜电极与对比实施例所制备的空白膜电极在氢-空气电池温度为70摄氏度,阴阳极背压为30psi,相对湿度为100%下的单电池功率密度对比图。Figure 2 shows the membrane electrodes prepared in Examples 1 to 3 and the blank membrane electrodes prepared in Comparative Examples in a hydrogen-air battery at a temperature of 70 degrees Celsius, a cathode and anode back pressure of 30 psi, and a relative humidity of 100%. Power Density Comparison Chart.
具体实施方式detailed description
下面结合附图和具体实施例对本发明的发明目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。除非特别说明,本发明采用的材料和加工方法为本技术领域常规材料和加工方法。The purpose of the invention of the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments, and the embodiments cannot be repeated here one by one, but the implementation of the present invention is not therefore limited to the following embodiments. Unless otherwise specified, the materials and processing methods used in the present invention are conventional materials and processing methods in the technical field.
实施例1Example 1
第一步取4cm×4cm的Nafion211质子交换膜,首先置于去离子水中80℃处理2小时,然后置于质量百分浓度为5%的双氧水中80℃处理2小时,蒸馏水洗涤后,在0.5mol L-1的硫酸溶液中80℃下处理2小时,然后用蒸馏水洗涤干净。将处理好的Nafion膜置于制备膜电极的模具上固定,活性区域大小为5cm2,以防止膜在喷涂催化剂浆料的过程中收缩变形;The first step is to take a 4cm×4cm Nafion211 proton exchange membrane, first place it in deionized water at 80°C for 2 hours, then place it in 5% hydrogen peroxide at 80°C for 2 hours, wash it with distilled water, and wash it at 0.5 mol L -1 of sulfuric acid solution at 80 ° C for 2 hours, and then washed with distilled water. Place the treated Nafion membrane on the mold for preparing the membrane electrode and fix it, the size of the active area is 5cm 2 , to prevent the membrane from shrinking and deforming during the process of spraying the catalyst slurry;
第二步将碳纳米管放入丙酮中,常温下搅拌10小时,过滤后再将碳纳米管置于1mol/L的硫酸溶液中,60摄氏度的条件下搅拌10小时,过滤并用去离子水洗涤碳纳米管至中性,烘干;In the second step, put the carbon nanotubes in acetone, stir at room temperature for 10 hours, filter and then place the carbon nanotubes in a 1mol/L sulfuric acid solution, stir for 10 hours at 60 degrees Celsius, filter and wash with deionized water Carbon nanotubes to neutral, dry;
第三步按10:3:1:0.3:1000的质量比分别称取4.2 mg Pt含量为60%的Pt/C催化剂(Johnson Matthey)、25.2mg全氟磺酸聚合物溶液(5wt% Nafion,DuPont)、0.42mg碳纳米管、2.52mg聚四氟乙烯乳液(质量分数为5%)及0.42g异丙醇,混合后经超声波震荡分散成催化剂浆料,在红外灯照射下,涂敷在质子交换膜的一侧,然后在50℃下热处理30分钟,即制得阴极催化层,其中Pt的载量为0.2 mg cm-1;In the third step, 4.2 mg of Pt/C catalyst (Johnson Matthey) with a Pt content of 60% and 25.2 mg of perfluorosulfonic acid polymer solution (5wt% Nafion, DuPont), 0.42mg of carbon nanotubes, 2.52mg of polytetrafluoroethylene emulsion (5% mass fraction) and 0.42g of isopropanol were mixed and dispersed into a catalyst slurry by ultrasonic vibration, and coated on One side of the proton exchange membrane, and then heat-treated at 50°C for 30 minutes to prepare the cathode catalytic layer, wherein the loading of Pt is 0.2 mg cm -1 ;
第四步按10:3:1000的质量比分别称取2.1mg Pt含量为60%的Pt/C催化剂(JohnsonMatthey)、12.6mg全氟磺酸聚合物溶液(5wt% Nafion,DuPont)及0.21g异丙醇,混合后经超声波震荡分散成催化剂浆料,在红外灯照射下,涂敷在第四步喷涂完成的质子交换膜的另一侧,然后将涂敷好的质子交换膜在50℃下热处理30分钟,制得膜电极的阳极催化层,其中Pt的载量为0.1mg cm-1;In the fourth step, 2.1 mg of Pt/C catalyst (Johnson Matthey) with a Pt content of 60%, 12.6 mg of perfluorosulfonic acid polymer solution (5wt% Nafion, DuPont) and 0.21 g of Isopropanol, after mixing, it is dispersed into a catalyst slurry by ultrasonic vibration, and under the irradiation of infrared lamps, it is coated on the other side of the proton exchange membrane that has been sprayed in the fourth step, and then the coated proton exchange membrane is heated at 50°C heat treatment for 30 minutes to prepare the anode catalyst layer of the membrane electrode, wherein the loading of Pt is 0.1 mg cm -1 ;
第五步将TGP-H-60 碳纸裁剪成2.5 cm×2.5 cm 的小块,置于丙酮中处理2小时,以除去表面有机物杂质,干燥后于质量百分浓度为10%的聚四氟乙烯乳液中浸泡15分钟,干燥,使聚四氟乙烯占整张碳纸重量的10%,在350℃下焙烧2小时,使聚四氟乙烯在碳纸中烧结,即完成碳纸的输水处理;The fifth step is to cut the TGP-H-60 carbon paper into small pieces of 2.5 cm × 2.5 cm, and place it in acetone for 2 hours to remove surface organic impurities. Soak in ethylene emulsion for 15 minutes, dry, so that PTFE accounts for 10% of the weight of the entire carbon paper, and bake at 350°C for 2 hours, so that PTFE is sintered in the carbon paper, that is, the water transfer of the carbon paper is completed deal with;
第六步按10:2:1000的质量比分别称取37.5mg XC-72碳粉、150mg 聚四氟乙烯乳液(质量分数为5%)及3.75g异丙醇溶液,混合后经超声波震荡分散成墨水状溶液,将该溶液涂敷到经过疏水化处理的碳纸的一侧,将涂敷好的碳纸在50℃下烘烤30分钟,干燥后在350℃下焙烧2小时,制得气体扩散层;The sixth step is to weigh 37.5mg XC-72 carbon powder, 150mg polytetrafluoroethylene emulsion (5% mass fraction) and 3.75g isopropanol solution according to the mass ratio of 10:2:1000, mix and disperse by ultrasonic vibration Form an ink-like solution, apply the solution to one side of the hydrophobized carbon paper, bake the coated carbon paper at 50°C for 30 minutes, and bake it at 350°C for 2 hours after drying to obtain gas diffusion layer;
第七步将经第六步喷涂好的两张气体扩散层分别贴合在经第三步喷涂好阴阳极催化层的质子交换膜的两侧,即制得膜电极。In the seventh step, the two gas diffusion layers sprayed in the sixth step are pasted respectively on both sides of the proton exchange membrane with the cathode and anode catalyst layers sprayed in the third step, so as to obtain the membrane electrode.
将膜电极置于单电池中,在电池温度为70度,阴阳极完全增湿的条件下,活化处理6小时,反复放电使其充分活化,电池性能测试条件如下:燃料气体为氢气,氧化剂为空气,电池温度为70℃,阴阳极背压均为30psi,阴阳极相对湿度为100%。The membrane electrode is placed in a single cell. Under the conditions of the cell temperature of 70 degrees and the cathode and anode are fully humidified, the activation treatment is performed for 6 hours, and the battery is fully activated by repeated discharge. The battery performance test conditions are as follows: the fuel gas is hydrogen, the oxidant is Air, the battery temperature is 70°C, the back pressure of the cathode and anode is 30psi, and the relative humidity of the cathode and anode is 100%.
在电池温度为70度,阴阳极相对湿度为100%的条件下,电池极化曲线如图1所示,在电压为0.7V 和0.6V时,电流密度可分别达到1000mAcm-2和1450 mA cm-2。单电池功率密度曲线如图2所示,最大功率密度为872mWcm-2。Under the condition that the battery temperature is 70 degrees and the relative humidity of cathode and anode is 100%, the polarization curve of the battery is shown in Figure 1. When the voltage is 0.7V and 0.6V, the current density can reach 1000mAcm -2 and 1450 mA cm respectively. -2 . The power density curve of a single cell is shown in Figure 2, and the maximum power density is 872mWcm -2 .
实施例2Example 2
除阴极催化层浆料按10:3:1:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管与异丙醇外(不添加聚四氟乙烯),其他步骤与实例1相同,电池活化方式和测试方法与实例1完全相同。电池极化曲线如图1所示,在电压为0.7V 和0.6V时,电流密度可分别达到800mAcm-2 和1300mAcm-2。单电池功率密度曲线如图2所示,最大功率密度为801mWcm-2。In addition to weighing the Pt/C catalyst with a Pt content of 60%, perfluorosulfonic acid polymer, carbon nanotubes and isopropanol in a mass ratio of 10:3:1:1000 for the cathode catalyst layer slurry (without adding poly Tetrafluoroethylene), other steps are the same as Example 1, and the battery activation method and test method are exactly the same as Example 1. The polarization curve of the battery is shown in Figure 1. When the voltage is 0.7V and 0.6V, the current density can reach 800mAcm -2 and 1300mAcm -2 respectively. The single cell power density curve is shown in Figure 2, and the maximum power density is 801mWcm -2 .
实施例3Example 3
除阴极催化层浆料按10:3:0.3:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、聚四氟乙烯乳液与异丙醇外(不添加碳纳米管),其他步骤与实例1相同,电池活化方式和测试方法与实例1完全相同。电池极化曲线如图1所示,在电压为0.7V 和0.6V时,电流密度可分别达到800mAcm-2 和1300mAcm-2。单电池功率密度曲线如图2所示,最大功率密度为808mWcm-2。In addition to weighing the Pt/C catalyst with a Pt content of 60%, perfluorosulfonic acid polymer, polytetrafluoroethylene emulsion and isopropanol (not Adding carbon nanotubes), other steps are the same as Example 1, and the battery activation method and test method are exactly the same as Example 1. The polarization curve of the battery is shown in Figure 1. When the voltage is 0.7V and 0.6V, the current density can reach 800mAcm -2 and 1300mAcm -2 respectively. The single cell power density curve is shown in Figure 2, and the maximum power density is 808mWcm -2 .
实施例4Example 4
除阴极催化层浆料按10:3:0.1:0.3:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管、聚四氟乙烯与异丙醇外,其他步骤与实例1相同。In addition to the cathode catalyst layer slurry, weigh the Pt/C catalyst, perfluorosulfonic acid polymer, carbon nanotube, polytetrafluoroethylene and isocyanate with Pt content of 60% according to the mass ratio of 10:3:0.1:0.3:1000 Except propanol, other steps are identical with example 1.
实施例5Example 5
除阴极催化层浆料按10:3:2:0.3:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管、聚四氟乙烯与异丙醇外,其他步骤与实例1相同。In addition to the cathode catalyst layer slurry, the Pt content is 60% Pt/C catalyst, perfluorosulfonic acid polymer, carbon nanotube, polytetrafluoroethylene and isocyanate Except propanol, other steps are identical with example 1.
实施例6Example 6
除阴极催化层浆料按10:3:1:0.1:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管、聚四氟乙烯与异丙醇外,其他步骤与实例1相同。In addition to the cathode catalyst layer slurry, the Pt content is 60% Pt/C catalyst, perfluorosulfonic acid polymer, carbon nanotube, polytetrafluoroethylene and isocyanate Except propanol, other steps are identical with example 1.
实施例7Example 7
除阴极催化层浆料按10:3:1:0.5:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管、聚四氟乙烯与异丙醇外,其他步骤与实例1相同。In addition to the cathode catalyst layer slurry, the Pt content is 60% Pt/C catalyst, perfluorosulfonic acid polymer, carbon nanotube, polytetrafluoroethylene and isocyanate Except propanol, other steps are identical with example 1.
实施例8Example 8
除阴极催化层浆料按10:3:1:0.3:1000的质量比来称取Pt含量为20%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管、聚四氟乙烯与异丙醇外,其他步骤与实例1相同。In addition to the cathode catalyst layer slurry, the Pt content is 20% Pt/C catalyst, perfluorosulfonic acid polymer, carbon nanotube, polytetrafluoroethylene and isocyanate Except propanol, other steps are identical with example 1.
实施例9Example 9
除阴极催化层浆料按10:3:1:0.3:1000的质量比来称取Pt含量为40%的Pt/C催化剂、全氟磺酸聚合物、碳纳米管、聚四氟乙烯与异丙醇外,其他步骤与实例1相同。In addition to the cathode catalyst layer slurry, the Pt content is 40% Pt/C catalyst, perfluorosulfonic acid polymer, carbon nanotube, polytetrafluoroethylene and isocyanate Except propanol, other steps are identical with example 1.
对比实施例comparative example
除阴极催化层浆料按10:3:1000的质量比来称取Pt含量为60%的Pt/C催化剂、全氟磺酸聚合物、与异丙醇外(不添加碳纳米管和聚四氟乙烯乳液),其他步骤与实例1相同。In addition to weighing the Pt/C catalyst with a Pt content of 60%, perfluorosulfonic acid polymer, and isopropanol in a mass ratio of 10:3:1000 for the cathode catalyst layer slurry (without adding carbon nanotubes and polytetrafluoroethylene Vinyl fluoride emulsion), other steps are identical with example 1.
电池活化方式和测试方法与实例1完全相同。电池极化曲线如图1所示,在电压为0.7V 和0.6V时,电流密度可分别达到700 mA cm-2 和1100 mA cm-2。单电池功率密度曲线如图2所示,最大功率密度为712mW cm-2。The battery activation method and test method are exactly the same as in Example 1. The battery polarization curve is shown in Figure 1. When the voltage is 0.7V and 0.6V, the current density can reach 700 mA cm -2 and 1100 mA cm -2 respectively. The single cell power density curve is shown in Figure 2, and the maximum power density is 712mW cm -2 .
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。The above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710699034.8A CN107611452A (en) | 2017-08-15 | 2017-08-15 | A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710699034.8A CN107611452A (en) | 2017-08-15 | 2017-08-15 | A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107611452A true CN107611452A (en) | 2018-01-19 |
Family
ID=61064327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710699034.8A Pending CN107611452A (en) | 2017-08-15 | 2017-08-15 | A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107611452A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524674A (en) * | 2017-09-19 | 2019-03-26 | 粟青青 | The method for promoting fuel cell membrane electrode cathode catalysis layer performance |
CN109524676A (en) * | 2018-11-20 | 2019-03-26 | 安徽明天氢能科技股份有限公司 | A kind of fuel cell catalyst layer electrode of three-dimensional and preparation method thereof |
CN109830696A (en) * | 2019-01-09 | 2019-05-31 | 安徽明天氢能科技股份有限公司 | A kind of fuel cell membrane electrode preparation process |
CN111203236A (en) * | 2020-01-15 | 2020-05-29 | 清创人和生态工程技术有限公司 | Preparation method and application of cobalt disulfide/carbon fiber composite material |
CN112002916A (en) * | 2020-09-08 | 2020-11-27 | 广东工业大学 | Transition metal doped anode catalyst and preparation method and application thereof |
CN113328102A (en) * | 2021-06-28 | 2021-08-31 | 三一汽车制造有限公司 | Electrode, battery and vehicle |
CN113684458A (en) * | 2021-07-06 | 2021-11-23 | 华南理工大学 | A kind of carbon nanotube with multi-wall disordered structure, membrane electrode and preparation method and application for proton exchange membrane fuel cell |
CN114068955A (en) * | 2021-10-29 | 2022-02-18 | 浙江天能氢能源科技有限公司 | Fuel cell membrane electrode and preparation method thereof |
CN116815212A (en) * | 2023-05-23 | 2023-09-29 | 南京理工大学 | Enhanced electrocatalytic CO 2 Reaction device, system and method for mass transfer process |
CN116905019A (en) * | 2023-06-09 | 2023-10-20 | 南京理工大学 | Bionic electrode based on rose petal effect and membraneless electrolytic water reactor |
CN118645638A (en) * | 2024-08-15 | 2024-09-13 | 无锡威孚环保催化剂有限公司 | A layered coating CCM for a hydrogen fuel cell and a preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005582A (en) * | 2010-09-28 | 2011-04-06 | 中国科学院上海微系统与信息技术研究所 | Structure of direct alcohol fuel cell membrane electrode aggregate and preparation method thereof |
CN106229533A (en) * | 2016-08-24 | 2016-12-14 | 上海交通大学 | Compound Multilayer Film Electrode of hydrophilic/hydrophobic and preparation method thereof |
CN106784943A (en) * | 2016-12-19 | 2017-05-31 | 华南理工大学 | A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof |
-
2017
- 2017-08-15 CN CN201710699034.8A patent/CN107611452A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005582A (en) * | 2010-09-28 | 2011-04-06 | 中国科学院上海微系统与信息技术研究所 | Structure of direct alcohol fuel cell membrane electrode aggregate and preparation method thereof |
CN106229533A (en) * | 2016-08-24 | 2016-12-14 | 上海交通大学 | Compound Multilayer Film Electrode of hydrophilic/hydrophobic and preparation method thereof |
CN106784943A (en) * | 2016-12-19 | 2017-05-31 | 华南理工大学 | A kind of membrane electrode of fuel batter with proton exchange film of high power density and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
GOKCE S. AVCIOGLU等: ""Effect of PTFE nanoparticles in catalyst layer with high Pt loading on PEM fuel cell performance"", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524674A (en) * | 2017-09-19 | 2019-03-26 | 粟青青 | The method for promoting fuel cell membrane electrode cathode catalysis layer performance |
CN109524674B (en) * | 2017-09-19 | 2022-06-21 | 粟青青 | Method for improving performance of cathode catalyst layer of membrane electrode of fuel cell |
CN109524676A (en) * | 2018-11-20 | 2019-03-26 | 安徽明天氢能科技股份有限公司 | A kind of fuel cell catalyst layer electrode of three-dimensional and preparation method thereof |
CN109830696B (en) * | 2019-01-09 | 2022-03-22 | 安徽明天氢能科技股份有限公司 | Preparation process of fuel cell membrane electrode |
CN109830696A (en) * | 2019-01-09 | 2019-05-31 | 安徽明天氢能科技股份有限公司 | A kind of fuel cell membrane electrode preparation process |
CN111203236A (en) * | 2020-01-15 | 2020-05-29 | 清创人和生态工程技术有限公司 | Preparation method and application of cobalt disulfide/carbon fiber composite material |
CN111203236B (en) * | 2020-01-15 | 2023-04-18 | 清创人和生态工程技术有限公司 | Preparation method and application of cobalt disulfide/carbon fiber composite material |
CN112002916A (en) * | 2020-09-08 | 2020-11-27 | 广东工业大学 | Transition metal doped anode catalyst and preparation method and application thereof |
CN113328102A (en) * | 2021-06-28 | 2021-08-31 | 三一汽车制造有限公司 | Electrode, battery and vehicle |
CN113328102B (en) * | 2021-06-28 | 2023-08-22 | 三一汽车制造有限公司 | Electrodes, batteries and vehicles |
CN113684458A (en) * | 2021-07-06 | 2021-11-23 | 华南理工大学 | A kind of carbon nanotube with multi-wall disordered structure, membrane electrode and preparation method and application for proton exchange membrane fuel cell |
CN113684458B (en) * | 2021-07-06 | 2022-08-12 | 华南理工大学 | Membrane electrode prepared by using carbon nanotubes with multi-wall disordered structure for proton exchange membrane fuel cell and preparation method and application |
CN114068955A (en) * | 2021-10-29 | 2022-02-18 | 浙江天能氢能源科技有限公司 | Fuel cell membrane electrode and preparation method thereof |
CN116815212A (en) * | 2023-05-23 | 2023-09-29 | 南京理工大学 | Enhanced electrocatalytic CO 2 Reaction device, system and method for mass transfer process |
CN116905019A (en) * | 2023-06-09 | 2023-10-20 | 南京理工大学 | Bionic electrode based on rose petal effect and membraneless electrolytic water reactor |
CN118645638A (en) * | 2024-08-15 | 2024-09-13 | 无锡威孚环保催化剂有限公司 | A layered coating CCM for a hydrogen fuel cell and a preparation method thereof |
CN118645638B (en) * | 2024-08-15 | 2024-11-22 | 无锡威孚环保催化剂有限公司 | Layered coating CCM of hydrogen fuel cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107611452A (en) | A kind of preparation method of the membrane electrode containing three-dimensional hydrophobic cathode catalysis layer | |
AU2020101412A4 (en) | Direct methanol fuel cell membrane electrode for improving catalyst utilization and preparation method thereof | |
WO2018113485A1 (en) | Membrane electrode of high power density proton exchange membrane fuel cell and preparation method therefor | |
CN101557001B (en) | A kind of fuel cell membrane electrode and preparation method thereof | |
CN109524674B (en) | Method for improving performance of cathode catalyst layer of membrane electrode of fuel cell | |
KR101877753B1 (en) | Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof | |
CN109065923A (en) | Add the high-performance high power density membrane electrode and preparation method thereof of hydrophily carbon material preparation having from humidifying capacity | |
CN104726891B (en) | Proton exchange membrane water-electrolyzer with internal hydrogen removing function and producing method thereof | |
CN103531826B (en) | A kind of method based on sacrificing template structure direct methanol fuel cell nano-porous structure membrane electrode | |
CN111370717A (en) | Cathode catalyst slurry, cathode catalyst layer, membrane electrode and fuel cell | |
CN103358612A (en) | Methanol rejective membrane for direct methanol fuel cell as well as preparation method and application thereof | |
CN114171748A (en) | Fuel cell catalyst slurry for forming ionomer network and preparation method thereof | |
JP5510181B2 (en) | Electrocatalyst layer production method and polymer electrolyte fuel cell | |
CN113437338B (en) | Fuel cell membrane electrode and preparation method thereof | |
JPH1140172A (en) | Method for producing film-electrode joined body for fuel cell | |
CN108511777A (en) | The construction method of proton exchange membrane with three-dimensional high-specific surface area surface and its high-performance membrane electrode based on this proton exchange membrane | |
CN113871633A (en) | Method for high-efficiency in-situ activation of membrane electrode of proton exchange membrane fuel cell | |
CN103779582B (en) | A kind of method for preparing fuel cell membrane electrode | |
CN110416581A (en) | A kind of anode liquid stream homogeneous catalysis fuel cell and preparation method thereof | |
CN103490081B (en) | Modification perfluorosulfonic acid proton exchange film, its preparation method and direct methanol fuel cell membrane electrode and preparation method thereof | |
CN114420955A (en) | Preparation method and application of membrane electrode for improving management of cathode catalyst layer of proton exchange membrane fuel cell | |
KR101561101B1 (en) | Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA | |
CN105161729A (en) | Miniature direct methanol fuel cell membrane electrode and preparation method thereof | |
CN100517820C (en) | A proton exchange membrane fuel cell ordered membrane electrode and its preparation and application | |
KR100761523B1 (en) | Carbon Slurry Composition for Gas Diffusion Layer for Fuel Cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180119 |
|
RJ01 | Rejection of invention patent application after publication |