[go: up one dir, main page]

CN101550558B - 电解电极的制造工艺 - Google Patents

电解电极的制造工艺 Download PDF

Info

Publication number
CN101550558B
CN101550558B CN2009101330027A CN200910133002A CN101550558B CN 101550558 B CN101550558 B CN 101550558B CN 2009101330027 A CN2009101330027 A CN 2009101330027A CN 200910133002 A CN200910133002 A CN 200910133002A CN 101550558 B CN101550558 B CN 101550558B
Authority
CN
China
Prior art keywords
valve metal
aip
tantalum
titanium
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101330027A
Other languages
English (en)
Other versions
CN101550558A (zh
Inventor
曹翊
细沼正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Publication of CN101550558A publication Critical patent/CN101550558A/zh
Application granted granted Critical
Publication of CN101550558B publication Critical patent/CN101550558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种电解电极的制造工艺,特征在于:通过电弧离子镀方法在包括阀金属或阀金属合金的电极衬底的表面上形成包括含有晶态钽成分和晶态钛成分的阀金属或阀金属合金的电弧离子镀底涂层的工艺,通过加热烧结所述电极衬底以使包括含有晶态钽成分和晶态钛成分的阀金属或阀金属合金的电弧离子镀底涂层的仅钽成分转化成非晶物质的加热烧结工艺,以及在包括含有转化成非晶物质的钽成分和晶态钛成分的阀金属或阀金属合金的所述电弧离子镀底涂层的表面上形成电极催化剂层的工艺。

Description

电解电极的制造工艺
技术领域
本发明涉及电解电极的制造工艺以应用于工业目的的各种电解,特别涉及工业目的的电解中具有高电解耐久性的电解电极的制造工艺,包括电解铜箔制造、通过液体动力供给的铝电解电容器制造以及连续电镀铁片制造,其与在阳极的氧产生相关。
背景技术
包括电解铜箔制造、通过液体动力供给的铝电解电容器制造以及连续电镀铁片制造的最近的工业目的的电解工艺涉及在阳极的氧产生,因此,涂覆氧化铱作为电极催化剂的金属钛衬底的阳极由于其高的抵抗氧产生的性质而被广泛应用。然而,在涉及在阳极的氧产生的工业目的的该类型电解中,添加有机物质或杂质元素以稳定产物,这引起各种电化学和化学反应。由于与氧产生相关的增大的氢离子浓度(较低pH值),这些反应可能引起较高的电极催化剂消耗。
对于通常用于氧产生的情况的氧化铱电极催化剂,电极消耗被认为从自身消耗开始并伴随发生由于相同原因的电极衬底的腐蚀,并且由于电极催化剂的部分和内部消耗及脱离,强电流流到电极催化剂的其余部分上,从而催化剂消耗加速连续进行。
传统上,为了抑制电极衬底的腐蚀溶解以及有效电极催化剂从电极衬底的相继脱离,应用各种工艺,典型地如在钛衬底和电极催化剂层之间安装中间层。这样的中间层选择为具有电子导电性以及低于电极催化剂层的电极活性,设计为具有通过将电极衬底与引起腐蚀性电解质和降低的pH的氧产生区隔离来减轻衬底损伤的作用。作为满足这些条件的中间层,在以下专利文献中描述了各种工艺。
在专利文献1中,提出了中间层,其设置有作为金属的厚度在0.001g/m2和1g/m2之间的钽和/或铌氧化物并设置有横过形成在衬底表面上的氧化钛涂层的导电性。
在专利文献2中,提出了价控制(valence-controlled)半导体,其具有添加到钛和/或锡氧化物的钽和/或铌氧化物。在工业中,专利文献1和专利文献2中描述的工艺被广泛应用。
在专利文献3中,提出了形成在底涂层上的金属氧化物中间层,该底涂层包括在衬底表面上通过真空溅射制备的没有晶界的非晶层。
然而,近来,作为对高经济效率的要求的反映,工作条件变得越来越苛刻并要求高度耐久的电极。在这些情况下,制备专利文献1-3所述的中间层的工艺还没有实现希望的充分的效果。
为了解决与专利文献1-3的中间层制备相关的问题,在专利文献4中公开了形成包括单层氧化钛的中间层的方法,其中钛电极衬底自身被电氧化从而所述电极衬底上的表面钛转化成氧化钛。
对于专利文献4中描述的电极,通过电氧化形成的中间层极薄不足以提供足够的抗腐蚀性;因此,在通过电氧化制备的所述第一中间层的表面上,通过热分解工艺额外形成第二厚氧化钛单层,在其上构造电极催化剂层。
然而,专利文献4中描述的方法由于其在中间层的制备中要求两种工艺而可行性差、不经济并且不实用;更具体地,电氧化和热分解要求两种完全不同的设备和机械。
在专利文献5中,提出了能够与电极衬底紧密结合的高度抗腐蚀的致密的中间层,其包括通过电极衬底和电极催化剂之间的电极衬底的高温氧化处理制备的高温氧化物涂层。
根据专利文献5,通过电极衬底的高温氧化制备的氧化物涂层高度抗腐蚀且致密,并与电极衬底紧密结合,从而保护电极衬底并通过氧化物-氧化物结合能够充分支撑主要包括氧化物的电极催化剂。
在专利文献6中,提出了具有双层结构的中间层以进一步增强专利文献5中方法的效果,该中间层包括金属氧化物和通过高温氧化而得自衬底的高温氧化物涂层。
然而,专利文献5和专利文献6中的方法都不足以形成高度抗腐蚀的致密的并能够与电极衬底和电极催化剂之间的电极衬底紧密结合的中间层,并且不能得到高密度、抗电解腐蚀性和导电性质的电解电极。
【专利文献1】JP 60-21232B专利公报
【专利文献2】JP 60-22074B专利公报
【专利文献3】JP 2761751B专利公报
【专利文献4】JP 7-90665A专利公报
【专利文献5】JP 2004-360067A专利公报
【专利文献6】JP 2007-154237A专利公报
发明内容
本发明的目的是解决上述传统技术的问题,并为各种工业目的的电解提供具有较高密度、较高抗电解腐蚀性和增强的导电性的电解电极以及其制造工艺。
为了实现所述目的,作为解决所述问题的第一手段,本发明提供了一种电解电极的制造工艺,特征在于:
通过电弧离子镀方法(以下称作AIP方法)在包括阀金属或阀金属合金的电极衬底的表面上形成包括含有晶态钽成分和晶态钛成分的阀金属或阀金属合金的电弧离子镀底涂层(以下称作AIP底涂层)的工艺,
通过加热烧结所述电极衬底以使包括含有晶态钽成分和晶态钛成分的阀金属或阀金属合金的AIP底涂层的仅钽成分转化成非晶物质的加热烧结工艺,以及
在包括含有转化成非晶物质的钽成分和晶态钛成分的阀金属或阀金属合金的所述AIP底涂层的表面上形成电极催化剂层的工艺。
作为解决问题的第二手段,本发明提供一种电解电极的制造工艺,特征在于:在所述加热烧结工艺中,所述加热烧结工艺的烧结温度为550摄氏度或更高,并且所述加热烧结中的烧结时间为60分钟或更长;所述AIP底涂层的仅钽成分转化成非晶物质;同时阀金属成分被部分氧化。
作为解决问题的第三手段,本发明提供一种电解电极的制造工艺,特征在于:在形成所述电极催化剂层时,所述电极催化剂层通过热分解工艺形成。
作为解决问题的第四手段,本发明提供一种电解电极的制造工艺,特征在于:包括所述阀金属或阀金属合金的电极物质是钛或钛基合金。
作为解决问题的第五手段,本发明提供一种电解电极的制造工艺,特征在于:形成所述AIP底涂层的阀金属或阀金属合金由选自铌、锆、铪的至少一种金属以及钽和钛构成。
附图说明
图1是本发明的电解电极的一个示例的示意图。
具体实施方式
以下是本发明的详细说明。
图1是本发明的电解电极的示意图的一个示例。
在本发明中,包括阀金属或阀金属合金的电极衬底1被清洗以去除表面上的污染物,诸如油脂、切屑和盐。可用的清洗方法包括水洗、碱洗、超声波清洗、蒸汽清洗和擦洗。通过表面喷砂(blasting)或蚀刻的进一步处理以粗糙化并放大表面区,电极衬底1可以显著增强其结合强度并减小电解电流密度。蚀刻处理可以比简单的表面清洗更增强表面清洗效果。在沸点或接近沸点使用非氧化酸,诸如盐酸、硫酸、草酸或其混合酸,或者接近室温使用硝酸-氢氟酸(nitric hydrofluoric acid),进行蚀刻。其后,当完成时,进行用纯净水清洗并随后充分干燥。在用纯净水清洗之前,希望用大量的自来水清洗。
在本说明书中,阀金属指钛、钽、铌、锆、铪、钒、钼和钨。作为本发明的用于包括阀金属或阀金属合金的电极的衬底的典型材料,使用了钛或钛基合金。使用钛或钛基合金的优点,除了其高抗腐蚀性和经济性之外,还包括大的比强度(强度/比重)以及由于最近加工技术的发展而比较易于加工操作,诸如轧制和切割。本发明的电极可以是杆或板的简单形状,或者是通过机械加工的复杂形状。表面可以是平滑或多孔的。这里,“电极的表面”指当浸没时可以接触电解质的任何部分。
根据所述操作,包括含有钽或钛成分的晶态物质的阀金属或阀金属合金的AIP底涂层2通过AIP方法形成在包括阀金属或阀金属合金的电极衬底1的表面上。
用于形成包括含有钽或钛成分的晶态物质的阀金属或阀金属合金的AIP底涂层的金属的期望组合包括钽和钛、或者钽和钛加上选自铌、锆和铪三种元素的至少一种金属。当AIP底涂层2通过AIP方法使用这些金属形成在电极衬底1表面上时,AIP底涂层2中的金属都会是晶态物质。
AIP方法是形成强且密的涂层的方法,其中金属靶(蒸发源)被用作引起真空中弧光放电的阴极;产生的电能瞬间蒸发并释放靶金属到真空中;然而,在涂层目标上加偏压(负压)以加速实现紧密粘附的金属离子与反应气体颗粒一起到达涂层目标的表面。
当应用AIP方法时,可以使用弧光放电的极强能量来制备超硬涂层。
此外,真空弧光放电的性质导致靶材料的高电离速率,能够易于高速产生致密且高度粘合的涂层。
干涂技术包括PVD(物理气相沉积)和CVD(化学气相沉积)。作为PVD代表的一种离子镀方法的AIP方法是利用真空弧光放电的特殊离子镀工艺。
因此,AIP方法易于导致高蒸发速率。另外,其使得高熔点金属能够蒸发或者由具有不同蒸汽压的物质制备的合金靶材料能够以接近合金成分馏分蒸发,而这通常被认为是难以通过其他类型的离子镀方法实现的。AIP方法是通过本发明形成底涂层的本质方法。
在所述专利文献3第2页右栏的20-30行中,公开了,“作为在金属衬底上形成这样的材料的所述非晶层的方法,应用通过真空溅射的薄涂层制备方法。如果使用真空溅射方法,则易于获得没有晶界的非晶态的薄涂层。对于真空溅射,可以应用各种工艺,诸如DC溅射、高频波溅射、离子镀、离子束镀和簇离子束,其中可选控制诸如真空度、衬底温度、靶板的成分或纯度、沉积速率(输入功率)的参数以获得具有希望性质的薄涂层。”在专利文献3第3页右栏及其后的示例1和2中,采用高频波溅射。然而,与AIP方法不同,该高频波溅射方法具有以下弱点;靶金属的蒸发速率低,并且当通过组合具有不同熔点或蒸汽压的物质诸如钽和钛来制备合金靶材料时,形成的合金比不恒定。
在专利文献3第3页右栏及其后的示例1和2中,采用高频波溅射。然而,当对该高频波溅射方法应用钽和钛作为靶金属时,两种金属都产生非晶薄涂层。然而,通过本发明中的AIP方法,所有金属变成晶态薄涂层。然而,如专利文献3所公开的,通过真空溅射诸如DC溅射、高频波溅射、离子镀、离子束镀和簇离子束,结果都与通过高频波溅射的相同,不能产生通过AIP方法的密且强的涂层。
包括含有晶态钽和钛成分的阀金属或阀金属合金的AIP底涂层2的允许厚度通常是0.1-10μm,其根据实用立场诸如抗腐蚀性和生产力来可选地选择。
随后,包括含有晶态钽成分和晶态钛成分的阀金属或阀金属合金的AIP底涂层2的仅钽成分通过加热烧结电极衬底1而转化成非晶物质。作为该情形的加热烧结条件,当烧结温度为550摄氏度或更高并且所述加热烧结中的烧结时间为60分钟或更长时,所述AIP底涂层2的钽成分转化成非晶物质,同时,AIP底涂层2的含有钽成分和钛成分的阀金属或阀金属合金的一部分被氧化并且AIP底涂层2变成含氧化物的层,因此改善了对通过热分解工艺形成在AIP底涂层2表面上的电极催化剂层3的粘附能力。
即,在热分解工艺中通过550摄氏度或更高形成在AIP底涂层2表面上的高温氧化涂层,与在广泛分散在AIP底涂层2中的条件下包含的氧化物的一部分结合,并通过钉扎效果(anchor effect)与AIP底涂层2强烈结合。
通过AIP底涂层2的加热烧结工艺的高温氧化特性与通常使用的板或杆状态的块体金属和合金有很大不同。
当通过本发明的示例1~3形成的具有AIP底涂层的钛衬底以及没有这种AIP底涂层的钛衬底以相同温度和相同时间被高温氧化时,在具有AIP底涂层的钛衬底的情况,通过3小时的在525摄氏度和550摄氏度的氧化材料重量的增量分别为2.09g/m2、2.52g/m2,而在没有AIP底涂层的钛衬底的情况,分别为0.45g/m2、0.65g/m2,作为参考,在纯Ta衬底的情况中,通过3小时的在525摄氏度和550摄氏度的氧化材料重量的增量分别为14.58g/m2、62.92g/m2。即,AIP底涂层的氧化材料重量的增量远宽于钛衬底,但是由于本发明的AIP底涂层包含大量的钽成分,AIP底涂层的氧化材料重量的增量远小于纯钽衬底,因此认为本发明的AIP底涂层具有高温抗氧化性。
此外,当通过EPMA(截面的表面分析)的特征X射线谱来分析以上的截面时,在AIP底涂层中,伴随高温氧化的氧分布被观察为几乎为整体并且通过增加温度引起的氧分布仍旧均匀且氧强度(oxygen strength)被更加放大,但是氧分布并不集中在对应于高温氧化涂层的最外表面层中。当AIP底涂层通过550摄氏度或更高来烧结时,由X射线衍射分析探测的阀金属氧化物的很多分布都被认为落在该氧分布上。相反地,在没有这种AIP底涂层的钛衬底中的金属钛内部以及对应于高温氧化涂层的最外表面层中没有发现氧分布,通过525摄氏度及3小时的加热烧结,氧强烈地集中在0.1μm厚度中,而通过600摄氏度及3小时的加热烧结,氧强烈地集中在0.2μm厚度中。即,通过AIP底涂层的加热烧结工艺形成的高温氧化涂层极薄,并且认为几乎所有的氧都侵入AIP底涂层。在此情形,AIP底涂层的钽成分转化成非晶物质。
另一方面,即使这样的相同程度的加热历史被应用到AIP底涂层,晶态也不总是转化成非晶物质。如比较示例1所示,当不对AIP底涂层应用加热烧结工艺时,即使通过535摄氏度和15分钟的加热烧结处理(热分解涂覆)重复12次并且提供包括氧化铱和氧化钽的电极催化剂,虽然是对应于净(net)535摄氏度和3小时的处理,X射线衍射分析也没有确认非晶物质的钽成分,但是探测到与热分解涂层相同的晶态金属钽。此外,当该截面通过EPMA的特征X射线谱分析时,氧的侵入程度浅于通过加热烧结处理施加高温氧化的AIP底涂层,并且氧强度也较小。
即,当在AIP底涂层的加热烧结工艺以及在AIP底涂层的表面上不用加热烧结工艺而形成电极催化剂层的工艺中给出相同程度的加热历史和热载荷时,前者中的钽成分的晶态物质转化成非晶物质,但后者中的钽的晶态物质不变。该事实考虑到氧扩散更加受到达到从高温氧化层的几倍到几十倍的厚度的电极催化剂层的控制。此外,由于电极催化剂层重复很多次,只要电极催化剂层的涂覆次数增加,氧的扩散速度减小。
尽管非晶金属或合金通常通过高于特有结晶温度(specific crystallizationtemperature)的温度晶化,本发明中使用的AIP底涂层的晶态钽成分表现出通过根据加热烧结处理的高温而反向转化成非晶的性能。虽然转化成非晶物质的机理还不很清楚,但是被认为是高温氧化涂层形成极少,并且除此之外大量氧快速扩散进入AIP底涂层和掺杂入构成AIP底涂层的金属或合金的晶格。
通过所述加热烧结工艺制备的非晶相的AIP底涂层是在其顶部具有致密的、极薄的、高温氧化涂层的含氧化物层,由该非晶相的AIP底涂层提供的抵抗热氧化的抗热形变效应、由高温氧化物涂层提供的致密化效应、以及由高温氧化物涂层提供的钉扎效应不仅减轻了在将要描述的电极活性物质的涂覆工艺中的热效应,而且减轻了使用中的电极的电化学氧化和腐蚀,这被期望非常有利于电极的耐久性。
然后,具有前述的金属或前述的金属氧化物作为催化剂的电极催化剂层3安装在以所述方式形成的AIP底涂层2上。根据电解的类型,应用的电极催化剂适合选自铂、氧化钌、氧化铱、氧化铑、氧化钯等,以单独或组合使用。作为要求高度耐久以抵抗诸如产生的氧、低pH和有机杂质的因素的氧产生的电极,氧化铱是最适合的。为了增强对衬底的粘附性或电解中的耐久性,希望混合诸如氧化钛、氧化钽、氧化铌和氧化锡的材料。
该电极催化剂层的可用的涂覆方法包括热分解工艺、溶胶-凝胶工艺、浆料工艺、电泳方法、CVD工艺和PVD工艺。首先,JP 48-3954B和JP46-21884B中详细描述的热分解工艺是非常合适的,其中包含组成涂层的主要物质的元素的化合物溶液被施加到衬底上,随后是干燥和加热烧结工艺以通过热分解和热合成反应形成目标氧化物。
作为电极催化剂层元素的金属化合物,列出以下物质:溶解在有机溶液中的金属醇盐、主要溶解在强酸水溶液中的金属氯化物或硝酸盐以及溶解在润滑脂中的树脂酸盐。对所述物质,添加盐酸、硝酸、草酸作为稳定剂,并且可选添加水杨酸、2-乙基己酸酯、乙酰丙酮、EDTA、乙醇胺、柠檬酸、乙二醇作为络合剂以制备涂覆溶液,该溶液使用已知的涂覆工具和方法而施加到所述氧化物中间层的表面上,该已知的涂覆工具和方法包括刷、辊、喷射、旋涂、印刷和静电涂覆。在干燥之后,在如空气的氧化性气氛的炉中提供加热烧结工艺。
以下是涉及本发明的电解电极及其制造的实施例示例和比较示例,但并不限制本发明。
示例1
JIS 1等钛板的表面通过铸铁栅格(G120尺寸)用干法喷砂加工,随后在沸腾浓缩的盐酸的水溶液中酸洗10分钟作为电极衬底的清洗工艺。洗过的电极衬底安装在电弧离子镀单元中并以Ti-Ta合金靶作为蒸发源,并且用Ti-Ta合金涂层施加到表面上作为底涂层。涂覆条件在表1中示出。
【表1】
  靶(蒸发源): 包括Ta∶Ti=60wt%∶40wt%的合金盘(背面水冷)
  达到真空的时间: 1.5×10-2Pa或更低
  衬底温度: 500摄氏度或更低
  涂覆压力: 3.0×10-1~4.0×10-1Pa
  蒸发源输入功率: 20~30V、140~160A
  涂覆时间: 15~20分钟
  涂覆厚度: 2微米(重量等效)
根据平行于电极衬底的、为检查安装的不锈板的荧光X射线分析,所述合金层的组成与靶相同。
然而,在涂覆AIP底涂层之后进行的X射线衍射显示,在衬底块体自身中观察到清晰的晶态峰并且属于AIP底涂层,这表明所述底涂层包括六方密堆(hcp)的钛和体心立方(bcc)的钽以及少量单斜系统的晶态物质。
随后,施加AIP底涂层的所述衬底在空气循环型电炉中在530摄氏度被加热烧结180分钟。X射线衍射分析示出属于AIP底涂层的钽相的宽图案,证明所述底涂层的钽相通过加热烧结从晶态物质转化成非晶物质。另外,观察到属于钛衬底和AIP底涂层的钛相的清晰的峰。
随后,通过溶解在浓盐酸中的四氯化铱和五氯化钽制备的涂覆溶液施加到所述AIP底涂层的表面上,然后在空气循环型电炉中在535摄氏度被干燥并热分解15分钟,以形成包括氧化铱和氧化钽的混合氧化物的电极催化剂层。所述涂覆溶液的施加量确定为每次处理的涂覆厚度变成作为铱金属等效物的大约1.0g/m2。涂覆和烧结工艺重复12次以获得作为铱金属等效物的12g/m2的电极催化剂层。
该试样上的X射线衍射分析显示出属于电极催化剂层的氧化铱的清晰的峰以及属于钛衬底和AIP底涂层的钛相的清晰的峰。此外,观察到属于AIP底涂层的钛相的宽图案,证明AIP底涂层的钛相即使在进行加热烧结工艺以获得电极催化剂层之后也维持非晶态。
对以所述方式制备的电解电极进行以下电解寿命评价。
电流密度:500A/dm2
电解温度:60摄氏度
电解质:150g/l硫酸水溶液
对电极:Zr板
电池电压从初始电池电压增加1.0V的点被当作电解寿命的终点。
表2示出通过加热烧结的Ti-Ta合金AIP底涂层的热处理条件、得到的AIP底涂层成分的相转化的X射线衍射分析结果以及该电极的电解寿命。与后面示出的比较示例相比很明显,由于通过加热烧结而使AIP底涂层的成分从晶态物质到非晶物质的相转化效应,该电极的耐久性显著改善。
示例2
电解电极以与示例1相同的方式制备,除了空气中的加热烧结是在560摄氏度进行120分钟之外,并且电解寿命的评价以相同程序进行。
在加热烧结之后,进行X射线衍射分析,其显示属于AIP底涂层的钽相的宽图案和氧化钽的峰出现在所有电极上,并且通过加热烧结工艺所述底涂层的钽相已经从晶态物质转化成非晶物质且部分的钽转化成氧化物。
从表2的结果可知,通过合金底涂层的热分解,钽相从晶态物质转化成非晶物质并且形成氧化钽,这确认了电极寿命进一步延长。
示例3
电解电极以与示例1相同的方式制备,除了空气中的加热烧结是在575摄氏度进行80分钟之外,并且电解寿命的评价以相同程序进行。
在加热烧结之后,进行X射线衍射分析,其显示属于AIP底涂层的钽相的宽图案以及氧化钽和氧化钛的峰出现在所有电极上,并且通过加热烧结工艺所述底涂层的钽相已经从晶态物质转化成非晶物质且部分的钽转化成氧化物。
从表2的结果可知,通过AIP底涂层的加热烧结,钽相从晶态物质转化成非晶物质并且形成氧化钽和氧化钛两种氧化物相,这确认了电极寿命进一步延长。
比较示例1
电解电极以与示例1相同的方式制备,除了不进行AIP底涂层的加热烧结之外,并且电解寿命的评价以相同程序进行。该比较示例1的电极寿命仅为985小时。从此结果很明显,仅通过根据本发明的衬底的AIP底涂层的加热烧结就显著改善了电极的耐久性。
该试样上的X射线衍射分析示出属于电极催化剂层的氧化铱的清晰的峰以及属于钛衬底和AIP底涂层的钛相的清晰的峰。此外,观察到属于AIP底涂层的钽相的清晰的峰,证明即使在进行热分解以获得电极催化剂层之后,AIP底涂层的钽相也不转化成非晶态而是保持晶态。
比较示例2
电极衬底以与示例1相同的方式处理,除了空气中AIP底涂层的加热烧结工艺是在470摄氏度进行180分钟之外。AIP底涂层的加热烧结工艺之后的X射线衍射分析显示存在属于衬底块体和AIP底涂层的尖锐的晶态峰,并且AIP底涂层没有通过加热烧结工艺从晶态物质转化成非晶物质。
随后,电极催化剂层以与示例1相同的方式制备,并且电解寿命的评价以相同程序进行。该比较示例2的电极寿命与比较示例1的寿命几乎相同。从此结果很明显,电极耐久性受到AIP底涂层成分的通过热处理而从晶态物质到非晶物质的相转化以及通过加热烧结工艺形成氧化物的效应的显著影响。
【表2】
  AIP底涂层的加热烧结   AIP底涂层成分的相转化   电极寿命
示例1 530摄氏度、180分钟   Ta相:晶态→非晶Ti相:晶态物质保持 1260小时
示例2 560摄氏度、120分钟   Ta相:晶态→非晶,Ta2O5Ti相:晶态物质保持,TiO 1380小时
示例3 575摄氏度、80分钟   Ta相:晶态→非晶,Ta2O5Ti相:晶态物质保持,TiO 1590小时
比较示例1   Ta相:晶态Ti相:晶态 985小时
比较示例2 470摄氏度、180分钟   Ta相:晶态Ti相:晶态 1020小时
如上所述,根据本发明,包括含有晶态钽成分和晶态钛成分的阀金属或阀金属合金的AIP底涂层通过AIP方法形成在包括阀金属或阀金属合金的电极衬底的表面上,随后进行将AIP底涂层的钽成分转化成非晶态的加热烧结工艺以及随后的热分解,从而在AIP底涂层的表面上形成电极催化剂。
即,在AIP底涂层的钽成分的非晶相中本质上不存在晶面,并且不发生位错的移动和增生,因此,既不发生通过形成电极催化剂层的加热烧结工艺的晶粒生长,也不发生通过位错移动的热形变。热形变仅对晶态相中的钛成分发生,而对整个AIP底涂层来说被减轻。
AIP底涂层的热形变以表面形状或结构改变的形式出现,而留下在通过加热烧结工艺而层合的AIP底涂层和电极催化剂层之间形成间隙的潜在风险。AIP底涂层转化成非晶将会减小所述潜在风险。
另外,对于AIP底涂层中晶态相的钛成分,AIP底涂层的加热烧结工艺起到退火作用,从而使作为将来形变原因的内部应力减小;因此,由形成电极催化剂层的加热烧结工艺引起的热形变也等量减小,因为在AIP底涂层中立即在电极衬底的AIP处理之后,残余了大量的内部应力,恰似其他物理或化学气相沉积和镀。
此外,当在热分解工艺中电极作为整体被加热和冷却以形成电极催化剂时,由于AIP底涂层和电极催化剂层之间热膨胀系数的差异而在边界中产生的共享应力残留并引起将来电极催化剂层剥落的一个原因。然而,正如本发明的发明人的专利文献6中详细描述的,以不存在电极催化剂成分的贵金属或贵金属氧化物的状态形成在阀金属或阀金属合金表面上的高温氧化涂层是微小且坚固的。另一方面,以存在电极催化剂成分的贵金属或贵金属氧化物的状态形成在阀金属或阀金属合金表面上的高温氧化涂层是厚且脆弱的。因此,通过电极催化剂的热分解之前的加热烧结工艺而在AIP底涂层的表面上形成的高温氧化涂层是微小且坚固的,并且抵抗在AIP底涂层和电极催化剂层之间的边界中产生的共享应力的抵抗力得到强化。
因此,由于AIP底涂层和电极催化剂层的边界强结合,可能由到达衬底和AIP底涂层之间边界的电解质引起的电解过程中衬底上的腐蚀发展可以被抑制。因此,AIP底涂层和电极催化剂层具有比先前的简单高温氧化涂层和电极催化剂层更长的寿命。
另一方面,当不用加热烧结工艺而形成AIP底涂层并且电极催化剂层通过热分解而形成在AIP底涂层的表面上时,AIP底涂层的钽成分的晶态不转化成非晶态。
此外,根据本发明,在加热烧结工艺中,如果烧结温度设定在550摄氏度或更高而烧结时间为60分钟或更长;AIP底涂层的钽成分转化成非晶;阀金属成分部分氧化,AIP底涂层变成含氧化物层,并且在AIP底涂层的表面上产生的高温氧化物涂层与部分的广泛分散在AIP底涂层中的氧化物结合,以通过“钉扎效应”实现与AIP底涂层的更强的结合,并且进一步强化AIP底涂层和电极催化剂层之间的结合。
本申请要求2008年3月31日提交的日本专利申请2008-89250的优先权,其全部教导通过引用的方式在此结合。

Claims (5)

1.一种电解电极的制造工艺,特征在于:
通过电弧离子镀方法在包括阀金属或阀金属合金的电极衬底的表面上形成包括含有晶态钽成分和晶态钛成分的阀金属合金的电弧离子镀底涂层的工艺,
通过加热烧结所述电极衬底以使包括含有晶态钽成分和晶态钛成分的阀金属合金的电弧离子镀底涂层的仅钽成分转化成非晶物质的加热烧结工艺,以及
在包括含有转化成非晶物质的钽成分和晶态钛成分的阀金属合金的所述电弧离子镀底涂层的表面上形成电极催化剂层的工艺,
其中所述阀金属指钛、钽、铌、锆、铪、钒、钼和钨,及
其中电极催化剂选自铂、氧化钌、氧化铱、氧化铑和氧化钯,并且单独或组合使用。
2.根据权利要求1的电解电极的制造工艺,进一步特征在于:在所述加热烧结工艺中,所述加热烧结工艺的烧结温度为550摄氏度或更高,并且所述加热烧结中的烧结时间为60分钟或更长;所述电弧离子镀底涂层的仅钽成分转化成非晶物质;同时所述电弧离子镀底涂层的阀金属成分被部分氧化。
3.根据权利要求1的电解电极的制造工艺,进一步特征在于:在所述加热烧结工艺中,在形成所述电极催化剂层时,所述电极催化剂层通过热分解工艺形成。
4.根据权利要求1的电解电极的制造工艺,进一步特征在于:包括所述阀金属或阀金属合金的电极衬底是钛或钛基合金。
5.根据权利要求1的电解电极的制造工艺,进一步特征在于:在工艺中,形成所述电弧离子镀底涂层的所述阀金属合金由选自铌、锆、铪的至少一种金属以及钽和钛构成。
CN2009101330027A 2008-03-31 2009-03-31 电解电极的制造工艺 Active CN101550558B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP089250/08 2008-03-31
JP2008089250 2008-03-31

Publications (2)

Publication Number Publication Date
CN101550558A CN101550558A (zh) 2009-10-07
CN101550558B true CN101550558B (zh) 2012-07-18

Family

ID=40810609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101330027A Active CN101550558B (zh) 2008-03-31 2009-03-31 电解电极的制造工艺

Country Status (8)

Country Link
US (1) US8337958B2 (zh)
EP (1) EP2107136B1 (zh)
JP (1) JP4394159B2 (zh)
CN (1) CN101550558B (zh)
HK (1) HK1132305A1 (zh)
MY (1) MY143701A (zh)
PH (1) PH12009000078A1 (zh)
TW (1) TWI453306B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107136B1 (en) * 2008-03-31 2014-12-31 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
TWI453305B (zh) * 2008-03-31 2014-09-21 Permelec Electrode Ltd 電解用電極的製造方法
EP2325848B1 (en) 2009-11-11 2017-07-19 Samsung Electronics Co., Ltd. Conductive paste and solar cell
DE102010036332B4 (de) * 2010-07-12 2012-02-23 Dreistegen Gmbh Verfahren zum Beschichten von Elektroden für die Elektrolyse mittels eines Lichtbogens
JP5686456B2 (ja) * 2011-12-26 2015-03-18 ペルメレック電極株式会社 酸素発生用陽極の製造方法
WO2013100165A2 (en) * 2011-12-26 2013-07-04 Permelec Electrode Ltd. Anode for oxygen generation and manufacturing method for the same
JP5686455B2 (ja) * 2011-12-26 2015-03-18 ペルメレック電極株式会社 耐高負荷用酸素発生用陽極の製造方法
US20130333920A1 (en) * 2012-06-13 2013-12-19 Industry-Academic Cooperation Foundation, Yonsei University Metallic glass, article, and conductive paste
US10190232B2 (en) 2013-08-06 2019-01-29 Lam Research Corporation Apparatuses and methods for maintaining pH in nickel electroplating baths
DE102014203374B4 (de) * 2014-02-25 2018-05-03 Condias Gmbh Elektrodenanordnung und Verfahren zum elektrochemischen Herstellen von elektrolysiertem Wasser
DE102014203372A1 (de) * 2014-02-25 2015-08-27 Condias Gmbh Elektrodenanordnung für eine elektrochemische Behandlung einer Flüssigkeit
US20150299882A1 (en) * 2014-04-18 2015-10-22 Lam Research Corporation Nickel electroplating systems having a grain refiner releasing device
US9732434B2 (en) 2014-04-18 2017-08-15 Lam Research Corporation Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes
KR101480023B1 (ko) 2014-05-29 2015-01-07 주식회사 아벡테크 다이아몬드 전극 및 그 제조 방법
CN108866610B (zh) * 2018-06-01 2023-08-15 马赫内托特殊阳极(苏州)有限公司 一种电解阳极
WO2023089656A1 (ja) * 2021-11-16 2023-05-25 日本電信電話株式会社 半導体光電極の製造方法
KR20250004236A (ko) * 2022-04-21 2025-01-07 마그네토 스페셜 아노즈 비. 브이. 전기증착을 위한 금속 중간층을 갖는 애노드

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550576A (zh) * 2003-05-15 2004-12-01 ���÷�ҿ˵缫�ɷ����޹�˾ 电解用电极及其制造方法
CN1680625A (zh) * 2005-01-26 2005-10-12 上海大学 一种电解用涂层阳极的制造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052271A (en) * 1965-05-12 1977-10-04 Diamond Shamrock Technologies, S.A. Method of making an electrode having a coating containing a platinum metal oxide thereon
US3933616A (en) * 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
US3853739A (en) * 1972-06-23 1974-12-10 Electronor Corp Platinum group metal oxide coated electrodes
US4325776A (en) * 1977-06-20 1982-04-20 Siemens Aktiengesellschaft Method for preparing coarse-crystal or single-crystal metal films
EP0024863B1 (en) * 1979-08-31 1983-05-25 Fujitsu Limited A tantalum thin film capacitor and process for producing the same
JPS6021232B2 (ja) * 1981-05-19 1985-05-25 ペルメレツク電極株式会社 耐久性を有する電解用電極及びその製造方法
JPS6022074B2 (ja) * 1982-08-26 1985-05-30 ペルメレツク電極株式会社 耐久性を有する電解用電極及びその製造方法
JP2761751B2 (ja) * 1989-03-20 1998-06-04 ペルメレック電極株式会社 耐久性電解用電極及びその製造方法
JP2574699B2 (ja) 1989-04-21 1997-01-22 ダイソー 株式会社 酸素発生陽極及びその製法
NL9101753A (nl) * 1991-10-21 1993-05-17 Magneto Chemie Bv Anodes met verlengde levensduur en werkwijzen voor hun vervaardiging.
JP3116490B2 (ja) 1991-12-24 2000-12-11 ダイソー株式会社 酸素発生用陽極の製法
EP0593372B1 (en) * 1992-10-14 2001-09-19 Daiki Engineering Co., Ltd. Highly durable electrodes for eletrolysis and a method for preparation thereof
JP2920040B2 (ja) 1993-04-28 1999-07-19 大機エンジニアリング株式会社 高耐久性電解用電極およびその製造方法
JP2768904B2 (ja) 1993-07-21 1998-06-25 古河電気工業株式会社 酸素発生用電極
GB9316926D0 (en) * 1993-08-13 1993-09-29 Ici Plc Electrode
JP3430479B2 (ja) 1993-12-24 2003-07-28 ダイソー株式会社 酸素発生用陽極
JP3458781B2 (ja) * 1999-07-06 2003-10-20 ダイソー株式会社 金属箔の製造方法
KR100501142B1 (ko) * 2000-09-01 2005-07-18 산요덴키가부시키가이샤 리튬 2차 전지용 음극 및 그 제조 방법
US6811581B2 (en) * 2000-10-31 2004-11-02 Mitsubishi Materials Kobe Tools Corporation High-speed tool steel gear cutting tool and manufacturing method therefor
DE10262174B4 (de) * 2001-07-23 2007-03-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Harte verschleissfeste Schicht, Verfahren zum Bilden derselben und Verwendung
JP4209801B2 (ja) 2003-05-15 2009-01-14 ペルメレック電極株式会社 電解用電極及びその製造方法
DE102006004394B4 (de) * 2005-02-16 2011-01-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Hartfilm, Mehrschichthartfilm und Herstellungsverfahren dafür
US7722966B1 (en) * 2005-05-11 2010-05-25 Alliance For Sustainable Energy, Llc Nano-composite materials
JP2007154237A (ja) * 2005-12-02 2007-06-21 Permelec Electrode Ltd 電解用電極及びその製造方法
JP2008089250A (ja) 2006-10-03 2008-04-17 Daikin Ind Ltd 空気調和装置
EP2107136B1 (en) * 2008-03-31 2014-12-31 Permelec Electrode Ltd. Manufacturing process of electrodes for electrolysis
TWI453305B (zh) * 2008-03-31 2014-09-21 Permelec Electrode Ltd 電解用電極的製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550576A (zh) * 2003-05-15 2004-12-01 ���÷�ҿ˵缫�ɷ����޹�˾ 电解用电极及其制造方法
CN1680625A (zh) * 2005-01-26 2005-10-12 上海大学 一种电解用涂层阳极的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2007-154237A 2007.06.21

Also Published As

Publication number Publication date
US8337958B2 (en) 2012-12-25
EP2107136A3 (en) 2013-07-17
CN101550558A (zh) 2009-10-07
EP2107136B1 (en) 2014-12-31
EP2107136A2 (en) 2009-10-07
TWI453306B (zh) 2014-09-21
US20090246410A1 (en) 2009-10-01
HK1132305A1 (en) 2010-02-19
JP2009263770A (ja) 2009-11-12
TW200940750A (en) 2009-10-01
PH12009000078A1 (en) 2013-09-02
JP4394159B2 (ja) 2010-01-06
MY143701A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
CN101550558B (zh) 电解电极的制造工艺
TWI477655B (zh) 電化學方法中釋氧用的電極及其製法和應用
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
JP4673696B2 (ja) 導電性ダイヤモンド電極及びその製造方法
CN101550557B (zh) 电解电极的制造工艺
JP5686455B2 (ja) 耐高負荷用酸素発生用陽極の製造方法
KR20040098575A (ko) 전해용 전극 및 이의 제조방법
CN109534460B (zh) 一种钛电极及其制备方法与应用
CN1324155C (zh) 钛材料及其制备方法
TWI829211B (zh) 工業用電解處理用電極
CN1772955A (zh) 一种混合金属氧化物电极及其制备方法
TWI392772B (zh) 電解用電極之再活化方法
JP4284387B2 (ja) 電解用電極及びその製造方法
JP2007154237A (ja) 電解用電極及びその製造方法
TWI490372B (zh) 釋氫用的電極及其製法和使用
JP4209801B2 (ja) 電解用電極及びその製造方法
KR100992268B1 (ko) 전해용 전극의 제조방법
KR100943801B1 (ko) 전해용 전극의 제조방법
EP1923487B1 (en) Method of reactivating electrode for electrolysis
CN108866610B (zh) 一种电解阳极
CN117210865A (zh) 具有CeO2·TiO2固溶体的钛电极及其制备方法和应用
CN118932400A (zh) Cu-RuO2/TiO2纳米管/Ti析氯阳极材料及制备方法
JP2005264249A (ja) ダイアモンド担持金属基材及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1132305

Country of ref document: HK

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1132305

Country of ref document: HK

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Kanagawa

Patentee after: DE NORA PERMELEC LTD

Address before: Kanagawa

Patentee before: Permelec Electrode Ltd.