[go: up one dir, main page]

CN101231995A - Circuit assembly - Google Patents

Circuit assembly Download PDF

Info

Publication number
CN101231995A
CN101231995A CNA2007100036770A CN200710003677A CN101231995A CN 101231995 A CN101231995 A CN 101231995A CN A2007100036770 A CNA2007100036770 A CN A2007100036770A CN 200710003677 A CN200710003677 A CN 200710003677A CN 101231995 A CN101231995 A CN 101231995A
Authority
CN
China
Prior art keywords
circuit
layer
metal
metallic
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100036770A
Other languages
Chinese (zh)
Other versions
CN101231995B (en
Inventor
林茂雄
周健康
李进源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Miji Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miji Electronics Co ltd filed Critical Miji Electronics Co ltd
Priority to CN2007100036770A priority Critical patent/CN101231995B/en
Publication of CN101231995A publication Critical patent/CN101231995A/en
Application granted granted Critical
Publication of CN101231995B publication Critical patent/CN101231995B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明是提供一种线路组件结构,其是通过保护层上方的金属线路或平面,使保护层下方之内部电路将讯号传送至同一芯片上的数个组件或电路单元,或是通过保护层上方的金属线路或平面将电源电压或接地参考电压分配至同一芯片上的数个组件或电路单元。

Figure 200710003677

The present invention provides a circuit component structure, which transmits signals from the internal circuit below the protective layer to several components or circuit units on the same chip through the metal circuit or plane above the protective layer, or distributes power supply voltage or ground reference voltage to several components or circuit units on the same chip through the metal circuit or plane above the protective layer.

Figure 200710003677

Description

一种线路组件 a circuit assembly

技术领域 technical field

本发明涉及的是一种线路组件,特别涉及的是一种在一集成电路(lintegratedcircuit,IC)芯片上,利用保护层(passivation layer)上方形成的金属线路或平面将讯号由一芯片内建电路(on-chip circuit)单元传送至其它电路单元,或是将电源电压或接地参考电压传送至其它电路单元的结构及其方法。What the present invention relates to is a kind of circuit component, what particularly relate to is a kind of on an integrated circuit (integrated circuit, IC) chip, utilizes the metal circuit or the plane that forms on the protection layer (passivation layer) to pass the signal from a chip built-in circuit The (on-chip circuit) unit transmits to other circuit units, or the structure and method for transmitting power supply voltage or ground reference voltage to other circuit units.

背景技术 Background technique

现今的许多电子组件都需要在一高速以及/或是低功率消耗的情况下运行。此外,现在的电子系统、模块或电路板(circuit board)包含有许多不同类型的芯片,例如中央处理单位(Central Processing Units,CPUs)、数字讯号处理器(Digita SignalProcessors,DSPs)、模拟芯片(analog chip)、动态随机存取内存(DRAMs)、静态随机存取内存(SRAMs)或闪存(Flashs)等。每一芯片是使用不同类型以及/或是不同世代的集成电路制程技术来制造。例如,在现今的笔记型个人计算机(notebookpersonal computer)中,中央处理单位可能是使用一先进的65纳米(nm)技术来制造,其电源供应电压为1.2伏特(V),模拟芯片是使用一0.25微米(μm)集成电路制程技术来制造,其电源供应电压为3.3伏特,动态随机存取内存芯片使用一90纳米集成电路制程技术来制造,其电源供应电压为1.5伏特,而闪存芯片则是使用一0.18微米技术来制造,其电源供应电压为2.5伏特。由于在一单一系统中具有多种的供应电压,所以便需要有芯片内建(on-chip)的稳压器(voltage regulator)、变压器(voltage converter)或是包含有稳压与变压的电路设计,例如动态随机存取内存芯片需要一芯片内建变压器来将3.3伏特电压转换到1.5伏特,而闪存芯片则需要一芯片内建变压器来将3.3伏特电压转换到2.5伏特。其中,芯片内建稳压器、变压器或含有稳压与变压的电路设计是通过芯片内建电源/接地参考电压总线(power/ground bus)提供一稳定电压给在同一芯片上不同位置的半导体组件。另,若在一芯片内建稳压器、变压器或含有稳压与变压的电路设计加入低电阻的电源/接地参考电压线路,除了可以将能源消耗减到最少的外,也可减少因为负载的电容与电阻波动所造成的噪声。Many of today's electronic components need to operate at a high speed and/or low power consumption. In addition, current electronic systems, modules or circuit boards contain many different types of chips, such as central processing units (Central Processing Units, CPUs), digital signal processors (Digita Signal Processors, DSPs), analog chips (analog chip), dynamic random access memory (DRAMs), static random access memory (SRAMs) or flash memory (Flashs), etc. Each chip is manufactured using a different type and/or a different generation of integrated circuit process technology. For example, in today's notebook personal computer (notebook personal computer), the central processing unit may be manufactured using an advanced 65 nanometer (nm) technology, its power supply voltage is 1.2 volts (V), and the analog chip is manufactured using a 0.25 Micron (μm) integrated circuit process technology to manufacture, its power supply voltage is 3.3 volts, dynamic random access memory chips are manufactured using a 90-nanometer integrated circuit process technology, its power supply voltage is 1.5 volts, and flash memory chips use Manufactured in a 0.18 micron technology, its power supply voltage is 2.5 volts. Since there are multiple supply voltages in a single system, an on-chip voltage regulator, a voltage converter, or a circuit including voltage regulation and transformation is required Designs such as DRAM chips require an on-chip transformer to convert 3.3 volts to 1.5 volts, while flash memory chips require an on-chip transformer to convert 3.3 volts to 2.5 volts. Among them, the on-chip voltage stabilizer, transformer or circuit design including voltage stabilization and voltage transformation is to provide a stable voltage to semiconductors at different positions on the same chip through the on-chip power/ground reference voltage bus (power/ground bus). components. In addition, if a low-resistance power supply/ground reference voltage line is added to a chip built-in voltage stabilizer, transformer, or circuit design including voltage stabilization and voltage transformation, it can not only minimize energy consumption, but also reduce the load due to Noise caused by capacitance and resistance fluctuations.

在美国专利第6,495,442号中,其是公开出一种晶圆顶端上的后护层(post-passivation)结构。在此集成电路保护层上的后护层结构是用来作为全面性(global)、电源、接地参考电压或讯号分配网络。其中,电源/接地参考电压是来自一外部(芯片外部)电源供应器。In US Pat. No. 6,495,442, a post-passivation structure on the wafer top is disclosed. The back cover structure on the IC protection layer is used as a global, power, ground reference voltage or signal distribution network. Wherein, the power/ground reference voltage is from an external (outside the chip) power supply.

在美国专利第6,649,509号中是公开出一种在集成电路保护层上形成后护层连接线路(post-passivation interconnection)结构的浮凸制程(embossing process),其可用来作为电源、接地参考电压、频率(clock)或讯号的全面性分配网络。In U.S. Patent No. 6,649,509, an embossing process (embossing process) for forming a post-passivation interconnection structure on the protective layer of an integrated circuit is disclosed, which can be used as a power supply, ground reference voltage, A comprehensive distribution network for clocks or signals.

发明内容 Contents of the invention

本发明的一目的,是通过保护层(passivation)上的金属线路或平面,使保护层下方的芯片内建电路单元将讯号传送至同一芯片(IC chip)上的数个组件或电路单元。One object of the present invention is to enable the built-in circuit unit under the passivation to transmit signals to several components or circuit units on the same chip (IC chip) through metal lines or planes on the passivation.

本发明的一目的,是通过保护层上的金属线路或平面,使保护层下方的芯片内建稳压器将电源传送至同一芯片上的数个组件或电路单元。An object of the present invention is to enable the on-chip voltage regulator under the protection layer to transmit power to several components or circuit units on the same chip through the metal lines or planes on the protection layer.

本发明的一目的,是通过保护层上的金属线路或平面,使保护层下方的芯片内建变压器将电源传送至同一芯片上的数个组件或电路单元。An object of the present invention is to enable the on-chip transformer under the protection layer to transmit power to several components or circuit units on the same chip through the metal lines or planes on the protection layer.

本发明的一目的,是降低因为寄生效应(parasitic effect)所造成的传送至数个组件或电路单元的讯号损失。It is an object of the present invention to reduce the loss of signals transmitted to several components or circuit units due to parasitic effects.

本发明的一目的,是降低因为寄生效应所造成的传送至数个组件或电路单元的电源损失。It is an object of the present invention to reduce the loss of power transmitted to several components or circuit units due to parasitic effects.

本发明的一目的,是通过保护层开口以及形成在保护层上的金属电路或平面,将电源传送到数个组件或电路单元。It is an object of the present invention to transmit power to several components or circuit units through the protective layer openings and metal circuits or planes formed on the protective layer.

本发明的一目的,是通过保护层上的金属线路或平面,将来自至少一内部电路或内部组件的讯号、电源、或接地参考电压输出分配到至少一另一内部电路或内部组件。An object of the present invention is to distribute a signal, power supply, or ground reference voltage output from at least one internal circuit or internal component to at least one other internal circuit or internal component through metal lines or planes on the protective layer.

本发明的一目的,是通过保护层上的金属线路或平面,将来自至少一内部电路或内部组件的讯号、电源、或接地参考电压输出分配到至少一另一内部电路或内部组件,而无须连接到静电放电(ESD)防护电路、驱动器电路或接收器电路。An object of the present invention is to distribute a signal, power supply, or ground reference voltage output from at least one internal circuit or internal component to at least one other internal circuit or internal component through metal lines or planes on the protective layer without Connect to electrostatic discharge (ESD) protection circuits, driver circuits, or receiver circuits.

本发明的一目的,是通过保护层上的金属线路或平面,将来自至少一内部电路或内部组件的讯号、电源、或接地参考电压输出分配到至少一另一内部电路或内部组件,而无须连接到外部(芯片外部)电路。An object of the present invention is to distribute a signal, power supply, or ground reference voltage output from at least one internal circuit or internal component to at least one other internal circuit or internal component through metal lines or planes on the protective layer without Connect to external (outside chip) circuitry.

本发明的一目的,是通过保护层下的细线路金属结构(fine-line metal)结构以及保护层上的金属线路或平面,将内部电路或内部组件所产生的讯号传送至外部电路。One object of the present invention is to transmit signals generated by internal circuits or internal components to external circuits through the fine-line metal structure under the protective layer and the metal lines or planes on the protective layer.

本发明的一目的,是通过保护层上的金属线路或平面,将来自至少一内部电路或内部组件的讯号、电源、或接地参考电压输出分配到至少一另一内部电路或内部组件,而且保护层上的接触结构分别与一芯片接外(off-chip)电路以及外部电路连接。An object of the present invention is to distribute a signal, power supply, or ground reference voltage output from at least one internal circuit or internal component to at least one other internal circuit or internal component through metal lines or planes on the protective layer, and to protect The contact structures on the layer are respectively connected to an off-chip circuit and an external circuit.

本发明的一目的,是通过保护层上的金属线路或平面来分配一外部电源供应器至内部电路以及一接触结构至此外部电源供应器的电源与接地参考电压。It is an object of the present invention to distribute power and ground reference voltages from an external power supply to internal circuits and a contact structure to the external power supply through metal lines or planes on the protective layer.

根据本发明的目的,一线路组件包括一保护层上的金属线路或平面,并可利用此金属线路或平面分配一稳压器输往内部电路的电压以及/或是电流。According to the object of the present invention, a circuit assembly includes a metal line or plane on a protective layer, and the metal line or plane can be used to distribute the voltage and/or current output from a voltage regulator to the internal circuit.

根据本发明的目的,一线路组件包括一保护层上的金属线路或平面,并可利用此金属线路或平面将来自至少一内部电路或内部组件的讯号、电源、或接地参考电压输出分配到至少一另一内部电路或内部组件。According to the purpose of the present invention, a line component includes a metal line or plane on a protective layer, and can use this metal line or plane to distribute a signal, power, or ground reference voltage output from at least one internal circuit or internal component to at least one - another internal circuit or internal component.

根据本发明的目的,一线路组件包括一保护层上的金属线路或平面,此金属线路或平面可将来自至少一内部电路或内部组件的讯号、电源、或接地参考电压输出分配到至少一另一内部电路或内部组件,并利用一保护层上的接触结构连接一芯片接外电路到外界电路。According to the object of the present invention, a circuit assembly includes a metal line or plane on a protective layer, which metal line or plane can distribute a signal, power, or ground reference voltage output from at least one internal circuit or internal component to at least one other An internal circuit or internal component, and uses a contact structure on a protective layer to connect a chip with an external circuit to an external circuit.

根据本发明的目的,一线路组件包括一保护层上的金属线路或平面,并利用此金属线路或平面来分配一外部电源供应器至内部电路以及一接触结构到外部电源供应器的电源与接地参考电压。According to the object of the present invention, a circuit assembly comprises a metal line or plane on a protective layer, and uses this metal line or plane to distribute the power and ground of an external power supply to the internal circuit and a contact structure to the external power supply reference voltage.

为实现上述目的,本发明采用的技术方案在于,方案一提供一种线路组件,一种线路组件,其中,其包括:In order to achieve the above object, the technical solution adopted by the present invention is that the first solution provides a line assembly, a line assembly, which includes:

一稳压器;a voltage regulator;

一金属氧化物半导体组件;a metal oxide semiconductor component;

一第一金属线路,连接所述的稳压器;a first metal line connected to the voltage regulator;

一第二金属线路,连接所述的金属氧化物半导体组件;a second metal line, connected to the metal oxide semiconductor device;

一保护层,位于所述的稳压器、所述的金属氧化物半导体组件、所述的第一金属线路与所述的第二金属线路上;以及a protection layer located on the voltage regulator, the metal oxide semiconductor device, the first metal line and the second metal line; and

一第三金属线路,位于所述的保护层上,且连接所述的第一金属线路与所述的第二金属线路。A third metal circuit is located on the protection layer and connects the first metal circuit and the second metal circuit.

方案二提供一种线路组件,一种线路组件,其中,其包括:Scheme 2 provides a line assembly, a line assembly, which includes:

一变压器;a transformer;

一金属氧化物半导体组件;a metal oxide semiconductor component;

一第一金属线路,连接所述的变压器;a first metal line connected to said transformer;

一第二金属线路,连接所述的金属氧化物半导体组件;a second metal line, connected to the metal oxide semiconductor device;

一保护层,位于所述的变压器、所述的金属氧化物半导体组件、所述的第一金属线路与所述的第二金属线路上;以及a protection layer located on the transformer, the metal oxide semiconductor component, the first metal line and the second metal line; and

一第三金属线路,位于所述的保护层上,且连接所述的第一金属线路与所述的第二金属线路。A third metal circuit is located on the protection layer and connects the first metal circuit and the second metal circuit.

方案三提供一种线路组件,一种线路组件,其中,其包括:一内存单元;Solution 3 provides a line assembly, a line assembly, which includes: a memory unit;

一金属氧化物半导体组件;a metal oxide semiconductor component;

一第一金属线路,连接所述的内存单元;a first metal line, connected to the memory unit;

一第二金属线路,连接所述的金属氧化物半导体组件;a second metal line, connected to the metal oxide semiconductor device;

一保护层,位于所述的内存单元、所述的金属氧化物半导体组件、所述的第一金属线路与所述的第二金属线路上;以及a protection layer located on the memory cell, the metal oxide semiconductor device, the first metal line and the second metal line; and

一第三金属线路,位于所述的保护层上,且连接所述的第一金属线路与所述的第二金属线路。A third metal circuit is located on the protection layer and connects the first metal circuit and the second metal circuit.

附图说明 Description of drawings

图1A为现有具有一稳压器或变压器的电路示意图;FIG. 1A is a schematic diagram of an existing circuit with a voltage regulator or transformer;

图1B为本发明具有一稳压器或变压器的电路示意图;FIG. 1B is a schematic circuit diagram of a voltage regulator or a transformer of the present invention;

图1C为本发明利用保护层上方金属线路或平面输送电压Vcc和接地参考电压Vss结构的电路示意图;Fig. 1C is a schematic circuit diagram of the present invention using metal lines or planes above the protective layer to transmit the voltage Vcc and the ground reference voltage Vss structure;

图2A为现有具有一稳压器或变压器的俯视示意图;FIG. 2A is a schematic top view of a conventional voltage regulator or transformer;

图2B为本发明具有一稳压器或变压器的俯视示意图;FIG. 2B is a schematic top view of a voltage stabilizer or transformer of the present invention;

图2C为本发明利用保护层上方金属线路或平面输送电压Vcc和接地参考电压Vss结构的俯视示意图;FIG. 2C is a schematic top view of the structure of the present invention utilizing metal lines or planes above the protective layer to transmit the voltage Vcc and the ground reference voltage Vss;

图3A为现有具有一稳压器或变压器的剖面示意图;FIG. 3A is a schematic cross-sectional view of a conventional voltage regulator or transformer;

图3B为本发明具有一稳压器或变压器的剖面示意图;3B is a schematic cross-sectional view of a voltage stabilizer or transformer of the present invention;

图3C为本发明利用保护层上方金属线路或平面输送电压Vcc和接地参考电压Vss结构的剖面示意图;3C is a schematic cross-sectional view of the structure of the present invention using the metal line or plane above the protective layer to transmit the voltage Vcc and the ground reference voltage Vss;

图3D为本发明具有一稳压器或变压器的剖面示意图;3D is a schematic cross-sectional view of a voltage stabilizer or transformer of the present invention;

图4为本发明的变压器;Fig. 4 is the transformer of the present invention;

图5A为现有内部电路的电路示意图;5A is a schematic circuit diagram of an existing internal circuit;

图5B为本发明第二实施例的一电路示意图;5B is a schematic circuit diagram of the second embodiment of the present invention;

图5C为本发明的反相器;Fig. 5C is the inverter of the present invention;

图5D为本发明之内部驱动器;Figure 5D is the internal driver of the present invention;

图5E为本发明之内部三态缓冲器;FIG. 5E is an internal tri-state buffer of the present invention;

图5F为本发明的一内存单元通过内部三态缓冲器、保护层上的金属线路或平面以及保护层下的细线路金属结构连接到一内部电路的电路示意图;5F is a schematic circuit diagram of a memory unit connected to an internal circuit through an internal tri-state buffer, metal lines or planes on the protective layer, and thin line metal structures under the protective layer of the present invention;

图5G为本发明的一内存单元通过通过电路、保护层上的金属线路或平面以及保护层下的细线路金属结构连接到一内部电路的电路示意图;5G is a schematic circuit diagram of a memory unit of the present invention connected to an internal circuit through the circuit, the metal line or plane on the protective layer, and the thin line metal structure under the protective layer;

图5H为本发明的一内存单元通过闩锁电路、保护层上的金属线路或平面以及保护层下的细线路金属结构连接到一内部电路的电路示意图;5H is a schematic circuit diagram of a memory cell connected to an internal circuit through a latch circuit, metal lines or planes on the protective layer, and thin line metal structures under the protective layer according to the present invention;

图5I为本发明的一内存单元通过通过电路、内部驱动器、保护层上的金属线路或平面以及保护层下的细线路金属结构连接到一内部电路的电路示意图;5I is a schematic circuit diagram of a memory cell connected to an internal circuit through a pass circuit, an internal driver, a metal line or a plane on the protective layer, and a thin line metal structure under the protective layer according to the present invention;

图5J为本发明的一内存单元通过闩锁电路、内部驱动器、保护层上的金属线路或平面以及保护层下的细线路金属结构连接到一内部电路的电路示意图;5J is a schematic circuit diagram of a memory cell connected to an internal circuit through a latch circuit, an internal driver, a metal line or plane on the protective layer, and a thin line metal structure under the protective layer according to the present invention;

图5K为本发明第二实施例的一电路示意图;5K is a schematic circuit diagram of the second embodiment of the present invention;

图5L为本发明之内部接收器;Figure 5L is the internal receiver of the present invention;

图5M为本发明之内部三态缓冲器;FIG. 5M is an internal tri-state buffer of the present invention;

图5N为本发明的一内部电路通过保护层下的细线路金属结构、保护层上的金属线路或平面以及内部三态缓冲器连接到一内存单元的电路示意图;5N is a schematic circuit diagram of an internal circuit connected to a memory unit through a metal structure of thin lines under the protective layer, metal lines or planes on the protective layer, and an internal tri-state buffer according to the present invention;

图5O为本发明的一内部电路通过保护层下的细线路金属结构、保护层上的金属线路或平面以及通过电路连接到一内存单元的电路示意图;FIG. 50 is a circuit schematic diagram of an internal circuit of the present invention connected to a memory unit through the thin line metal structure under the protective layer, the metal line or plane on the protective layer, and the circuit;

图5P为本发明的一内部电路通过保护层下的细线路金属结构、保护层上的金属线路或平面以及闩锁电路连接到一内存单元的电路示意图;5P is a schematic circuit diagram of an internal circuit connected to a memory unit through a metal structure of thin lines under the protective layer, metal lines or planes on the protective layer, and a latch circuit according to the present invention;

图5Q为本发明的一内部电路通过保护层下的细线路金属结构、保护层上的金属线路或平面、内部接收器以及通过电路连接到一内存单元的电路示意图;5Q is a schematic circuit diagram of an internal circuit of the present invention connected to a memory unit through a thin line metal structure under the protective layer, a metal line or plane on the protective layer, an internal receiver, and a circuit;

图5R为本发明的一内部电路通过保护层下的细线路金属结构、保护层上的金属线路或平面、内部接收器以及闩锁电路连接到一内存单元的电路示意图;5R is a schematic circuit diagram of an internal circuit connected to a memory unit through a thin line metal structure under the protective layer, a metal line or plane on the protective layer, an internal receiver, and a latch circuit of the present invention;

图5S为本发明利用保护层上方的金属线路或平面连接模拟电路的电路示意图;FIG. 5S is a schematic circuit diagram of the present invention using metal lines or planes above the protective layer to connect analog circuits;

图5T为本发明的运算放大器;Fig. 5T is the operational amplifier of the present invention;

图6A为现有内部电路的俯视示意图;FIG. 6A is a schematic top view of an existing internal circuit;

图6B为本发明第二实施例的俯视示意图;6B is a schematic top view of the second embodiment of the present invention;

图7A为现有内部电路的剖面示意图;7A is a schematic cross-sectional view of an existing internal circuit;

图7B为本发明第二实施例具有单层图案化金属层的剖面示意图;7B is a schematic cross-sectional view of a single patterned metal layer according to the second embodiment of the present invention;

图7C为本发明第二实施例具有两层图案化金属层的剖面示意图;7C is a schematic cross-sectional view of a second embodiment of the present invention having two patterned metal layers;

图7D为本发明第二实施例在保护层和最底层图案化金属层之间具有一聚合物层的剖面示意图;7D is a schematic cross-sectional view of a polymer layer between the passivation layer and the bottommost patterned metal layer according to the second embodiment of the present invention;

图8A为现有晶圆的电路示意图;FIG. 8A is a schematic circuit diagram of an existing wafer;

图8B为本发明第三实施例的一电路示意图;8B is a schematic circuit diagram of a third embodiment of the present invention;

图8C为本发明第三实施例的一电路示意图;8C is a schematic circuit diagram of a third embodiment of the present invention;

图8D为本发明第三实施例的一电路示意图;8D is a schematic circuit diagram of a third embodiment of the present invention;

图8E为本发明第三实施例的一电路示意图;8E is a schematic circuit diagram of a third embodiment of the present invention;

图8F为本发明第三实施例的一电路示意图;FIG. 8F is a schematic circuit diagram of a third embodiment of the present invention;

图9A为现有晶圆的俯视示意图;FIG. 9A is a schematic top view of an existing wafer;

图9B为本发明第三实施例的一俯视示意图;9B is a schematic top view of the third embodiment of the present invention;

图9C为本发明第三实施例的一俯视示意图;9C is a schematic top view of the third embodiment of the present invention;

图9D为本发明第三实施例的一俯视示意图;FIG. 9D is a schematic top view of the third embodiment of the present invention;

图10A为现有晶圆的剖面示意图;10A is a schematic cross-sectional view of an existing wafer;

图10B为本发明第三实施例具有单层图案化金属层的剖面示意图;10B is a schematic cross-sectional view of a single-layer patterned metal layer according to the third embodiment of the present invention;

图10C为本发明第三实施例具有两层图案化金属层的剖面示意图;10C is a schematic cross-sectional view of a third embodiment of the present invention having two patterned metal layers;

图10D为本发明第三实施例在保护层和单层图案化金属层最底层之间具有一聚合物层的剖面示意图;10D is a schematic cross-sectional view of a third embodiment of the present invention having a polymer layer between the passivation layer and the bottommost layer of the single-layer patterned metal layer;

图10E为本发明第三实施例在保护层和两层图案化金属层最底层之间具有一聚合物层的剖面示意图;10E is a schematic cross-sectional view of a third embodiment of the present invention having a polymer layer between the passivation layer and the bottommost layer of the two patterned metal layers;

图10F为现有晶圆具有一打线接合的剖面示意图;10F is a schematic cross-sectional view of a conventional wafer with a wire bond;

图10G为本发明第三实施例具有一打线接合的剖面示意图;10G is a schematic cross-sectional view of a third embodiment of the present invention with a wire bonding;

图10H为本发明第三实施例具有一打线接合的剖面示意图;10H is a schematic cross-sectional view of a third embodiment of the present invention with a wire bonding;

图10I为本发明第三实施例具有一打线接合的剖面示意图;10I is a schematic cross-sectional view of a third embodiment of the present invention with a wire bonding;

图11A为本发明的芯片接外驱动器;FIG. 11A is a chip connected to an external driver of the present invention;

图11B为本发明的芯片接外接收器;FIG. 11B is a chip connected to an external receiver of the present invention;

图11C为本发明的芯片三态缓冲器;Fig. 11C is a chip tri-state buffer of the present invention;

图11D为本发明的芯片接外驱动器;FIG. 11D is a chip connected to an external driver of the present invention;

图11E为本发明的芯片三态缓冲器;Fig. 11E is the chip tri-state buffer of the present invention;

图11F为本发明的静电放电防护电路;Fig. 11F is the electrostatic discharge protection circuit of the present invention;

图11G为本发明的串联驱动器;Fig. 11G is the serial driver of the present invention;

图12A为现有外部供应电源直接输入电压到内部电路且具有一静电放电防护电路预防外部供应电源所产生的电压或电流突波的电路示意图;12A is a schematic circuit diagram of an existing external power supply directly inputting voltage to the internal circuit and having an electrostatic discharge protection circuit to prevent voltage or current surges generated by the external power supply;

图12B为本发明第四实施例的一电路示意图;12B is a schematic circuit diagram of a fourth embodiment of the present invention;

图12C为本发明第四实施例的一电路示意图;12C is a schematic circuit diagram of a fourth embodiment of the present invention;

图12D为本发明第四实施例具有两静电放电防护电路的电路示意图;FIG. 12D is a schematic circuit diagram with two electrostatic discharge protection circuits according to the fourth embodiment of the present invention;

图12E为本发明的静电放电防护电路;Fig. 12E is the electrostatic discharge protection circuit of the present invention;

图13A为现有外部供应电源直接输入电压到内部电路且具有一静电放电防护电路预防外部供应电源所产生的电压或电流突波的俯视示意图;13A is a schematic top view of an existing external power supply directly inputting voltage to the internal circuit and having an electrostatic discharge protection circuit to prevent voltage or current surges generated by the external power supply;

图13B为本发明第四实施例的一俯视示意图;13B is a schematic top view of a fourth embodiment of the present invention;

图13C为本发明第四实施例的一俯视示意图;13C is a schematic top view of the fourth embodiment of the present invention;

图14A为现有外部供应电源直接输入电压到内部电路且具有一静电放电防护电路预防外部供应电源所产生的电压或电流突波的剖面示意图;14A is a schematic cross-sectional view of an existing external power supply directly inputting voltage to the internal circuit and having an electrostatic discharge protection circuit to prevent voltage or current surges generated by the external power supply;

图14B为本发明第四实施例的一剖面示意图;14B is a schematic cross-sectional view of a fourth embodiment of the present invention;

图14C为本发明第四实施例的一剖面示意图;14C is a schematic cross-sectional view of a fourth embodiment of the present invention;

图14D为本发明第四实施例的一剖面示意图;14D is a schematic cross-sectional view of a fourth embodiment of the present invention;

图15A为一晶圆的剖面示意图;15A is a schematic cross-sectional view of a wafer;

图15B为一晶圆的剖面示意图;15B is a schematic cross-sectional view of a wafer;

图15C至图15L为本发明形成保护层上方结构的一制程步骤;15C to 15L are a process step of forming the structure above the protective layer according to the present invention;

图16A至图16L为本发明形成保护层上方结构的一制程步骤;16A to 16L are a process step of forming the structure above the protective layer according to the present invention;

图17A至图17J为本发明形成保护层上方结构的一制程步骤;17A to 17J are a process step of forming the structure above the protective layer according to the present invention;

图18A至图18I为本发明形成保护层上方结构的一制程步骤;18A to 18I are a process step of forming the structure above the protective layer according to the present invention;

图19A至图19I为本发明形成保护层上方结构的一制程步骤;19A to 19I are a process step of forming the structure above the protective layer according to the present invention;

图20为本发明的一剖面示意图。Fig. 20 is a schematic cross-sectional view of the present invention.

附图标记说明:1-基底;2-组件层;2’-金氧半晶体管;5-保护层;6-细线路结构;8-保护层上方结构;10-晶圆;10’-芯片;19-垫高垫;20内部电路;21-内部电路;22内部电路;23-内部电路;24内部电路;30-细线路介电层;30’开口;40-芯片接外电路;41稳压器或变压器;42-芯片接外电路;43芯片接外电路;44-静电放电防护电路;45静电放电防护电路;50-保护层开口;60细线路金属层;60’-导电栓塞;61细线路金属结构;61’-细线路金属结构;62细线路金属结构;63-细线路金属结构;66金属顶层;69-细线路金属结构;71光阻层;72-光阻层;73光阻层;74-光阻层;80图案化金属层;81-金属线路或平面;82金属线路或平面;83-金属线路或平面;83r金属线路或平面;83t-重配置金属线路;89接触结构;89t-锡铅凸块;90聚合物层;97-聚合物层;98聚合物层;200-内部结构;201源极;202-漏极;203栅极;211-反相器;212内部驱动器;212’-内部接收器;213内部三态缓冲器;213’-内部三态缓冲器;214感测放大器;215-静态随机存取内存单元;216通过电路;216’-通过电路;217闩锁电路;217’-闩锁电路;218运算放大器;219-差动电路;400芯片接外结构;410-参考电压产生器;410’电流镜电路;421-芯片接外驱动器;421’第一级;421”-第二级;422芯片接外接收器;422’-第一级;422”第二级;511-保护层开口;512保护层开口;514-保护层开口;519保护层开口;519’-保护层开口;521保护层开口;522-保护层开口;524保护层开口;529-保护层开口;531保护层开口;531’-保护层开口;532保护层开口;532’-保护层开口;534保护层开口;534’-保护层开口;539保护层开口;539’-保护层开口;549保护层开口;549’-保护层开口;559保护层开口;559’-保护层开口;600金属接垫;601w-细线路金属层;602细线路金属层;602x-细线路金属层;602y细线路金属层;602z-细线路金属层;611细线路金属结构;612-细线路金属结构;612a细线路金属结构;612b-细线路金属结构;612c细线路金属结构;614-细线路金属结构;618细线路金属结构;619-细线路金属结构;619’细线路金属结构;621-细线路金属结构;622细线路金属结构;622a-细线路金属结构;622b细线路金属结构;622c-细线路金属结构;624细线路金属结构;629-细线路金属结构;631细线路金属结构;631’-细线路金属结构;632细线路金属结构;632a-细线路金属结构;632b细线路金属结构;632c-细线路金属结构;632a’细线路金属结构;632b’-细线路金属结构;632c’细线路金属结构;634-细线路金属结构;634’细线路金属结构;638-细线路金属结构;639细线路金属结构;639’-细线路金属结构;649细线路金属结构;649’-细线路金属结构;659细线路金属结构;659’-细线路金属结构;661金属顶层;662-金属顶层  664金属顶层;669-金属顶层669’金属顶层;710-光阻层开口;720光阻层开口;720’-光阻层开口;730光阻层开口;730’-光阻层开口;740光阻层开口;740’-光阻层开口;801图案化金属层;801a-图案化金属层;801b图案化金属层;801w-图案化金属层;802图案化金属层;802x-图案化金属层;802y图案化金属层;802z-图案化金属层;803图案化金属层;811-图案化金属层;812图案化金属层;821-图案化金属层;831图案化金属层;831a-图案化金属层;831b图案化金属层;832-图案化金属层;832a图案化金属层;832b-图案化金属层;891凸块底层金属层;897-金属栓塞;897’金属层;898-金属栓塞;898’金属层;950-聚合物层开口;980聚合物层开口;990-聚合物层开口;2101-N型金氧半晶体管;2102-P型金氧半晶体管;2103-N型金氧半晶体管;2103’-N型金氧半晶体管;2104-P型金氧半晶体管;2104’-P型金氧半晶体管;2107-N型金氧半晶体管;2108-P型金氧半晶体管;2109’-N型金氧半晶体管;2110’-P型金氧半晶体管;2111-N型金氧半晶体管;2112P型金氧半晶体管;2113-N型金氧半晶体管;2114-P型金氧半晶体管;2115-N型金氧半晶体管;2116-P型金氧半晶体管;2117-N型金氧半晶体管;2118-P型金氧半晶体管;2119-N型金氧半晶体管;2120-N型金氧半晶体管;2121-N型金氧半晶体管;2122-行选择晶体管;2123-行选择晶体管;2124-N型金氧半晶体管;2124’-N型金氧半晶体管;2125-N型金氧半晶体管;2126-P型金氧半晶体管;2127-N型金氧半晶体管;2128-P型金氧半晶体管;2129-N型金氧半晶体管;2129’-N型金氧半晶体管;2130-N型金氧半晶体管;2130’-N型金氧半晶体管;2131-P型金氧半晶体管;2132-P型金氧半晶体管;2133-电容器;2134-电阻器;2135-N型金氧半晶体管;2136-P型金氧半晶体管;4101-P型金氧半晶体管;4102-P型金氧半晶体管;4103-P型金氧半晶体管;4104-P型金氧半晶体管;4105-P型金氧半晶体管;4106-P型金氧半晶体管;4107-N型金氧半晶体管;4108-N型金氧半晶体管;4109-P型金氧半晶体管;4110-P型金氧半晶体管;4111-电导晶体管;4112-电导晶体管;4199-节点;4201-N型金氧半晶体管;4202-P型金氧半晶体管;4203-N型金氧半晶体管;4204-P型金氧半晶体管;4205-N型金氧半晶体管;4206-P型金氧半晶体管;4207-N型金氧半晶体管;4208-P型金氧半晶体管;4209-N型金氧半晶体管;4210-P型金氧半晶体管;4331-逆偏压二极管;4332-逆偏压二极管;4333-逆偏压二极管;6111-细线路金属结构;6121-细线路金属结构;6121a-细线路金属结构;6121b-细线路金属结构;6121c-细线路金属结构;6141-细线路金属结构;6190-金属接垫;6190’-金属接垫;6290-金属接垫;6191-细线路金属结构;6311-细线路金属结构;6321-细线路金属结构;6321a-细线路金属结构;6321b-细线路金属结构;6321c-细线路金属结构;6341-细线路金属结构;6390-金属接垫;6391-细线路金属结构;6391’-细线路金属结构;6490-金属接垫;6490’-金属接垫;8011’-凹陷部;8011a-黏着/阻障/种子层;8011b-黏着/阻障/种子层;8012a-厚金属层;8012b-厚金属层;8021-黏着/阻障/种子层;8022-厚金属层;8031-黏着/阻障/种子层;8032-厚金属层;8110-接触接垫;8111-黏着/阻障/种子层;8112-厚金属层;8120-接触接垫;8121-黏着/阻障/种子层;8122-厚金属层;8211-黏着/阻障/种子层;8212-厚金属层;8310-接触接垫;8311-黏着/阻障/种子层;8311a-黏着/阻障/种子层;8311b-黏着/阻障/种子层;8312-厚金属层;8312a-厚金属层;8312b-厚金属层;8320-接触接垫;8321-黏着/阻障/种子层;8321a-黏着/阻障/种子层;8321b-黏着/阻障/种子层;8322-厚金属层;8322a-厚金属层;8322b-厚金属层;9511-聚合物层开口;9512-聚合物层开口;9514-聚合物层开口;9519-聚合物层开口;9519’-聚合物层开口;9531-聚合物层开口;9532-聚合物层开口;9534-聚合物层开口;9539-聚合物层开口;9539’-聚合物层开口;9549-聚合物层开口;9829-聚合物层开口;9831-聚合物层开口;9834-聚合物层开口;9839-聚合物层开口;9849’-聚合物层开口;9919-聚合物层开口;9929-聚合物层开口;9939-聚合物层开口;9939’-聚合物层开口;9949-聚合物层开口;9949’-聚合物层开口。Explanation of reference signs: 1-substrate; 2-component layer; 2'-metal oxide semiconductor transistor; 5-protective layer; 6-thin line structure; 8-structure above the protective layer; 10-wafer; 10'-chip; 19-pad; 20 internal circuit; 21-internal circuit; 22 internal circuit; 23-internal circuit; 24 internal circuit; 30-thin line dielectric layer; 30' opening; 40-chip connected to external circuit; 41 voltage regulator 42- chip connected to external circuit; 43 chip connected to external circuit; 44- electrostatic discharge protection circuit; 45 electrostatic discharge protection circuit; 50- protective layer opening; 60 thin line metal layer; 60'- conductive plug; Line metal structure; 61'-fine line metal structure; 62 thin line metal structure; 63-fine line metal structure; 66 metal top layer; 69-fine line metal structure; 71 photoresist layer; 72-photoresist layer; layer; 74-photoresist layer; 80 patterned metal layer; 81-metal line or plane; 82 metal line or plane; 83-metal line or plane; 83r metal line or plane; 83t-reconfiguration metal line; 89 contact structure ; 89t-tin-lead bump; 90 polymer layer; 97-polymer layer; 98 polymer layer; 200-internal structure; 201 source; 202-drain; 203 gate; 211-inverter; 212 internal driver; 212'-internal receiver; 213 internal tri-state buffer; 213'-internal tri-state buffer; 214 sense amplifier; 215-SRAM unit; Latch circuit; 217'-latch circuit; 218 operational amplifier; 219-differential circuit; 400-chip external structure; 410-reference voltage generator; 410'current mirror circuit; 421-chip external driver; 1st level; 421"-second level; 422 chip connected to external receiver; 422'-first level; 422"second level; 511-protective layer opening; 512 protective layer opening; 514-protective layer opening; 519 protective layer Opening; 519'-protective layer opening; 521 protective layer opening; 522-protective layer opening; 524 protective layer opening; 529-protective layer opening; 531 protective layer opening; 531'-protective layer opening; 532 protective layer opening; 532' - cover opening; 534 cover opening; 534' - cover opening; 539 cover opening; 539' - cover opening; 549 cover opening; 549' - cover opening; 559 cover opening; 559' - protection Layer opening; 600 metal pad; 601w-fine line metal layer; 602 fine line metal layer; 602x-fine line metal layer; 602y fine line metal layer; 602z-fine line metal layer; 612a thin line metal structure; 612b-fine line metal structure; 612c thin line metal structure; 614-fine line metal structure; 618 thin line metal structure; 619-fine line metal structure; 619' thin line metal structure; 621-fine line metal structure; 622 fine line metal structure; 622a-fine line metal structure; 622b fine line metal structure; 622c-fine line metal structure; 624 fine line metal structure; 629-fine line metal structure; Structure; 631' - thin line metal structure; 632 thin line metal structure; 632a - thin line metal structure; 632b thin line metal structure; 632c - thin line metal structure; 632a' thin line metal structure; ;632c' thin line metal structure;634-fine line metal structure;634'fine line metal structure;638-fine line metal structure;639fine line metal structure;639'-fine line metal structure;649fine line metal structure;649 '- thin line metal structure; 659 thin line metal structure; 659'- thin line metal structure; 661 metal top layer; 662- metal top layer 664 metal top layer; Photoresist opening; 720'-photoresist opening; 730 photoresist opening; 730'-photoresist opening; 740 photoresist opening; 740'-photoresist opening; 801 patterned metal layer; 801a-pattern 801b patterned metal layer; 801w-patterned metal layer; 802 patterned metal layer; 802x-patterned metal layer; 802y patterned metal layer; 802z-patterned metal layer; 803 patterned metal layer; 811 - patterned metal layer; 812 patterned metal layer; 821 - patterned metal layer; 831 patterned metal layer; 831a - patterned metal layer; 831b patterned metal layer; 832 - patterned metal layer; 832a patterned metal layer ; 832b-patterned metal layer; 891 bump bottom metal layer; 897-metal plug; 897' metal layer; Polymer Layer Opening; 2101-N MOS Transistor; 2102-P MOS Transistor; 2103-N MOS Transistor; 2103'-N MOS Transistor; 2104-P MOS Transistor ;2104'-P-type metal-oxide-semiconductor transistor; 2107-N-type metal-oxide-semiconductor transistor; 2108-P-type metal-oxide-semiconductor transistor; -N-type metal-oxide-semiconductor transistor; 2112P-type metal-oxide-semiconductor transistor; 2113-N-type metal-oxide-semiconductor transistor; 2114-P-type metal-oxide-semiconductor transistor; ;2117-N-type MOS transistor; 2118-P-type MOS transistor; 2119-N-type MOS transistor; 2120-N-type MOS transistor; 2121-N-type MOS transistor; 2122-row selection Transistor; 2123-row select transistor; 2124-N-type metal-oxide-semiconductor transistor; 2124'-N-type metal-oxide-semiconductor transistor; 2125-N-type metal-oxide-semiconductor transistor; Oxygen-semiconductor transistor; 2128-P metal-oxide-semiconductor transistor; 2129-N-type metal-oxide-semiconductor transistor; 2129'-N-type metal-oxide-semiconductor transistor; 2130-N-type metal-oxide-semiconductor transistor; ;2131-P metal oxide semiconductor transistor; 2132-P metal oxide semiconductor transistor; 2133-capacitor; 2134-resistor; 2135-N metal oxide semiconductor transistor; Metal Oxygen Semiconductor Transistor; 4102-P Metal Oxygen Semi Transistor; 4103-P Metal Oxygen Semiconductor Transistor; 4104-P Metal Oxygen Semiconductor Transistor; 4105-P Metal Oxygen Semiconductor Transistor; 4106-P Metal Oxygen Semiconductor Transistor; 4107-N-type metal-oxide-semiconductor transistor; 4108-N-type metal-oxide-semiconductor transistor; 4109-P-type metal-oxide-semiconductor transistor; 4110-P-type metal-oxide-semiconductor transistor; 4111-conductance transistor; 4112-conductance transistor; 4199-node; 4201-N metal oxide semiconductor transistor; 4202-P metal oxide semiconductor transistor; 4203-N metal oxide semiconductor transistor; 4204-P metal oxide semiconductor transistor; 4205-N metal oxide semiconductor transistor; 4206-P gold Oxygen-semiconductor transistor; 4207-N metal-oxide-semiconductor transistor; 4208-P metal-oxide-semiconductor transistor; 4209-N metal-oxide-semiconductor transistor; 4210-P metal-oxide-semiconductor transistor; 4331-reverse bias diode; 4332-reverse Biased diode; 4333-reverse biased diode; 6111-fine line metal structure; 6121-fine line metal structure; 6121a-fine line metal structure; 6121b-fine line metal structure; 6121c-fine line metal structure; Metal structure; 6190-metal pad; 6190'-metal pad; 6290-metal pad; 6191-fine line metal structure; 6311-fine line metal structure; 6321-fine line metal structure; 6321a-fine line metal structure; 6321b-fine line metal structure;6321c-fine line metal structure;6341-fine line metal structure;6390-metal pad;6391-fine line metal structure;6391'-fine line metal structure;6490-metal pad;6490' - metal pad; 8011'-recess; 8011a-adhesion/barrier/seed layer; 8011b-adhesion/barrier/seed layer; 8012a-thick metal layer; 8012b-thick metal layer; 8021-adhesion/barrier/ Seed layer; 8022-thick metal layer; 8031-adhesion/barrier/seed layer; 8032-thick metal layer; 8110-contact pad; 8111-adhesion/barrier/seed layer; 8112-thick metal layer; 8120-contact Pad; 8121-adhesion/barrier/seed layer; 8122-thick metal layer; 8211-adhesion/barrier/seed layer; 8212-thick metal layer; 8310-contact pad; 8311-adhesion/barrier/seed layer ;8311a-adhesion/barrier/seed layer; 8311b-adhesion/barrier/seed layer; 8312-thick metal layer; barrier/seed layer; 8321a-adhesion/barrier/seed layer; 8321b-adhesion/barrier/seed layer; 8322-thick metal layer; 8322a-thick metal layer; 8322b-thick metal layer; 9511-polymer layer opening; 9512-polymer layer opening; 9514-polymer layer opening; 9519-polymer layer opening; 9519'-polymer layer opening; 9531-polymer layer opening; 9532-polymer layer opening; 9534-polymer layer opening; 9539-polymer layer opening; 9539'-polymer layer opening; 9549-polymer layer opening; 9829-polymer layer opening; 9831-polymer layer opening; 9834-polymer layer opening; 9839-polymer layer opening; 9849'-polymer layer opening; 9919-polymer layer opening; 9929-polymer layer opening; 9939-polymer layer opening; 9939'-polymer layer opening; 9949-polymer layer opening; 9949'-polymer layer opening Open your mouth.

具体实施方式 Detailed ways

以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。The above and other technical features and advantages of the present invention will be described in more detail below in conjunction with the accompanying drawings.

本发明所述的线路组件是包括晶圆(monolithic wafer)、芯片(chip)或封装单体等。The circuit assembly described in the present invention includes a monolithic wafer, a chip, or a packaged monomer.

第一实施例:连接一稳压器或变压器的保护层上方(over-paeeivation)电源/接地参考电压总线。First Embodiment: Connect the over-paeeivation power/ground reference voltage bus of a voltage regulator or transformer.

请先同时参阅图1B至图1C、图2B至图2C与图3B至图3D所示,其是公开出本发明的第一实施例。其中,图1B与图1C呈现出一简化的电路示意图,其是利用保护层5上的金属线路或平面81以及/或是金属线路或平面82连接稳压器(voltage regulator)或变压器(voltage converter)41与内部电路20(包括21、22、23、24),并利用此金属线路或平面81以及/或是金属线路或平面82分配一稳压器或变压器41输出的电压以及/或是一接地参考电压。图2B与图2C分别呈现出图1B与图1C所示的电路的俯视示意图。图3B与图3C则分别呈现出图1B与图1C所示的电路的剖面示意图。另外,在图1是列与图2是列中,保护层5是以虚线表示,形成在保护层5上的线路或平面是以“粗线”来表示,而形成在保护层5下的线路则是以“细线”来表示,且此种表示法也适用在本发明的所有实施例中。Please refer to FIG. 1B to FIG. 1C , FIG. 2B to FIG. 2C and FIG. 3B to FIG. 3D , which disclose the first embodiment of the present invention. Wherein, FIG. 1B and FIG. 1C present a simplified schematic circuit diagram, which utilizes metal lines or planes 81 and/or metal lines or planes 82 on the protective layer 5 to connect voltage regulators (voltage regulator) or transformers (voltage converters). ) 41 and internal circuit 20 (including 21, 22, 23, 24), and use this metal line or plane 81 and/or metal line or plane 82 to distribute the voltage output by a voltage regulator or transformer 41 and/or a Ground reference voltage. FIG. 2B and FIG. 2C are schematic top views of the circuits shown in FIG. 1B and FIG. 1C , respectively. FIG. 3B and FIG. 3C are schematic cross-sectional views of the circuits shown in FIG. 1B and FIG. 1C , respectively. In addition, in FIG. 1 is a column and FIG. 2 is a column, the protective layer 5 is represented by a dotted line, the circuit or plane formed on the protective layer 5 is represented by a "thick line", and the circuit formed under the protective layer 5 It is represented by a "thin line", and this representation is also applicable to all embodiments of the present invention.

在本实施例中,电源是由一芯片内建的稳压器或变压器41凭借保护层上方的金属线路或平面传送至位于同一集成电路芯片(integrated circuit,IC)上的数个组件(电路)。通过沉积在保护层上的金属线路或平面,电源可在低损耗情况下传送到数个组件或电路单元中。此种加入调控电压以及利用保护层上方金属线路或平面传输电压的设计可以将输往内部电路的电压准位很精准地控制在一电压准位上。另,稳压器的输出电压是介于此稳压器内的一设定目标电压的正负10%之间(即稳压器输出一电压值时,此电压值与设定目标电压值之间的差值除以设定目标电压值的百分比是小于10%),并以介于此设定目标电压的正负5%之间为较佳者,其中此稳压器的设定目标电压值比如是介于0.5伏特至10伏特之间或是介于0.5伏特至5伏特之间。所以,凭借此种方式可以防止输入节点(input node)受到外部供应电源所产生的电压突波或是较大的电压波动,因此通过此种设计可以改善电路性能。然而,在某些应用中,由于芯片需要不同在外部供应电源所提供的电压,所以芯片内除了稳压器的外,也需利用一变压器将外部供应电源所提供的电压转换成芯片内所需的电压。此变压器可将一输入电压转换成一输出电压,而输出电压与输入电压值不同,且输入电压与输出电压的差值除以输出电压的百分比大于10%,其中此输出电压比如是介于1伏特至10伏特之间或是介于1伏特至5伏特之间。另外,此变压器的型式可以是一降压变压器或是一增压变压器。In this embodiment, the power is transmitted to several components (circuits) on the same integrated circuit chip (integrated circuit, IC) by means of a built-in voltage regulator or transformer 41 via metal lines or planes above the protective layer. . Through metal lines or planes deposited on the protective layer, power can be delivered with low losses to several components or circuit units. Such a design of adding regulation voltage and using the metal line or plane above the protection layer to transmit the voltage can precisely control the voltage level output to the internal circuit at a voltage level. In addition, the output voltage of the voltage stabilizer is between plus or minus 10% of a set target voltage in the voltage stabilizer (that is, when the voltage stabilizer outputs a voltage value, the difference between this voltage value and the set target voltage value The percentage of the difference between divided by the set target voltage value is less than 10%), and it is better to be between plus or minus 5% of this set target voltage, where the set target voltage of this voltage regulator The value is, for example, between 0.5 volts and 10 volts or between 0.5 volts and 5 volts. Therefore, by means of this method, the input node (input node) can be prevented from being subjected to voltage surges or large voltage fluctuations generated by an external power supply, and thus the circuit performance can be improved through this design. However, in some applications, since the chip requires different voltages provided by the external power supply, in addition to the voltage regulator, a transformer is also required to convert the voltage provided by the external power supply into the required voltage in the chip. voltage. This transformer can convert an input voltage into an output voltage, and the output voltage is different from the input voltage, and the percentage of the difference between the input voltage and the output voltage divided by the output voltage is greater than 10%, wherein the output voltage is, for example, between 1 volt to 10 volts or between 1 volt and 5 volts. In addition, the type of the transformer can be a step-down transformer or a boost transformer.

图1A、图2A与图3A是公开出现有一稳压器或变压器41如何连接到内部电路20(包括21、22、23与24)的电路示意图、俯视示意图与剖面示意图。此现有技术是利用保护层5下的细线路金属结构619、6191与61(包括618、6111、6121与6141,其中6121又包括6121a、6121b与6121c)来使稳压器或变压器41接受外部供应电源输入的电压Vdd、输出一电压Vcc以及传送电压Vcc至内部电路20(包括21、22、23与24)。然而,位于保护层5下并使用晶圆制程与材料所制造的细线路金属结构61并无法轻易地提供厚的金属层(例如厚度5微米的金属层)或者是厚的介电层(例如厚度5微米的介电层)。此外,细线路金属层的高单位长度电阻与高单位长度电容会导致电源电压降(IR voltage drop)、噪声(noises)、讯号失真(signal distortion)、传递时间延迟(propagation time delay)、高功率消耗(highpower consumption)以及产生高热(high heat generation)。1A, 2A and 3A are circuit schematic diagrams, top schematic diagrams and cross-sectional schematic diagrams disclosing how a voltage regulator or transformer 41 is connected to the internal circuit 20 (including 21 , 22 , 23 and 24 ). This prior art utilizes the fine line metal structures 619, 6191 and 61 (including 618, 6111, 6121 and 6141, wherein 6121 includes 6121a, 6121b and 6121c) under the protection layer 5 to make the voltage regulator or transformer 41 accept external The power input voltage Vdd is supplied, a voltage Vcc is output and the voltage Vcc is transmitted to the internal circuit 20 (including 21 , 22 , 23 and 24 ). However, the fine line metal structure 61 under the passivation layer 5 and manufactured using wafer process and materials cannot easily provide a thick metal layer (for example, a metal layer with a thickness of 5 microns) or a thick dielectric layer (for example, a thickness of 5 µm dielectric layer). In addition, the high resistance per unit length and high capacitance per unit length of the fine line metal layer will cause IR voltage drop, noises, signal distortion, propagation time delay, high power Consumption (highpower consumption) and high heat generation (high heat generation).

请参阅图1B所示,其是为本发明第一实施例的电路示意图。在此实施例中,一稳压器或变压器41是经由保护层开口519与细线路金属结构619接受外部供应电源输入的电压Vdd,并输出一电压Vcc至内部电路20(包括21、22、23与24)。稳压器或变压器41在节点P输出的电压Vcc是通过下列的方式配送至内部电路21、22、23、24的电压节点Tp、Up、Vp、Wp,此方式是首先通过细线路金属结构619’往上经过位于保护层5的保护层开口519’,接着经过保护层5上的一金属线路或平面81,再来往下通过保护层开口511、512、514,的后经过细线路金属结构61’(包括611、612、614,其中612又包括612a、612b、612c)到内部电路20,其中经过细线路金属结构611至内部电路21;经过细线路金属结构612a与细线路金属结构612b至内部电路22;经过细线路金属结构612a与细线路金属结构612c至内部电路23,以及;经过细线路金属结构614至内部电路24。Please refer to FIG. 1B , which is a schematic circuit diagram of the first embodiment of the present invention. In this embodiment, a voltage regulator or transformer 41 receives the voltage Vdd input from the external power supply through the protective layer opening 519 and the thin line metal structure 619, and outputs a voltage Vcc to the internal circuit 20 (including 21, 22, 23 with 24). The voltage Vcc output by the voltage regulator or transformer 41 at the node P is distributed to the voltage nodes Tp, Up, Vp, Wp of the internal circuits 21, 22, 23, 24 in the following way, first through the fine line metal structure 619 'Go up through the protective layer opening 519 located in the protective layer 5', then pass through a metal line or plane 81 on the protective layer 5, then pass through the protective layer openings 511, 512, 514 downwards, and finally pass through the thin line metal structure 61 '(including 611, 612, 614, wherein 612 also includes 612a, 612b, 612c) to the internal circuit 20, which passes through the thin line metal structure 611 to the internal circuit 21; passes through the thin line metal structure 612a and the thin line metal structure 612b to the internal circuit The circuit 22 ; passes through the thin-line metal structure 612 a and the thin-line metal structure 612 c to the internal circuit 23 , and passes through the thin-line metal structure 614 to the internal circuit 24 .

另,内部电路20(包括21、22、23、24)是至少由一金氧半晶体管(MOS transistor)所构成,且上述的细线路金属结构是连接到内部电路20(包括21、22、23、24)的金氧半晶体管,比如连接到金氧半晶体管的源极(source),而此金氧半晶体管可以是“通道寛度(Channel width)/通道长度(Channel length)”比值介于0.1至5之间或是介于0.2至2之间的一N型金氧半晶体管(NMOS transistor),或是“信道寛度/信道长度”比值介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管(PMOStransistor)。此外,流经金属线路或平面81的电流是介于50微安培至2毫安之间或是介于100微安培至1毫安之间。In addition, the internal circuit 20 (including 21, 22, 23, 24) is composed of at least one metal oxide semi-transistor (MOS transistor), and the above-mentioned thin line metal structure is connected to the internal circuit 20 (including 21, 22, 23 , 24) metal-oxide-semiconductor transistors, such as those connected to the source of the metal-oxide-semiconductor transistors, and the metal-oxide-semiconductor transistors may have a "channel width (Channel width)/channel length (Channel length)" ratio between An N-type metal oxide semiconductor transistor (NMOS transistor) between 0.1 and 5 or between 0.2 and 2, or a "channel width/channel length" ratio between 0.2 and 10 or between 0.4 and 4 A P-type metal oxide semiconductor transistor (PMOS transistor) between them. In addition, the current flowing through the metal line or the plane 81 is between 50 microampere and 2 milliampere or between 100 microampere and 1 milliampere.

因此,图1B所示的结构是使用一金属线路或平面81作为一电源线路或平面,此外因为保护层5上的金属线路或平面81是为一厚金属导体,而厚金属导体具有低电阻的优点,所以可以大幅减少金属线路或平面81所产生的压降(voltage drop),并可稳定金属线路或平面81提供的电源电压。Therefore, the structure shown in FIG. 1B uses a metal line or plane 81 as a power supply line or plane, and because the metal line or plane 81 on the protective layer 5 is a thick metal conductor, and the thick metal conductor has low resistance Therefore, the voltage drop generated by the metal line or the plane 81 can be greatly reduced, and the power supply voltage provided by the metal line or the plane 81 can be stabilized.

在图1B至图1C、图2B至图2C与图3B至图3D中,内部电路20包括内部电路21、内部电路22、内部电路23与内部电路24,其中内部电路22、24是为或非门(NOR gate),而内部电路23是为与非门(NAND gate),另每一个或非门和与非门均有三个输入节点Ui、Wi、Vi、一个输出节点Uo、Wo、Vo、一个电压Vcc电源节点Up、Wp、Vp以及一个接地参考电压Vss接地节点Us、Ws、Vs,而内部电路21则具有一个输入节点Xi、一个输出节点Xo、一个电压Vcc电源节点Tp与一个接地参考电压Vss接地节点Ts。因此,内部电路20(包括21、22、23与24)通常具有讯号节点(signal node)、电源节点(power node)以及接地节点(ground node)。然而,内部电路20(包括21、22、23与24)也可以是任何一种型式的集成电路,此部份之内容将一并在后续图15是列中说明内部电路20(包括21、22、23与24)时叙述;另有关内部电路21的一些应用范例则将在随后图5C至图5J以及图5M至图5R中说明。1B to 1C, 2B to 2C and 3B to 3D, the internal circuit 20 includes an internal circuit 21, an internal circuit 22, an internal circuit 23 and an internal circuit 24, wherein the internal circuits 22 and 24 are either or not Gate (NOR gate), and internal circuit 23 is NAND gate (NAND gate), each NOR gate and NAND gate all have three input nodes Ui, Wi, Vi, an output node Uo, Wo, Vo, A voltage Vcc power supply node Up, Wp, Vp and a ground reference voltage Vss ground node Us, Ws, Vs, while the internal circuit 21 has an input node Xi, an output node Xo, a voltage Vcc power supply node Tp and a ground reference The voltage Vss is grounded to the node Ts. Therefore, the internal circuit 20 (including 21 , 22 , 23 and 24 ) usually has a signal node, a power node and a ground node. However, the internal circuit 20 (including 21, 22, 23 and 24) can also be any type of integrated circuit, and the content of this part will be described in the subsequent column of FIG. 15. The internal circuit 20 (including 21, 22 , 23 and 24) are described; some application examples of the internal circuit 21 will be described in subsequent FIGS. 5C to 5J and 5M to 5R.

请同时参阅图2B与图3B所示,其是分别为本发明图1B所示的俯视示意图与剖面示意图。在图3B中,细线路金属结构611、612、614、619、619’可以是由细线路金属层60与开口30’内填满的导电栓塞60’形成,形成的方式比如是以约略对准的堆栈方式形成,也就是说上下两开口30’之间是大致对准的、上下两细线路金属层60之间是大致对准的,以及上下两导电栓塞60’之间也是大致对准的,另细线路金属层60之间是由细线路介电层30(例如氧化硅)分开,而有关上述细线路金属结构的说明也适用在本发明的所有实施例。在图2B中,保护层5上的金属线路或平面81可以是单层图案化金属层(例如图3B的图案化金属层811)或多层图案化金属层(图中未示),而当金属线路或平面81为多层图案化金属层时,图案化金属层之间是由一聚合物层分开,而此聚合物层可以是聚酰亚胺(polyimide,PI)、苯基环丁烯(benzo cyclo butene,BCB)、聚对二甲苯(pary lene)、环氧基材料(epoxy-based material),例如环氧树脂或是由位于瑞士的Renens的SotecMicrosystems所提供的photoepoxySU-8、弹性材料(elastomer),例如硅酮(silicone)。此外,金属线路或平面81是包括一黏着/阻障/种子层(adhesion/barrier/seed layer)以及一厚金属层,例如在图3B中,图案化金属层811包括有一黏着/阻障/种子层8111以及一厚金属层8112。至于有关形成金属线路或平面81的方法以及金属线路或平面81的详细叙述则将在后续图15是列、图16是列、图17是列、图18是列与图19是列中说明。另,细线路金属结构612包括有细线路金属结构612a、细线路金属结构612b和细线路金属结构612c,其是用来作为区域性功率(localpower)的分配,而金属线路或平面81则用来作为全面性功率(global power)的分配,并与细线路金属结构61’(包括611、612、614)与细线路金属结构619’相连接。请同时参阅图1B、图2B与图3B所示,外部供应电源在接触接垫8110提供一电压Vdd,并在通过一保护层开口519和一细线路金属结构619后,输入到稳压器或变压器41,其中此细线路金属结构619包括细线路金属层60最顶层的一金属接垫(metal pad)6190,并通过保护层开口519暴露出金属接垫6190而连接到接触接垫8110。Please refer to FIG. 2B and FIG. 3B at the same time, which are respectively a schematic top view and a schematic cross-sectional view shown in FIG. 1B of the present invention. In FIG. 3B , the fine-line metal structures 611, 612, 614, 619, and 619' can be formed by the thin-line metal layer 60 and the conductive plug 60' filled in the opening 30', for example, by roughly aligning In other words, the upper and lower openings 30' are roughly aligned, the upper and lower thin line metal layers 60 are roughly aligned, and the upper and lower conductive plugs 60' are also roughly aligned. , and the thin-line metal layers 60 are separated by a thin-line dielectric layer 30 (such as silicon oxide), and the description about the above-mentioned thin-line metal structure is also applicable to all embodiments of the present invention. In FIG. 2B, the metal line or plane 81 on the protective layer 5 may be a single-layer patterned metal layer (such as the patterned metal layer 811 in FIG. 3B ) or a multi-layer patterned metal layer (not shown), and when When the metal line or plane 81 is a multi-layer patterned metal layer, the patterned metal layers are separated by a polymer layer, and the polymer layer can be polyimide (polyimide, PI), phenylcyclobutene (benzo cyclo butene, BCB), parylene (parylene), epoxy-based material (epoxy-based material), such as epoxy resin or photoepoxySU-8 provided by Sotec Microsystems in Renens, Switzerland, elastic material (elastomer), such as silicone (silicone). In addition, metal line or plane 81 includes an adhesion/barrier/seed layer (adhesion/barrier/seed layer) and a thick metal layer. For example, in FIG. 3B, patterned metal layer 811 includes an adhesion/barrier/seed layer layer 8111 and a thick metal layer 8112. As for the method for forming the metal line or the plane 81 and the detailed description of the metal line or the plane 81 , it will be described in the subsequent columns of FIG. 15 , FIG. 16 , FIG. 17 , FIG. 18 , and FIG. 19 . In addition, the fine-line metal structure 612 includes a thin-line metal structure 612a, a thin-line metal structure 612b, and a thin-line metal structure 612c, which are used for distributing local power, and the metal lines or planes 81 are used for As global power distribution, it is connected to the thin line metal structure 61' (including 611, 612, 614) and the thin line metal structure 619'. Please refer to FIG. 1B, FIG. 2B and FIG. 3B at the same time. The external power supply provides a voltage Vdd at the contact pad 8110, and after passing through a protective layer opening 519 and a thin line metal structure 619, it is input to the voltage regulator or Transformer 41 , wherein the fine-line metal structure 619 includes a metal pad 6190 on the topmost layer of the thin-line metal layer 60 , and the metal pad 6190 is exposed through the protective layer opening 519 and connected to the contact pad 8110 .

本发明利用一顶端聚合物层99覆盖金属线路或平面81,此顶端聚合物层99可以是聚酰亚胺、苯基环丁烯、聚对二甲苯、环氧基材料(例如环氧树脂或photoepoxySU-8)、弹性材料(例如硅酮),例如图3B所示,图案化金属层811覆盖一顶端聚合物层99。另,在保护层5与金属线路或平面81之间也可选择性增加一聚合物层95,此聚合物层95可以是聚酰亚胺、苯基环丁烯、聚对二甲苯、环氧基材料(例如环氧树脂或photoepoxySU-8)、弹性材料(例如硅酮),例如图3D所示,在保护层5与图案化金属层811之间增加一聚合物层95,其中聚合物层开口9519、9519’、9511、9512、9514是分别对准在保护层5中的保护层开口519、519’、511、512、514。在本发明中,聚合物层开口底部的尺寸可以是小于下方保护层开口的尺寸,而且聚合物层覆盖部份保护层开口所暴露出的接垫,例如在图3D中,聚合物层开口9519、9519’底部的尺寸即是分别小于下方保护层开口519、519’的尺寸,而且聚合物层95覆盖部份保护层开口519、519’所暴露出的金属接垫6190、6190’,另外保护层开口519、519’的尺寸是介于20微米至100微米之间,而聚合物层开口9519、9519’的尺寸则是介于20微米至100微米之间;然而在某些设计中,聚合物层开口的尺寸也可以是大于下方保护层开口的尺寸,并通过聚合物层开口暴露出保护层开口所暴露出的所有部份,例如聚合物层开口9511、9512、9514的尺寸即是分别大于下方保护层开口511、512、514的尺寸,而且聚合物层开口9511、9512、9514分别暴露出保护层开口511、512、514所暴露出的所有部份,此外保护层开口511、512、514的尺寸是介于10微米至50微米之间,而聚合物层开口9511、9512、9514的尺寸则是介于20微米至100微米之间。有关上述的说明也适用在本发明的所有实施例。The present invention utilizes a top polymer layer 99 to cover the metal line or plane 81, and this top polymer layer 99 can be polyimide, phenylcyclobutene, parylene, epoxy-based materials (such as epoxy resin or photoepoxySU-8), elastic material (such as silicone), such as shown in FIG. 3B , a patterned metal layer 811 covers a top polymer layer 99 . In addition, a polymer layer 95 can also be selectively added between the protective layer 5 and the metal circuit or the plane 81, and the polymer layer 95 can be polyimide, phenylcyclobutene, parylene, epoxy Base material (such as epoxy resin or photoepoxySU-8), elastic material (such as silicone), such as shown in Figure 3D, a polymer layer 95 is added between the protective layer 5 and the patterned metal layer 811, wherein the polymer layer The openings 9519 , 9519 ′, 9511 , 9512 , 9514 are respectively aligned with the protective layer openings 519 , 519 ′, 511 , 512 , 514 in the protective layer 5 . In the present invention, the size of the bottom of the opening of the polymer layer may be smaller than the size of the opening of the protective layer below, and the polymer layer covers part of the exposed pads of the opening of the protective layer. For example, in FIG. 3D, the opening 9519 of the polymer layer The size of the bottom of , 9519' is smaller than the size of the openings 519, 519' of the protective layer below, and the polymer layer 95 covers the metal pads 6190, 6190' exposed by the openings 519, 519' of the protective layer. The size of the layer openings 519, 519' is between 20 microns and 100 microns, and the size of the polymer layer openings 9519, 9519' is between 20 microns and 100 microns; The size of the opening of the object layer can also be larger than the size of the opening of the protective layer below, and expose all the parts exposed by the opening of the protective layer through the opening of the polymer layer. For example, the sizes of the openings of the polymer layer 9511, 9512, and 9514 are is larger than the size of the lower protective layer openings 511, 512, 514, and the polymer layer openings 9511, 9512, 9514 respectively expose all parts exposed by the protective layer openings 511, 512, 514. In addition, the protective layer openings 511, 512, The size of 514 is between 10 microns and 50 microns, and the size of polymer layer openings 9511, 9512, 9514 is between 20 microns and 100 microns. The above descriptions are also applicable to all embodiments of the present invention.

另,用来分配稳定或转换电压Vcc的金属线路或平面81除了可以是单层图案化金属层(如图3B所示的图案化金属层811)的外,也可以是具有聚合物层沉积在每一金属层之间的多层图案化金属层,而且多层图案化金属层可以通过聚合物层之间的开口,使不同层的图案化金属层连接在一起。In addition, the metal line or plane 81 used to distribute the stable or switching voltage Vcc can be a single-layer patterned metal layer (such as the patterned metal layer 811 shown in FIG. 3B ), or a polymer layer deposited on There are multiple patterned metal layers between each metal layer, and the patterned metal layers of different layers can be connected together through the openings between the polymer layers.

再来,请同时参阅图1A、图2A与图3A所示,其是为现有相关技术,如图所示,外部供应电源是以下列所述的方式提供稳压器或变压器41所需的输入电压,其是为:利用保护层开口519所暴露出的金属接垫6190接收来自外部供应电源输入的电压Vdd,接着往下经过细线路金属结构619,最后将电压Vdd输入到稳压器或变压器41。继续,经由细线路金属结构61(包括618、6111、6121、6141)将电压调节器或变压器41的输出电压Vcc配送至内部电路21、22、23、24的电压Vcc节点。惟,此现有技术存在有显着地能量损失(energy loss)和速度减慢(speedreduction)的缺点。Again, please refer to Fig. 1A, Fig. 2A and Fig. 3A at the same time, which are related technologies in the prior art, as shown in the figure, the external power supply is to provide the input required by the voltage stabilizer or transformer 41 in the following manner Voltage, which is: use the metal pad 6190 exposed by the protective layer opening 519 to receive the voltage Vdd input from the external power supply, then go down through the thin line metal structure 619, and finally input the voltage Vdd to the voltage regulator or transformer 41. Continuing, the output voltage Vcc of the voltage regulator or transformer 41 is distributed to the voltage Vcc nodes of the internal circuits 21 , 22 , 23 , 24 via the fine line metal structure 61 (including 618 , 6111 , 6121 , 6141 ). However, this prior art has the disadvantages of significant energy loss and speed reduction.

在图1B、图2B、图3B和图3D中,接地参考电压表示为Vss,但是并未对其电路、布局以及结构加以详述。现请同时参阅图1C、图2C和图3C所示,其是分别为本发明利用保护层上方金属线路或平面分配电压Vcc和接地参考电压Vss结构的电路示意图、俯视示意图和剖面示意图。其中,除了稳压器或变压器41和内部电路20(包括21、22、23、24)共享一接地参考电压的外,也就是除了内部电路20与稳压器或变压器41的接地节点Ts、Us、Vs、Ws、Rs均连接到同一接地参考电压节点Es的外,接地参考电压Vss的结构与连接方式是与上述提与的电压Vcc相似。在图1C、图2C和图3C中,接收接地参考电压Vss的接地节点Es是经由保护层5的保护层开口529与保护层5下的细线路金属结构629连接到稳压器或变压器41的接地节点Rs,以及经由金属线路或平面82(图3C中的图案化金属层821)、保护层开口521、522、524以及细线路金属结构621、622(包括622a、622b、622c)、624连接到内部电路21、22、23、24的接地节点Ts、Us、Vs、Ws。In FIG. 1B , FIG. 2B , FIG. 3B and FIG. 3D , the ground reference voltage is represented as Vss, but its circuit, layout and structure are not described in detail. Please refer to FIG. 1C, FIG. 2C and FIG. 3C at the same time, which are circuit schematic diagrams, top view schematic diagrams and cross-sectional schematic diagrams of the structure of the present invention using metal lines or planes above the protective layer to distribute voltage Vcc and ground reference voltage Vss. Wherein, except that the voltage stabilizer or transformer 41 and the internal circuit 20 (including 21, 22, 23, 24) share a ground reference voltage, that is, except the ground nodes Ts, Us of the internal circuit 20 and the voltage stabilizer or transformer 41 , Vs, Ws, and Rs are all connected to the same ground reference voltage node Es, and the structure and connection method of the ground reference voltage Vss are similar to the voltage Vcc mentioned above. In FIG. 1C, FIG. 2C and FIG. 3C, the ground node Es receiving the ground reference voltage Vss is connected to the voltage regulator or transformer 41 via the protective layer opening 529 of the protective layer 5 and the thin line metal structure 629 under the protective layer 5. Ground node Rs, and connected via metal line or plane 82 (patterned metal layer 821 in FIG. To the ground nodes Ts, Us, Vs, Ws of the internal circuits 21, 22, 23, 24.

现请参阅图3C所示,其是公开出保护层上方用来作为电源/接地参考电压结构的两层图案化金属层812与821,其中底层的图案化金属层821是为金属线路或平面82,用作分配一接地参考电压Vss的路线、总线或平面,而顶层的图案化金属层812则是为金属线路或平面81,用作为分配一电压Vcc的线路、总线或平面。另在图3C中,号码821用以代表作为接地参考电压的图案化金属层,其中号码821右边的数字1是表示第一金属层,号码821中间的数字2表示接地(ground),而号码821左边的数字8则表示保护层上方金属(over-passivation metal)。同样地,在图3C中,号码812用以代表作为电源的图案化金属层,其中号码812右边的数字2是表示第二金属层,号码812中间的数字1表示电源(power),而号码812左边的数字8则表示保护层上方金属。继续,一聚合物层98隔开两图案化金属层821与812,以及一顶端聚合物层99覆盖在顶端的图案化金属层812上,其中聚合物层98可以是聚酰亚胺、苯基环丁烯、聚对二甲苯、环氧基材料(例如环氧树脂或photoepoxySU-8)、弹性材料(例如硅酮)。另,可选择性形成一聚合物层97(图3C中未示)在保护层5与图案化金属层821最底端之间,而此聚合物层97可以是聚酰亚胺、苯基环丁烯、聚对二甲苯、环氧基材料(例如环氧树脂或photoepoxySU-8)、弹性材料(例如硅酮)。关于图3C中的聚合物层97、98、99的材料与制程则与图3B和图3D相同,而相关叙述则将在后续图15是列中说明。此外,图3C中用来分配接地参考电压Vss的图案化金属层821是通过保护层开口521、522、524、529以及细线路金属结构621、622、624、629连接到保护层下方之内部电路21、22、23、24的接地节点Ts、Us、Vs、Ws以及稳压器或变压器41的接地节点Rs,而用来分配电压Vcc的图案化金属层812则是通过聚合物层开口(图中未示)、保护层开口(图中未示)以及细线路金属结构(图中未示)连接到保护层下方之内部电路21、22、23、24的电源节点Tp、Up、Vp、Wp以及稳压器或变压器41的电源节点(图中未示)。另,流经金属线路或平面81、82的电流是介于50微安培至2毫安之间或是介于100微安培至1毫安之间。Please refer now to FIG. 3C , which discloses two patterned metal layers 812 and 821 above the protection layer as a power/ground reference voltage structure, wherein the bottom patterned metal layer 821 is a metal line or plane 82 , is used as a line, bus or plane for distributing a ground reference voltage Vss, and the patterned metal layer 812 on the top layer is a metal line or plane 81, which is used as a line, bus or plane for distributing a voltage Vcc. Also in FIG. 3C, the number 821 is used to represent the patterned metal layer as a ground reference voltage, wherein the number 1 on the right side of the number 821 represents the first metal layer, the number 2 in the middle of the number 821 represents ground, and the number 821 The number 8 on the left indicates over-passivation metal. Similarly, in FIG. 3C, the number 812 is used to represent the patterned metal layer as a power supply, wherein the number 2 on the right side of the number 812 represents the second metal layer, the number 1 in the middle of the number 812 represents a power supply (power), and the number 812 The number 8 on the left indicates the metal above the protective layer. Continuing, a polymer layer 98 separates the two patterned metal layers 821 and 812, and a top polymer layer 99 covers the top patterned metal layer 812, wherein the polymer layer 98 can be polyimide, phenyl Cyclobutene, parylene, epoxy-based materials (such as epoxy resin or photoepoxySU-8), elastomeric materials (such as silicone). In addition, a polymer layer 97 (not shown in FIG. 3C ) can be optionally formed between the protection layer 5 and the bottom end of the patterned metal layer 821, and the polymer layer 97 can be polyimide, phenyl ring Butene, parylene, epoxy-based materials (such as epoxy resin or photoepoxySU-8), elastomeric materials (such as silicone). The materials and processes of the polymer layers 97 , 98 , 99 in FIG. 3C are the same as those in FIG. 3B and FIG. 3D , and related descriptions will be described in the subsequent column of FIG. 15 . In addition, the patterned metal layer 821 used for distributing the ground reference voltage Vss in FIG. 3C is connected to the internal circuit under the protection layer through the protection layer openings 521, 522, 524, 529 and thin line metal structures 621, 622, 624, 629. The ground nodes Ts, Us, Vs, Ws of 21, 22, 23, 24 and the ground node Rs of the voltage regulator or transformer 41, and the patterned metal layer 812 for distributing the voltage Vcc is through the polymer layer opening (Fig. not shown in the figure), protective layer openings (not shown in the figure), and thin line metal structures (not shown in the figure) are connected to the power supply nodes Tp, Up, Vp, Wp of the internal circuits 21, 22, 23, 24 under the protective layer And the power node of the voltage regulator or transformer 41 (not shown in the figure). In addition, the current flowing through the metal lines or planes 81 and 82 is between 50 microamperes and 2 milliamperes or between 100 microamperes and 1 milliamperes.

在某些应用中,金属线路或平面81除了用在电源设计的外,金属线路或平面81内的线路或平面也可以用来传输数据或讯号(例如数字讯号或模拟讯号)。同样地,金属线路或平面82除了用在接地设计的外,金属线路或平面82内的线路或平面也可用来来传输数据或讯号(例如数字讯号或模拟讯号)。In some applications, in addition to the metal lines or planes 81 being used in power supply design, the lines or planes in the metal lines or planes 81 can also be used to transmit data or signals (such as digital signals or analog signals). Similarly, in addition to the metal lines or planes 82 being used for grounding, the lines or planes within the metal lines or planes 82 can also be used to transmit data or signals (such as digital signals or analog signals).

保护层上方结构尚有更多其它型式,其叙述如下:(1)在高性能(highperformance)电路或高精密(high percision)模拟电路的应用上,图案化金属层812与图案化金属层821之间可以增加用来传输讯号(例如数字讯号或模拟讯号)的一图案化金属层(图中未示),并且在此图案化金属层的下方和上方分别形成有一聚合物层(图中未示),使此图案化金属层与图案化金属层812与图案化金属层821隔开;(2)在高电流(high current)或高精密(high percision)电路的应用上,图案化金属层812的上方可以增加用来分配一接地参考电压的一图案化金属层(图中未示),并且在此图案化金属层和图案化金属层812之间形成一聚合物层,以及利用一顶端聚合物层覆盖此图案化金属层。换言的,图案化金属层812是在图案化金属层821与此图案化金属层的中间,因而形成一种Vss/Vcc/Vss结构在保护层5上方;(3)若有需要,可以更进一步地在上述(2)中增加的图案化金属层上方,形成用来分配一电源的另一图案化金属层(图中未示),并且在上述(2)中增加的图案化金属层和图案化金属层812之间形成一聚合物层、在上述(2)中增加的图案化金属层和另一图案化金属层之间形成另一聚合物层,以及一顶端聚合物层覆盖在另一图案化金属层上,因而产生一种Vss/Vcc/Vss/Vcc(由下到上的堆栈型式)的电源/接地参考电压结构。对于高电流电路、高精密模拟电路、高速(high speed)电路、低功率(lowpower)电路、电源管理(power management)电路以及高性能电路而言,上述的结构可以提供一种稳定的电源供应器。There are more other types of structures above the protective layer, which are described as follows: (1) In the application of high performance (high performance) circuits or high precision (high precision) analog circuits, the patterned metal layer 812 and the patterned metal layer 821 A patterned metal layer (not shown) for transmitting signals (such as digital signals or analog signals) can be added between them, and a polymer layer (not shown) is formed under and above the patterned metal layer respectively. ), the patterned metal layer is separated from the patterned metal layer 812 and the patterned metal layer 821; (2) in the application of high current (high current) or high precision (high precision) circuit, the patterned metal layer 812 A patterned metal layer (not shown in the figure) for distributing a ground reference voltage can be added above the , and a polymer layer is formed between the patterned metal layer and the patterned metal layer 812, and a top polymerization An object layer covers the patterned metal layer. In other words, the patterned metal layer 812 is in the middle of the patterned metal layer 821 and the patterned metal layer, thus forming a Vss/Vcc/Vss structure above the protective layer 5; Further above the patterned metal layer added in the above (2), another patterned metal layer (not shown) for distributing a power supply is formed, and the patterned metal layer added in the above (2) and A polymer layer is formed between the patterned metal layers 812, another polymer layer is formed between the patterned metal layer added in (2) above and another patterned metal layer, and a top polymer layer covers the other On a patterned metal layer, a power/ground reference voltage structure of Vss/Vcc/Vss/Vcc (stacked from bottom to top) is created. For high current circuits, high precision analog circuits, high speed circuits, low power circuits, power management circuits and high performance circuits, the above structure can provide a stable power supply .

请参阅图4所示,其是公开出在图1B至图1D、图2B至图2C和图3B至图3D中所示的稳压器或变压器41的一范例。此范例电路是同时具有稳压与变压功能的一变压器,而且通常使用在如1991年由B.Prince着而由John Wiley & Sons发行的“Semiconductor Memories:Ahand book of Design,Manufacture andApplication”一书所述的现代动态随机存取内存(Dynamic Random AccessMemory,DRAM)的设计中。如图4所示,通过变压器的稳压以及变压功能,外部供应电源输入的电压Vdd可被转换成一输出电压Vcc,且此输出电压Vcc与一设定目标电压Vcc0之间的差值除以设定目标电压Vcc0的百分比是小于10%,并以小于5%为较佳者。如同“背景技术”内容所述,更多现代的集成电路芯片需要凭借芯片内建变压器的方式来使外部(系统、电路板、模块或电路卡)供应电源所供应的电压转换成芯片所需的电压。此外,某些芯片,如一动态随机存取内存芯片,在同一芯片上甚至需要两倍或者是三倍的电压,例如周边控制电路使用3.3伏特(V),而内存单元数组区域中之内存单元(memory cell)使用1.5伏特。Please refer to FIG. 4 , which discloses an example of the voltage regulator or transformer 41 shown in FIGS. 1B-1D , 2B-2C and 3B-3D. This example circuit is a transformer with both voltage stabilizing and transforming functions, and is commonly used in the book "Semiconductor Memories: Ahand book of Design, Manufacture and Application" written by B.Prince and published by John Wiley & Sons in 1991 In the design of the modern dynamic random access memory (Dynamic Random Access Memory, DRAM). As shown in FIG. 4, through the voltage stabilizing and transforming functions of the transformer, the voltage Vdd input by the external power supply can be converted into an output voltage Vcc, and the difference between the output voltage Vcc and a set target voltage Vcc0 is divided by The percentage of the target voltage Vcc0 is set to be less than 10%, preferably less than 5%. As mentioned in "Background Technology", more modern integrated circuit chips need to rely on the way of built-in transformers on the chip to convert the voltage supplied by the external (system, circuit board, module or circuit card) power supply into the voltage required by the chip. Voltage. In addition, some chips, such as a dynamic random access memory chip, even require twice or three times the voltage on the same chip, for example, the peripheral control circuit uses 3.3 volts (V), and the memory cells in the memory cell array area ( memory cell) use 1.5 volts.

在图4中,变压器包括有两个电路区块(circuit block),其是为参考电压产生器(voltage reference generator)410以及电流镜电路(current mirror circuit)410’。参考电压产生器410可在节点R中产生一参考电压VR,以避免受到节点4199的外部电源供应电压Vdd的电压波动(voltage fluctuation)影响。另,外部电源供应电压Vdd也是参考电压产生器410的输入供应电压(input supply voltage)。参考电压产生器410包括有两电压分压器(voltage divider)路径,一是包括三个连接在一起的P型金氧半晶体管4101、4103、4105,另一则是括两个连接在一起的P型金氧半晶体管4102、4104。继续,通过P型金氧半晶体管4103的漏极(drain)与P型金氧半晶体管4104的栅极(gate)的相连,参考电压VR可以受到调控。因此,当外部电源供应电压Vdd波动上升时,节点G的电压上升,导致P型金氧半晶体管4104的开启程度较低,进而使参考电压VR下降。同样地,当外部电源供应电压Vdd下降时,参考电压VR则会上升。至此,上述之内容解释了参考电压产生器410的调整特性。参考电压产生器410的输出是用来作为电流镜电路410’的一参考电压。对于一集成电路芯片而言,电流镜电路410’可以输出稳定的电压并具有大电流的能力,另凭借避免一外部电源供应电压Vdd至接地参考电压Vss的直接高电流路径,电流镜电路410’也可以消除巨大功率消耗或是浪费。此外,通过P型金氧半晶体管4109的漏极与P型金氧半晶体管4106的栅极的相连,以及输出电压节点P连接至参考电压镜(reference-voltage-mirror)P型金氧半晶体管4110的栅极,电流镜电路410’可以调控输出的电压Vcc,让输出的电压Vcc被控制在一指定的电压中。另,电导晶体管(conductance transistor)4112是为一小的P型金氧半晶体管,且其栅极与接地参考电压Vss相连,因此电导晶体管4112永远处在开启状态;而电导晶体管4111是为一大的P型金氧半晶体管,且其栅极受到一讯号Φ的控制,当内部电路在主动周期(active cycle)时,电导晶体管4111处在开启状态,让P型金氧半晶体管4109与N型金氧半晶体管4107所形成的电流路径(curren path)以及P型金氧半晶体管4110与N型金氧半晶体管4108所形成的电流路径具有快速响应(fast response)。另外,电导晶体管4111的开启,可以将内部电路(例如图1B至图1C、图2B至图2C、图3B至图3D中之内部电路21、22、23、24)的大瞬时电流(transient current)需求所造成的输出电压Vcc瞬间不稳定的情况减到最小。当内部电路在闲置周期(idle cycle)时,晶体管4111则处在关闭状态,以避免功率消耗(power consumption)。In FIG. 4, the transformer includes two circuit blocks, which are a voltage reference generator 410 and a current mirror circuit 410'. The reference voltage generator 410 can generate a reference voltage VR at the node R to avoid being affected by voltage fluctuation of the external power supply voltage Vdd at the node 4199 . In addition, the external power supply voltage Vdd is also an input supply voltage of the reference voltage generator 410 . The reference voltage generator 410 includes two voltage divider (voltage divider) paths, one includes three P-type metal oxide semiconductor transistors 4101, 4103, 4105 connected together, and the other includes two connected together P-type metal oxide semiconductor transistors 4102, 4104. Continuing, the reference voltage VR can be regulated by connecting the drain of the PMOS transistor 4103 to the gate of the PMOS transistor 4104 . Therefore, when the external power supply voltage Vdd fluctuates and rises, the voltage of the node G rises, resulting in a low turn-on degree of the PMOS transistor 4104 , thereby causing the reference voltage VR to drop. Likewise, when the external power supply voltage Vdd drops, the reference voltage VR rises. So far, the above contents have explained the adjustment characteristics of the reference voltage generator 410 . The output of the reference voltage generator 410 is used as a reference voltage of the current mirror circuit 410'. For an integrated circuit chip, the current mirror circuit 410' can output a stable voltage and has a large current capability, and by avoiding a direct high current path from an external power supply voltage Vdd to the ground reference voltage Vss, the current mirror circuit 410' Huge power consumption or waste can also be eliminated. In addition, the drain of the PMOS transistor 4109 is connected to the gate of the PMOS transistor 4106, and the output voltage node P is connected to the reference voltage mirror (reference-voltage-mirror) PMOS transistor The gate of 4110, the current mirror circuit 410' can regulate the output voltage Vcc, so that the output voltage Vcc can be controlled in a specified voltage. In addition, the conductance transistor (conductance transistor) 4112 is a small P-type metal-oxide-semiconductor transistor, and its gate is connected to the ground reference voltage Vss, so the conductance transistor 4112 is always on; and the conductance transistor 4111 is a large The P-type metal oxide semiconductor transistor, and its gate is controlled by a signal Φ, when the internal circuit is in the active cycle (active cycle), the conductance transistor 4111 is in the open state, so that the P-type metal oxide semiconductor transistor 4109 and the N-type The current path formed by the MOS transistor 4107 and the current path formed by the P-type MOS transistor 4110 and the N-type MOS transistor 4108 have a fast response. In addition, the turn-on of the conductance transistor 4111 can reduce the large instantaneous current (transient current) of the internal circuit (such as the internal circuit 21, 22, 23, 24 in Fig. 1B to Fig. 1C, Fig. 2B to Fig. 2C, Fig. 3B to Fig. 3D). ) The instantaneous instability of the output voltage Vcc caused by the demand is minimized. When the internal circuit is in an idle cycle, the transistor 4111 is turned off to avoid power consumption.

第二实施例:连接内部电路(internal circuit)的保护层上方连接线路(over-passivation interconnection)。The second embodiment: connecting the over-passivation interconnection over the protection layer of the internal circuit (internal circuit).

如本发明的专利权人在先前专利中所公开之内容,例如美国专利第6,657,310号和美国专利第6,495,442号,本发明的厚金属导体(或是保护层上方的金属线路或平面)可以用来分配讯号、电压或接地参考电压。另外,本发明所使用的“保护层上方(over-passivation)”字词是为本发明的专利权人在先前专利中,例如美国专利第6,495,442号,所选择使用的“后护层(post-passivation)”字词,而“保护层上方”的金属线路或平面比如可以用来作为集成电路内部电路的连接线路(interconnection)。在此实施例中,厚金属导体(或是保护层上方的金属线路或平面)可将数据或讯号从一第一内部电路的一输出节点(output node)传送至一第二内部电路的一输入节点(input node)。设计用来连接两个相距较长(例如超过1毫米)之内部电路间的一组相似节点(例如数据、位或讯号地址)的一束金属线路,例如用来连接同一芯片上的一处理器单元与一内存单元间的8位、16位、32位、64位、128位、256位、512位或1024位的数据(或地址)金属线路,通常这些金属线路被称作为总线(bus),此总线比如是使用在一内存中的字符(word)总线或位(bit)总线。另,由于本发明在保护层上方提供一厚金属导体(或是保护层上方的金属线路或平面)来连接复数内部电路,且此厚金属导体可以远离半导体组件,所以当讯号经过厚金属导体(或是保护层上方的金属线路或平面)时,可以减少此讯号扰乱下方半导体组件的情形,或是可以减少下方半导体组件干扰此讯号的情形,让此讯号具有较佳的完整性(signal integrity)。惟,在此实施例中,保护层上方的厚金属导体(或是保护层上方的金属线路或平面)仅连接内部电路的节点,并没有经过任何芯片接外输入/输出电路(off-chip input/output circuit),也没有连接到一外部电路。此外,本发明的保护层上方的厚金属导体(或是保护层上方的金属线路或平面)设计是不同在现有接垫重新配置(padre distribution)的设计。另,因为厚金属导体(或是保护层上方的金属线路或平面)具有低电阻的优点且所引起的寄生(parasitic)电容非常低,所以讯号将不会被剧烈地衰减,使得本发明非常适合用在高速、低功率、高电流或低电压的应用上。本发明在大部分情形下,并不需要额外的放大器、驱动器/接收器或讯号继电器(repeater)来帮助维持讯号的完整性,然而在某些情况下,则需要一内部驱动器(internal driver)、内部接收器(internal receiver)、讯号继电器或者是内部三态缓冲器(internal tri-statebuffer),来长距离传送讯号,且内部驱动器、内部接收器、内部三态缓冲器或讯号继电器均包括有尺寸小于芯片接外电路的金氧半晶体管(MOS transistor)的金氧半晶体管,至于有关内部电路、内部驱动器、内部接收器、内部三态缓冲器以及芯片接外电路的金氧半晶体管的尺寸,将在后续之内容中详加叙述和比较。As disclosed in previous patents of the patentee of the present invention, such as U.S. Patent No. 6,657,310 and U.S. Patent No. 6,495,442, the thick metal conductors (or metal lines or planes above the protective layer) of the present invention can be used to Distribute signal, voltage or ground reference voltage. In addition, the term "over-passivation" used in the present invention is the "post-passivation" chosen by the patentee of the present invention in previous patents, such as U.S. Patent No. 6,495,442. passivation)", and the metal lines or planes "above the protective layer" can be used, for example, as interconnections for the internal circuits of integrated circuits. In this embodiment, thick metal conductors (or metal lines or planes above the protective layer) can carry data or signals from an output node of a first internal circuit to an input of a second internal circuit node (input node). A bundle of metal lines designed to connect a group of similar nodes (such as data, bits, or signal addresses) between two internal circuits that are separated by a long distance (such as more than 1 mm), such as to connect a processor on the same chip 8-bit, 16-bit, 32-bit, 64-bit, 128-bit, 256-bit, 512-bit or 1024-bit data (or address) metal lines between a unit and a memory unit, usually these metal lines are called buses (bus) , the bus is, for example, a character (word) bus or a bit (bit) bus used in a memory. In addition, since the present invention provides a thick metal conductor (or metal lines or planes above the protection layer) to connect multiple internal circuits, and the thick metal conductor can be far away from the semiconductor components, so when the signal passes through the thick metal conductor ( Or metal lines or planes above the protective layer), it can reduce the situation where the signal disturbs the semiconductor components below, or it can reduce the situation where the semiconductor components below interfere with the signal, so that the signal has better signal integrity. . However, in this embodiment, the thick metal conductors above the protective layer (or metal lines or planes above the protective layer) are only connected to the nodes of the internal circuit, and do not pass through any off-chip input/output circuits. /output circuit), nor connected to an external circuit. In addition, the design of the thick metal conductor (or the metal line or plane above the protection layer) of the present invention is different from the existing padre distribution design. In addition, because thick metal conductors (or metal lines or planes above the protective layer) have the advantage of low resistance and the resulting parasitic (parasitic) capacitance is very low, so the signal will not be severely attenuated, making the present invention very suitable Used in high speed, low power, high current or low voltage applications. In most cases, the present invention does not require additional amplifiers, drivers/receivers, or signal relays (repeaters) to help maintain signal integrity, but in some cases, an internal driver (internal driver), Internal receiver (internal receiver), signal relay or internal tri-state buffer (internal tri-state buffer) to transmit signals over long distances, and internal driver, internal receiver, internal tri-state buffer or signal relay all include dimensions The MOS transistor is smaller than the MOS transistor connected to the external circuit of the chip. As for the size of the MOS transistor related to the internal circuit, internal driver, internal receiver, internal tri-state buffer, and chip connected to the external circuit, It will be described and compared in detail in the following content.

现请同时参阅图5B、图6B和图7B所示,其是公开出本发明的第二实施例。图5B呈现出一简化的电路示意图,其是利用保护层5上的金属线路或平面83以及保护层5下的细线路金属结构631、632a、632b、632c、634连接内部电路20(包括21、22、23、24)。在图5B中,内部电路21具有一输入节点Xi与一输出节点Xo,并通过输出节点Xo送出一讯号,而此讯号可凭借金属线路或平面83以及细线路金属结构631、632a、632b、632c、634传送到内部电路22、23、24的输入节点Ui、Vi、Wi,另内部电路21可以是一逻辑闸(logic gate),例如反或(NOR)闸、反与(NAND)闸、或(OR)闸、且(AND)闸,或者是一内部缓冲器(如图5C、图5D和图5E所示的反相器、内部驱动器或内部三态缓冲器)。图6B呈现出图5B所示的电路的俯视示意图。图7B则呈现出图5B所示的电路的剖面示意图。此外,在图5B与图6B中,形成在保护层5上的线路或平面是以“粗线”来表示,而形成在保护层5下的线路结构则是以“细线”来表示。Please refer to FIG. 5B , FIG. 6B and FIG. 7B at the same time, which disclose the second embodiment of the present invention. FIG. 5B presents a simplified schematic circuit diagram, which uses metal lines or planes 83 on the protective layer 5 and thin line metal structures 631, 632a, 632b, 632c, 634 under the protective layer 5 to connect the internal circuit 20 (including 21, 22, 23, 24). In FIG. 5B, the internal circuit 21 has an input node Xi and an output node Xo, and sends a signal through the output node Xo, and this signal can be obtained by means of metal lines or planes 83 and thin line metal structures 631, 632a, 632b, 632c. , 634 are transmitted to the input nodes Ui, Vi, Wi of the internal circuits 22, 23, 24, and the internal circuit 21 can be a logic gate (logic gate), such as an inverse OR (NOR) gate, an inverse AND (NAND) gate, or The (OR) gate, and (AND) gate, or an internal buffer (such as an inverter, an internal driver, or an internal tri-state buffer as shown in FIG. 5C , FIG. 5D , and FIG. 5E ). FIG. 6B presents a schematic top view of the circuit shown in FIG. 5B . FIG. 7B shows a schematic cross-sectional view of the circuit shown in FIG. 5B . In addition, in FIG. 5B and FIG. 6B , the lines or planes formed on the passivation layer 5 are represented by "thick lines", while the line structures formed under the passivation layer 5 are represented by "thin lines".

在本发明中,用来驱动保护层上方金属线路之内部驱动器是与美国公开专利第20040089951号(本发明专利权人的先前专利)所述的芯片内驱动器(intra-chipdriver)相同。通过保护层5上的金属线路或平面83、保护层5中的保护层开口532、534以及保护层5下的细线路金属结构631、632a、632b、632c、634,三个内部逻辑电路(内部电路22、24为或非门,内部电路23为且闸)可以接收到内部电路21所传送的数据或讯号。因为保护层上方的金属线路或平面83具有低电阻以及可以产生低寄生电容的特性,所以输入节点Ui、Vi、Wi介于Vdd至Vss之间的电压振幅(voltage swing)具有非常小的衰减和噪声。另外,在本实施例中,金属线路或平面并不需要连接到任何将在后续第11图是列中用来连接至一外部电路的芯片接外电路,例如静电放电(ESD)防护电路、芯片接外驱动器、芯片接外接收器或芯片接外缓冲器电路(例如芯片三态缓冲器电路),所以本实施例可改善速度和减少功率消耗。In the present invention, the internal driver used to drive the metal lines above the passivation layer is the same as the intra-chip driver described in US Published Patent No. 20040089951 (previous patent of the present patentee). Three internal logic circuits (internal The circuits 22 and 24 are NOR gates, and the internal circuit 23 is an NOR gate) that can receive data or signals transmitted by the internal circuit 21 . Because the metal line or plane 83 above the protection layer has low resistance and can generate low parasitic capacitance, the voltage swing (voltage swing) of the input nodes Ui, Vi, Wi between Vdd and Vss has very little attenuation and noise. In addition, in this embodiment, the metal lines or planes do not need to be connected to any off-chip circuits that will be used in the subsequent columns of FIG. 11 to connect to an external circuit, such as electrostatic discharge (ESD) protection circuits, chip An external driver, an on-chip receiver, or an off-chip buffer circuit (such as an on-chip tri-state buffer circuit), so this embodiment can improve speed and reduce power consumption.

请同时参阅图5A、图6A与图7A所示,其是为本实施例的相关现有技术,如图所示,位于保护层5下方之内部电路21是通过细线路金属结构6311、638、6321a、6321b连接到一内部电路22(例如一或非门)、通过细线路金属结构6311、638、6321a、6321c连接到一内部电路23(例如一与非门)以及通过细线路金属结构6311、638、6341连接到其它内部电路24(例如一或非门)。因此,现有是依赖位于保护层5下方的细线路金属结构638、6311、6321、6341来将内部电路21输出的数据传送到其它内部电路22、23、24。惟,现有设计会导致讯号衰减、性能降低、高功率消耗以及产生高热。Please refer to FIG. 5A, FIG. 6A and FIG. 7A at the same time, which is the related prior art of this embodiment. 6321a, 6321b are connected to an internal circuit 22 (such as a NOR gate), and are connected to an internal circuit 23 (such as a NAND gate) through thin-line metal structures 6311, 638, 6321a, 6321c and through thin-line metal structures 6311, 638, 6341 are connected to other internal circuits 24 (such as a NOR gate). Therefore, conventionally, the data output from the internal circuit 21 is transmitted to other internal circuits 22 , 23 , 24 by relying on the fine line metal structures 638 , 6311 , 6321 , 6341 located under the protection layer 5 . However, existing designs result in signal attenuation, reduced performance, high power consumption, and high heat generation.

接着,请同时参阅图5B与图6B所示,其是在保护层5上建立一金属线路或平面83,并通过位于保护层5上的金属线路或平面83取代图5A与图6A中细线路金属结构638,使内部电路21、22、23、24凭借金属线路或平面83连接在一起,如图所示,一讯号由内部电路21的一输出节点(通常是内部电路21的一金氧半晶体管的漏极)输出,然后传送经过保护层5下方的细线路金属结构631、保护层5的保护层开口531以及保护层5上的金属线路或平面83,接着(1)经过保护层5的保护层开口534以及保护层5下的细线路金属结构634,最后往下传送到内部电路24(例如一或非门)的一输入节点(通常是内部电路24的一金氧半晶体管的栅极,例如或非门的一金氧半晶体管的栅极);(2)经过保护层5的保护层开口532以及保护层5下的细线路金属结构632(包括632a、632b、632c),最后传送到内部电路22(例如一或非门)与内部电路23(例如一与非门)的一输入节点(通常分别是内部电路22与内部电路23的一金氧半晶体管的栅极,例如分别是或非门与与非门的一金氧半晶体管的栅极)。Next, please refer to FIG. 5B and FIG. 6B at the same time. It is to establish a metal line or plane 83 on the protective layer 5, and replace the thin lines in FIGS. 5A and 6A by the metal line or plane 83 on the protective layer 5. The metal structure 638 makes the internal circuits 21, 22, 23, and 24 connected together by means of metal lines or planes 83. As shown in the figure, a signal is sent from an output node of the internal circuit 21 (usually a metal oxide semiconductor of the internal circuit 21 The drain of the transistor) is output, and then transmitted through the thin line metal structure 631 below the protective layer 5, the protective layer opening 531 of the protective layer 5, and the metal line or plane 83 on the protective layer 5, and then (1) through the protective layer 5 The opening 534 of the protection layer and the thin line metal structure 634 under the protection layer 5 are finally transmitted down to an input node of the internal circuit 24 (such as a NOR gate) (usually the gate of a metal oxide semitransistor of the internal circuit 24 , such as the gate of a NOR gate); (2) pass through the protective layer opening 532 of the protective layer 5 and the thin line metal structure 632 (including 632a, 632b, 632c) under the protective layer 5, and finally transmit An input node to the internal circuit 22 (such as a NOR gate) and the internal circuit 23 (such as a NAND gate) (usually respectively the gate of a metal oxide semiconductor transistor of the internal circuit 22 and the internal circuit 23, such as respectively The NOR gate and the gate of a metal oxide semiconductor transistor of the NAND gate).

因此,综上所述,内部电路21的一输出节点(通常是内部电路21的一金氧半晶体管的漏极)是与保护层5下的细线路金属结构631连接,接着经过保护层5的保护层开口531连接保护层5上的金属线路或平面83,最后经过保护层5的保护层开口532、534连接保护层5下的细线路金属结构632、634,进而与内部电路22、23、24的一输入节点(通常是内部电路22、23、24的一金氧半晶体管的栅极)连接。其中,内部电路21、22、23、24包括一或非门、一或门、一且闸或一与非门,且内部电路21、22、23、24是至少由一金氧半晶体管所构成所构成,也就是说或非门、或门、且闸或与非门是至少由一金氧半晶体管所构成,而此金氧半晶体管比如是尺寸(信道宽度除以信道长度的比值)介于0.1至5之间或介于0.2至2之间的一N型金氧半晶体管,或是尺寸(信道宽度除以信道长度的比值)介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管,另流经金属线路或平面83的电流比如是介于50微安培(μA)至2毫安之间的范围,或是介于100微安培至1毫安之间。Therefore, in summary, an output node of the internal circuit 21 (usually the drain of a metal-oxide-semiconductor transistor of the internal circuit 21) is connected to the thin line metal structure 631 under the protective layer 5, and then passes through the protective layer 5. The protective layer opening 531 is connected to the metal circuit or the plane 83 on the protective layer 5, and finally connected to the thin line metal structures 632, 634 under the protective layer 5 through the protective layer openings 532, 534 of the protective layer 5, and then connected to the internal circuits 22, 23, 24 is connected to an input node (usually the gate of a metal-oxide-semiconductor transistor of the internal circuit 22, 23, 24). Wherein, the internal circuits 21, 22, 23, 24 include a NOR gate, an OR gate, an NAND gate or a NAND gate, and the internal circuits 21, 22, 23, 24 are made of at least one metal oxide semitransistor That is to say, the NOR gate, the OR gate, and the gate or NAND gate are composed of at least one metal oxide semitransistor, and the metal oxide semitransistor is, for example, the size (the ratio of the channel width divided by the channel length) between An N-type metal oxide semiconductor transistor between 0.1 and 5 or between 0.2 and 2, or a size (ratio of channel width divided by channel length) between 0.2 and 10 or between 0.4 and 4 A P-type metal-oxide-semiconductor transistor, and the current flowing through the metal line or the plane 83 is, for example, in the range between 50 μA and 2 mA, or between 100 μA and 1 mA.

继续,请同时参阅图7B与图7C所示,其是为图5B所示的电路结构的两种实施态样,如两图所示,保护层5上方的金属线路或平面83可以是单层图案化金属层(如图7B所示的单层图案化金属层831),或者是多层图案化金属层,且在每一相邻图案化金属层之间具有一聚合物层,例如图7C所示的两层图案化金属层831(包括831a与831b)与832,且在两图案化金属层831与832之间具有一聚合物层98。另,保护层5上方的金属线路或平面83可以覆盖一顶端聚合物层99(如图7B所示,一顶端聚合物层99覆盖在金属层831上;如图7C所示,一顶端聚合物层99覆盖在图案化金属层832上),而且顶端聚合物层99并没有开口暴露出金属线路或平面83,所以保护层5上方的金属线路或平面83(例如图案化金属层831或图案化金属层832)无法连接到外部电路。换言的,在此实施例中,金属线路或平面83(例如图案化金属层831或图案化金属层832)并没有用来连接外部电路的接触接垫(contact pad)。To continue, please refer to Figure 7B and Figure 7C at the same time, which are two implementations of the circuit structure shown in Figure 5B, as shown in the two figures, the metal line or plane 83 above the protective layer 5 can be a single layer A patterned metal layer (such as a single-layer patterned metal layer 831 as shown in FIG. 7B ), or a multi-layer patterned metal layer with a polymer layer between each adjacent patterned metal layer, such as FIG. 7C Two patterned metal layers 831 (including 831 a and 831 b ) and 832 are shown with a polymer layer 98 between the two patterned metal layers 831 and 832 . In addition, the metal line or plane 83 above the protection layer 5 can cover a top polymer layer 99 (as shown in Figure 7B, a top polymer layer 99 is covered on the metal layer 831; as shown in Figure 7C, a top polymer layer layer 99 covers the patterned metal layer 832), and the top polymer layer 99 has no opening to expose the metal line or plane 83, so the metal line or plane 83 above the protection layer 5 (for example, the patterned metal layer 831 or patterned Metal layer 832) cannot be connected to external circuits. In other words, in this embodiment, the metal lines or planes 83 (such as the patterned metal layer 831 or the patterned metal layer 832 ) do not have contact pads for connecting external circuits.

在图7B中,图案化金属层831的号码各是代表:“8”是代表保护层上方金属,“3”是代表一讯号线路,而“1”则是代表保护层上方的第一金属层。同理推知,在图7C中,图案化金属层832的号码各是代表:“8”是代表保护层上方金属,“3”是代表一讯号线路,而“2”则是代表保护层上方的第二金属层。另外,保护层5上的图案化金属层831包括一黏着/阻障/种子层(adhesion/barrier/seed layer)8311以及一厚金属层8312,另外可选择性形成一聚合物层95在保护层5和图案化金属层831最底层之间,如图7D所示。同理,在图7C中,保护层5上的图案化金属层831a、831b、832包括一黏着/阻障/种子层8311a、8311b、8321以及一厚金属层8312a、8312b、8322,而且也可选择性形成一聚合物层95在保护层5和图案化金属层831(包括831a、831b)最底层之间。In FIG. 7B, the numbers of the patterned metal layer 831 represent: "8" represents the metal above the protection layer, "3" represents a signal line, and "1" represents the first metal layer above the protection layer. . In the same way, in FIG. 7C, the numbers of the patterned metal layer 832 represent: "8" represents the metal above the protective layer, "3" represents a signal line, and "2" represents the metal above the protective layer. second metal layer. In addition, the patterned metal layer 831 on the protection layer 5 includes an adhesion/barrier/seed layer (adhesion/barrier/seed layer) 8311 and a thick metal layer 8312. In addition, a polymer layer 95 can be selectively formed on the protection layer. 5 and the bottommost layer of the patterned metal layer 831, as shown in FIG. 7D. Similarly, in FIG. 7C, the patterned metal layers 831a, 831b, 832 on the protective layer 5 include an adhesion/barrier/seed layer 8311a, 8311b, 8321 and a thick metal layer 8312a, 8312b, 8322, and can also be A polymer layer 95 is selectively formed between the passivation layer 5 and the bottommost layer of the patterned metal layer 831 (including 831a, 831b).

图7C除了保护层上方结构包括有两图案化金属层831与832的外,其余都与图7B相似。在图7C中,其是以两图案化金属层831(包括831a、831b)和图案化金属层832来取代图7B中的单一图案化金属层831,并利用一聚合物层98来分隔图案化金属层831和图案化金属层832。另外在讯号传送方面,一讯号从内部电路21的输出节点(通常是内部电路21的一金氧半晶体管的漏极)输出,然后传送经过保护层5下方的细线路金属结构631、保护层5中的一保护层开口531以及保护层5上方的图案化金属层831b,接着(1)在第一路径中:往上经过聚合物层98中的开口聚合物层9831,经过图案化金属层832,往下经过一聚合物层开口9834,经过图案化金属层831a,经过保护层5的一保护层开口534,经过保护层5下方的细线路金属结构634,最后往下传送到内部电路24(例如或非门)的一输入节点(通常是内部电路24的一金氧半晶体管的栅极,例如或非门的一金氧半晶体管的栅极);(2)在第二路径中:往下经过保护层5的一保护层开口532以及经过保护层5下的细线路金属结构632,最后传送到内部电路22(例如或非门)与内部电路23(例如与非门)的一输入节点(通常分别是内部电路22与内部电路23的一金氧半晶体管的栅极,例如分别是或非门与与非门的一金氧半晶体管的栅极)。FIG. 7C is similar to FIG. 7B except that the structure above the passivation layer includes two patterned metal layers 831 and 832 . In FIG. 7C, the single patterned metal layer 831 in FIG. 7B is replaced by two patterned metal layers 831 (including 831a, 831b) and a patterned metal layer 832, and a polymer layer 98 is used to separate the patterned Metal layer 831 and patterned metal layer 832 . In addition, in terms of signal transmission, a signal is output from the output node of the internal circuit 21 (usually the drain of a metal oxide semiconductor transistor in the internal circuit 21), and then transmitted through the thin line metal structure 631 below the protective layer 5, the protective layer 5 A protective layer opening 531 in the protective layer 5 and the patterned metal layer 831b above the protective layer 5, then (1) in the first path: go up through the opening polymer layer 9831 in the polymer layer 98, and pass through the patterned metal layer 832 , passing through a polymer layer opening 9834, passing through the patterned metal layer 831a, passing through a protection layer opening 534 of the protection layer 5, passing through the fine line metal structure 634 below the protection layer 5, and finally passing down to the internal circuit 24 ( For example, an input node of the NOR gate) (usually the gate of a metal oxide semitransistor of the internal circuit 24, such as the gate of a metal oxide semitransistor of the NOR gate); (2) in the second path: Pass through a protective layer opening 532 of the protective layer 5 and pass through the thin line metal structure 632 under the protective layer 5, and finally transmit to an input node of the internal circuit 22 (such as a NOR gate) and the internal circuit 23 (such as a NAND gate). (Usually the gates of a metal-oxide-semiconductor transistor of the internal circuit 22 and the internal circuit 23 are respectively, for example, the gates of a metal-oxide-semiconductor transistor of a NOR gate and a NAND gate, respectively).

另,有关本发明第二实施例的保护层上方金属线路或平面、聚合物层与内部电路的部份,将在后续图15是列、图16是列、图17是列、图18是列与图19是列中详加叙述。In addition, the parts of the metal lines or planes, polymer layers and internal circuits above the protective layer in the second embodiment of the present invention will be described in the subsequent Figure 15 column, Figure 16 column, Figure 17 column, and Figure 18 column and Figure 19 is described in detail in the column.

此外,在图5B、图6B、图7B、图7C与图7D中,金属线路或平面83(包括831以及/或是832)未有与用来连接一外部电路的芯片接外电路连接,所以金属线路或平面83上不会产生有显着的电压降(voltagedrop)或是讯号衰减。In addition, in FIG. 5B, FIG. 6B, FIG. 7B, FIG. 7C and FIG. 7D, metal lines or planes 83 (including 831 and/or 832) are not connected to an external circuit on the chip for connecting an external circuit, so No significant voltage drop or signal attenuation occurs on metal lines or planes 83 .

另,本发明一金氧半晶体管的尺寸可以被定义成是通道宽度(channelwidth)除以通道长度(channellength)的比值,或精确地说是有效信道宽度除以有效信道长度的比值,此定义适用在本发明所有实施例中。In addition, the size of a metal-oxide-semiconductor transistor of the present invention can be defined as the ratio of the channel width (channelwidth) divided by the channel length (channellength), or precisely the ratio of the effective channel width divided by the effective channel length. This definition applies in all embodiments of the invention.

现在请同时参阅图5C至图5E所示,其是公开出内部电路21作为一内部缓冲器(internal buffer)的范例,其中此内部缓冲器是至少由一金氧半晶体管(MOStransistor)所构成,而此金氧半晶体管比如包括信道寛度/信道长度比值介于3至60之间或介于5至20之间的一P型金氧半晶体管(PMOStransistor),或是信道寛度/信道长度比值介于1.5至30之间或介于2.5至10之间的一N型金氧半晶体管(NMOStransistor),而且此时流经金属线路或平面83的电流是介于500微安培至10毫安之间或是介于700微安培至2毫安之间。图5C揭示一反相器211,用以作为图5B、图6B、图7B、图7C与图7D之内部电路21。在第一个应用中,N型金氧半晶体管2101与P型金氧半晶体管2102的尺寸可以及使用在内部电路的金氧半晶体管的尺寸相同,所以在反相器211中,N型金氧半晶体管2101的尺寸是介于0.1至5之间,并以介于0.2至2之间为较佳者,而P型金氧半晶体管2102的尺寸则是介于0.2至10之间,并以介于0.4至4之间为较佳者。另外,由反相器211输出并且经过保护层5上方的金属线路或平面83的电流是介于50微安培(μA)至2毫安之间的范围,并以介于100微安培至1毫安之间的范围为较佳者。在第二个应用中,反相器211需要输出一较大的驱动电流(drive current),例如当内部电路22、23、24需要高负载(heavy load)时,或者是当内部电路22、23、24与内部电路21的相距大于1毫米或3毫米而需要一长距离的连接金属线路时,反相器211需要输出一较大的驱动电流。此外,来自反相器211输出的电流是高在一般之内部电路,且电流,例如1毫安(mA)或5毫安,是介于500微安培(μA)至10毫安之间的范围,而以介于700微安培至2毫安之间的范围为较佳者。因此,在第二个应用中,反相器211的N型金氧半晶体管2101的尺寸是介于1.5至30之间的范围,并以介于2.5至10之间的范围为较佳者,而P型金氧半晶体管2102的尺寸则介于3至60之间的范围,并以介于5至20之间的范围为较佳者。至于更多有关(一般的)内部电路的金氧半晶体管的尺寸或者是用来驱动其它高负载内部电路之内部电路之内容,将在后续图15是列中详细叙述。Please refer to FIG. 5C to FIG. 5E at the same time, which disclose an example of the internal circuit 21 as an internal buffer (internal buffer), wherein the internal buffer is formed by at least one metal oxide semitransistor (MOStransistor), The metal oxide semiconductor transistor, for example, includes a P-type metal oxide semiconductor transistor (PMOS transistor) with a channel width/channel length ratio between 3 and 60 or between 5 and 20, or a channel width/channel length ratio An N-type metal oxide semiconductor transistor (NMOS transistor) between 1.5 and 30 or between 2.5 and 10, and the current flowing through the metal line or plane 83 at this time is between 500 microamperes and 10 milliamperes or Between 700 microamps and 2 milliamps. FIG. 5C discloses an inverter 211 used as the internal circuit 21 of FIG. 5B , FIG. 6B , FIG. 7B , FIG. 7C and FIG. 7D . In the first application, the size of the N-type MOS transistor 2101 and the P-type MOS transistor 2102 can be the same as the size of the MOS transistor used in the internal circuit, so in the inverter 211, the N-type The size of the oxygen-semiconductor transistor 2101 is between 0.1 and 5, preferably between 0.2 and 2, and the size of the P-type metal-oxide-semiconductor transistor 2102 is between 0.2 and 10, and The preferred one is between 0.4 and 4. In addition, the current output by the inverter 211 and passing through the metal line or the plane 83 above the protective layer 5 is in the range between 50 microamperes (μA) and 2 milliamperes, and the current is between 100 microamperes (μA) and 1 milliampere. The range between is preferable. In the second application, the inverter 211 needs to output a larger drive current (drive current), for example, when the internal circuits 22, 23, 24 need a high load (heavy load), or when the internal circuits 22, 23 When the distance between , 24 and the internal circuit 21 is greater than 1 millimeter or 3 millimeters and a long-distance connecting metal line is required, the inverter 211 needs to output a relatively large driving current. In addition, the current output from the inverter 211 is higher than the general internal circuit, and the current, for example 1 milliamp (mA) or 5 milliamps, is in the range between 500 microamperes (μA) and 10 milliamperes, A range between 700 microamperes and 2 milliamperes is preferred. Therefore, in the second application, the size of the NMOS transistor 2101 of the inverter 211 is in the range of 1.5 to 30, and preferably in the range of 2.5 to 10, The size of the PMOS transistor 2102 is in the range of 3 to 60, and preferably in the range of 5 to 20. As for the size of the MOS transistors in the (general) internal circuit or the content of the internal circuit used to drive other high-load internal circuits, it will be described in detail in the subsequent column of FIG. 15 .

此外,在图5C中,N型金氧半晶体管2101的漏极是与保护层5上方的金属线路或平面83(如图5B、图6B、图7B、图7C与图7D所示)连接,而P型金氧半晶体管2102的漏极则是与保护层5上方的金属线路或平面83(如图5B、图6B、图7B、图7C与图7D所示)连接。In addition, in FIG. 5C, the drain of the N-type metal oxide semiconductor transistor 2101 is connected to the metal line or plane 83 above the protective layer 5 (as shown in FIGS. 5B, 6B, 7B, 7C and 7D), The drain of the PMOS transistor 2102 is connected to the metal line or plane 83 above the protective layer 5 (as shown in FIGS. 5B , 6B, 7B, 7C and 7D ).

在大部分的应用上,因为保护层上方的金属线路或平面具有较小的阻抗,所以由较小金氧半晶体管形成的复数内部电路可以通过保护层上的金属线路或平面相互连接,其中所述的些内部电路包括尺寸(信道宽度除以信道长度的比值)介于0.1至5之间或介于0.2至2之间的一N型金氧半晶体管,或是尺寸(信道宽度除以信道长度的比值)介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管。另外,在某些应用上,当内部电路22、23、24需要高负载时,或者是当内部电路22、23、24与内部电路21的相距大于1毫米或3毫米而需要一长距离的连接金属线路时,则需要一较大的驱动电流。因此,在高负载的情形中,需要一内部驱动器(internal drive)或一内部缓冲器(internal buffer)。In most applications, because the metal lines or planes above the protective layer have a small impedance, complex internal circuits formed by smaller metal oxide semiconductor transistors can be connected to each other through the metal lines or planes on the protective layer, where all Some of the internal circuits described include an N-type metal-oxide-semiconductor transistor of size (ratio of channel width divided by channel length) between 0.1 and 5 or between 0.2 and 2, or of size (channel width divided by channel length A P-type metal-oxide-semiconductor transistor whose ratio is between 0.2 and 10 or between 0.4 and 4. In addition, in some applications, when the internal circuits 22, 23, 24 require high loads, or when the distance between the internal circuits 22, 23, 24 and the internal circuit 21 is greater than 1 mm or 3 mm, a long-distance connection is required When metal lines are used, a larger driving current is required. Therefore, in the case of high load, an internal drive or an internal buffer is required.

图5D和图5E是公开出以内部驱动器212或内部三态缓冲器213作为内部电路21,并利用内部驱动器212或内部三态缓冲器213驱动如图5B、图6B、图7B、图7C与图7D所示的保护层5上的金属线路或平面83和其它内部电路22、23、24的范例。图5D和图5E所示的电路除了(1)内部驱动器212或内部三态缓冲器213不与一外部电路连接;以及(2)内部驱动器212或内部三态缓冲器213的金氧半晶体管尺寸小于芯片接外驱动器或芯片三态缓冲器的金氧半晶体管尺寸的外,其余分别与后续图11A与图11C中所述的芯片接外电路(off-chip circuit)相似。图5D中之内部驱动器212是为本发明的专利权人在美国公开专利第20040089951号中所述的芯片内驱动器(intra-chip driver)的一范例。内部三态缓冲器213提供了放大讯号的能力(drive capability)以及开或关的能力(switch capability),而且内部三态缓冲器213特别有助在作为数据或地址总线的保护层上方的金属线路或平面传输一内存芯片中的一数据讯号或一地址讯号。5D and FIG. 5E disclose that the internal driver 212 or the internal tri-state buffer 213 is used as the internal circuit 21, and the internal driver 212 or the internal tri-state buffer 213 is used to drive the internal circuit 21 as shown in FIGS. 5B, 6B, 7B, 7C and An example of metal lines or planes 83 and other internal circuits 22 , 23 , 24 on protective layer 5 is shown in FIG. 7D . The circuit shown in Fig. 5 D and Fig. 5 E except (1) internal driver 212 or internal tri-state buffer 213 are not connected with an external circuit; Except for the size of the MOS transistor which is smaller than the on-chip driver or the on-chip tri-state buffer, the rest are similar to the off-chip circuits described in FIG. 11A and FIG. 11C respectively. The internal driver 212 in FIG. 5D is an example of the intra-chip driver described in US Published Patent No. 20040089951 by the patentee of the present invention. The internal tri-state buffer 213 provides the ability to amplify the signal (drive capability) and the ability to turn on or off (switch capability), and the internal tri-state buffer 213 is particularly helpful for metal lines above the protection layer as a data or address bus. Or planarly transmit a data signal or an address signal in a memory chip.

在图5D中,N型金氧半晶体管2103的尺寸是介于1.5至30之间,并以介于2.5至10之间为较佳者,而P型金氧半晶体管2104的尺寸则是介于3至60之间,并以介于5至20之间为较佳者,此外经过保护层5上的金属线路或平面83的电流以及内部驱动器212输出节点Xo(通常是为一金属半导体组件的漏极)输出的电流是介于500微安培至10毫安之间的范围,并以介于700微安培至2毫安之间的范围为较佳者。另,在图5D中,内部驱动器212可以驱动输出节点Xo输出的一讯号,并在经过保护层5上方的金属线路或平面83后,传送到内部电路22、23、24的输入节点Ui、Vi、Wi,但是并未传送到一外部电路。In FIG. 5D, the size of the N-type metal-oxide-semiconductor transistor 2103 is between 1.5 and 30, and preferably between 2.5 and 10, while the size of the P-type metal-oxide-semiconductor transistor 2104 is between Between 3 and 60, and preferably between 5 and 20, in addition, the current passing through the metal line or plane 83 on the protective layer 5 and the output node Xo of the internal driver 212 (usually a metal semiconductor device The output current of the drain) is in the range of 500 microamperes to 10 milliamperes, and preferably in the range of 700 microamperes to 2 milliamperes. In addition, in FIG. 5D , the internal driver 212 can drive a signal output from the output node Xo, and transmit it to the input nodes Ui, Vi of the internal circuits 22, 23, 24 after passing through the metal line or the plane 83 above the protective layer 5 , Wi, but not transmitted to an external circuit.

在图5E中,N型金氧半晶体管2107的尺寸是介于1.5至30之间,并以介于2.5至10之间为较佳者,而P型金氧半晶体管2108的尺寸则是介于3至60之间,并以介于5至20之间为较佳者,此外经过保护层5上方的金属线路或平面83以及内部三态缓冲器213的输出节点Xo输出的电流是介于500微安培至10毫安之间的范围,并以介于700微安培至2毫安之间的范围为较佳者。另,在图5E中,内部三态缓冲器213可以驱动来自输出节点Xo输出的一讯号,并在经过保护层5上方的金属线路或平面83后,传送到内部电路22、23、24的输入节点Ui、Vi、Wi,但是并未传送到一外部电路。In FIG. 5E, the size of the N-type metal-oxide-semiconductor transistor 2107 is between 1.5 and 30, and preferably between 2.5 and 10, while the size of the P-type metal-oxide-semiconductor transistor 2108 is between Between 3 and 60, and preferably between 5 and 20, in addition, the current output through the metal line or plane 83 above the protective layer 5 and the output node Xo of the internal tri-state buffer 213 is between The range between 500uA and 10mA, and preferably the range between 700uA and 2mA. In addition, in FIG. 5E, the internal tri-state buffer 213 can drive a signal output from the output node Xo, and transmit it to the input of the internal circuit 22, 23, 24 after passing through the metal line or the plane 83 above the protection layer 5 Nodes Ui, Vi, Wi, but not transmitted to an external circuit.

当内部电路22、23、24需要高负载时,或者是当内部电路22、23、24与内部电路21的相距大于1毫米或3毫米而需要一长距离的连接金属线路时,内部驱动器212与内部三态缓冲器213的输出节点Xo需要输出一较大的驱动电流。When the internal circuit 22, 23, 24 needs a high load, or when the distance between the internal circuit 22, 23, 24 and the internal circuit 21 is greater than 1 mm or 3 mm and a long-distance connecting metal line is required, the internal driver 212 and The output node Xo of the internal tri-state buffer 213 needs to output a large driving current.

保护层上方金属线路或平面的重要应用的一是在连接一内存芯片上相距有一段距离之内存单元(memory cell)与内部电路(例如逻辑电路)。请参阅图5F所示,其是公开出一内存单元如何利用保护层5上的金属线路或平面83以及保护层5下的细线路金属结构连接到作为逻辑电路之内部电路22、23、24(图5B、图6B、图7B、图7C与图7D)。其中,此逻辑电路比如包括一或非门、一或门、一且闸或一与非门,另内部电路22、23、24可以是至少由一金氧半晶体管所构成,且上述的细线路金属结构是连接到内部电路22、23、24的一金氧半晶体管,例如连接到一金氧半晶体管的源极(source)、漏极(drain)或门极(gate),而此金氧半晶体管可以是信道寛度/信道长度比值介于0.1至5之间或介于0.2至2之间的一N型金氧半晶体管,或是信道寛度/信道长度比值介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管,此外流经金属线路或平面83的电流比如是介于50微安培至2毫安之间或是介于100微安培至1毫安之间。One of the important applications of metal lines or planes above the protective layer is to connect memory cells and internal circuits (such as logic circuits) on a memory chip that are separated by a certain distance. Please refer to Fig. 5F, which discloses how a memory cell utilizes metal lines or planes 83 on the protective layer 5 and thin line metal structures under the protective layer 5 to be connected to internal circuits 22, 23, 24 as logic circuits ( 5B, 6B, 7B, 7C and 7D). Wherein, the logic circuit includes, for example, a NOR gate, an OR gate, an NAND gate or a NAND gate, and the internal circuits 22, 23, and 24 may be made of at least one metal-oxide-semiconductor transistor, and the above-mentioned thin circuit The metal structure is a metal oxide semitransistor connected to the internal circuit 22, 23, 24, for example connected to the source (source), drain (drain) or gate (gate) of a metal oxide semitransistor, and the metal oxide semitransistor The half-transistor can be an N-type metal-oxide-semiconductor transistor with a channel width/channel length ratio between 0.1 and 5 or between 0.2 and 2, or a channel width/channel length ratio between 0.2 and 10 or A P-type metal-oxide-semiconductor transistor between 0.4 and 4, and the current flowing through the metal line or the plane 83 is, for example, between 50 microamperes and 2 milliamperes or between 100 microamperes and 1 milliamperes.

在此应用中,保护层5上的金属线路或平面83是作为一数据总线(data bus),例如一位线(bit line)总线或是一反向位线(bit line)总线。在连接一内存数组(memoryarray)与逻辑电路的设计上,可以在保护层5上形成平行排列的4、8、16、32、64、128、256、512、1024、2048或4096条的金属线路或平面83,作为一内存芯片的数据总线,并利用这些金属线路或平面83传输内存单元与逻辑电路之间的数据讯号。保护层5上方的金属线路或平面83特别适用在一宽位(wide-bit)数据的传送上,例如传输64、128、256、512、1024位宽度(bitwidth)的数据。此外,当传输内存单元和逻辑电路(logic circuit)之间的讯号时,保护层5上方的金属线路或平面83除了作为上述提与的数据总线的外,也可以作为地址总线(address bus),用以传输地址讯号。另,保护层5上的金属线路或平面83传输的讯号也包括频率(clock)讯号。图5F是以一静态随机存取内存单元215作为内存单元的一范例,惟此内存单元在本实施例中也可以是其它之内存单元,例如动态随机存取内存(DRAM)单元、可消除可程序只读存储器(EPROM)单元、电子可消除式只读存储器(EEPROM)单元、闪存(Flash)单元、只读存储器(ROM)单元与磁性随机存取内存(magnetic RAM,MRAM)单元。此静态随机存取内存单元215包括有六个金氧半晶体管,其是为两个驱动N型金氧半晶体管2115、2117,两个负载P型金氧半晶体管2116、2118,以及两个字码-线-控制(word-line-control)N型金氧半晶体管2119、2120。另,在一内存芯片中,凭借重复静态随机存取内存单元215可以形成一内存数组。当静态随机存取内存单元215在读取状态时,静态随机存取内存单元215输出互补数据,例如位(bit)数据以及反向位(bit)数据,并分别通过N型金氧半晶体管2119与N型金氧半晶体管2120将互补数据传输到位(bit)线以及反向位(bit)线,接着位(bit)数据和反向位(bit)数据传送经过行选择(columnselection,CS)晶体管2122、2123后输入至一感测放大器(senseamplifier)214。再来,内存单元的位线连接感测放大器214中的N型金氧半晶体管2113的栅极,以控制感测放大器214的N型金氧半晶体管2113的开或关,当感测放大器214的N型金氧半晶体管2113开启时,感测放大器214可以初使放大反向位(bit)数据使其具有较佳的波形或较佳的电压准位,并输出此经初使放大的反向位(bit)数据至内部三态缓冲器213。在图5F中,其是使用一差动放大器(differential amplifier)来作为感测放大器214的一范例,此差动放大器含有四个晶体管,包括两个N型金氧半晶体管2111、2113与两个P型金氧半晶体管2112、2114,其中此差动放大器是利用N型金氧半晶体管2121来隔离差动放大器和接地参考电压Vss,并凭借一行选择讯号来控制差动放大器,以避免功率消耗。当静态随机存取内存单元215未在读取状态时,也即当连接静态随机存取内存单元215的字符线与位线两者未被选择时,N型金氧半晶体管2121则关闭。从感测放大器214的N型金氧半晶体管2113栅极输出的反向位(bit)数据是传送到一内部驱动器、内部缓冲器或内部三态缓冲器213(如图5F所示)的输入节点Xi。另,控制讯号En、En是输出自一读取(readenable)电路(图中未示),并利用此控制讯号En、En控制内部三态缓冲器213的开启或关闭。在图5F中,内部三态缓冲器213的输出节点Xo是通过保护层5上的金属线路或平面83输出更加放大的位数据至内部电路22、23、24(如图5B、图6B、图7B、图7C与图7D所示)。因此,综合以上所述,一静态随机存取内存单元215是通过感测放大器214、内部三态缓冲器213、保护层5下的细线路金属结构631、保护层5中的保护层开口531、保护层5上的金属线路或平面83、保护层5中的保护层开口532、534以及细线路金属结构632、634连接到同一芯片上之内部电路22、23、24,如图5B、图6B、图7B、图7C与图7D所示。其中,内部电路21在此即为一内部三态缓冲器213,惟此内部电路21也可以是内部驱动器212(如图5D所示)或是其它内部电路,例如或非门(NOR gate)、与非门(NAND gate)、且闸(ANDgate)、或门(OR gate)、加法器(adder)、多任务器(multiplexer)、双工器(diplexer)、乘法器(multiplier)、互补式金属氧化物半导体、双载子互补式金属氧化物半导体或双载子电路(bipolar circuit),而当内部电路21为内部驱动器212时,内部第路21至少由一金氧半晶体管构成,且此金氧半晶体管包括信道寛度/信道长度比值介于3至60之间或介于5至20之间的一P型金氧半晶体管,或是信道寛度/信道长度比值介于1.5至30之间或介于2.5至10之间的一N型金氧半晶体管,而且此时流经金属线路或平面83的电流是介于500微安培至10毫安之间或是介于700微安培至2毫安之间;另,当内部电路21为上述的其它内部电路时,此内部第路21至少包括信道寛度/信道长度比值介于0.1至5之间或介于0.2至2之间的一N型金氧半晶体管,或是信道寛度/信道长度比值介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管,而且此时流经金属线路或平面83的电流是介于50微安培至2毫安之间或是介于100微安培至1毫安之间。In this application, the metal line or plane 83 on the protection layer 5 is used as a data bus, such as a bit line bus or an inverted bit line bus. In the design of connecting a memory array (memory array) and logic circuits, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 or 4096 metal lines arranged in parallel can be formed on the protective layer 5 Or the plane 83, as a data bus of a memory chip, and use these metal lines or the plane 83 to transmit the data signal between the memory unit and the logic circuit. The metal lines or planes 83 above the protective layer 5 are particularly suitable for transmission of wide-bit data, for example, transmission of 64, 128, 256, 512, 1024 bitwidth data. In addition, when transmitting the signal between the memory unit and the logic circuit (logic circuit), the metal line or plane 83 above the protection layer 5 can also be used as an address bus (address bus) in addition to the data bus mentioned above. Used to transmit address signals. In addition, the signals transmitted by the metal lines or planes 83 on the protection layer 5 also include clock signals. Fig. 5 F is an example with a static random access memory unit 215 as memory unit, but this memory unit also can be other memory units in this embodiment, such as dynamic random access memory (DRAM) unit, can eliminate Program read-only memory (EPROM) unit, electronically erasable read-only memory (EEPROM) unit, flash memory (Flash) unit, read-only memory (ROM) unit and magnetic random access memory (magnetic RAM, MRAM) unit. The SRAM unit 215 includes six MOS transistors, which are two drive N-type MOS transistors 2115, 2117, two load P-type MOS transistors 2116, 2118, and two word Code-line-control (word-line-control) N-type metal oxide semiconductor transistors 2119, 2120. In addition, in a memory chip, a memory array can be formed by repeating the SRAM cells 215 . When the static random access memory unit 215 is in the read state, the static random access memory unit 215 outputs complementary data, such as bit (bit) data and reverse bit (bit) data, and pass through the N-type metal oxide semiconductor transistor 2119 respectively The N-type metal oxide semiconductor transistor 2120 transmits complementary data to the bit line and the reverse bit line, and then the bit data and the reverse bit data are transmitted through the row selection (column selection, CS) transistor 2122 , 2123 and then input to a sense amplifier (sense amplifier) 214 . Next, the bit line of the memory cell is connected to the gate of the N-type metal oxide semiconductor transistor 2113 in the sense amplifier 214 to control the on or off of the N-type metal oxide semiconductor transistor 2113 of the sense amplifier 214, when the sense amplifier 214 When the N-type metal-oxide-semiconductor transistor 2113 is turned on, the sense amplifier 214 can initially amplify the inverted bit (bit) data so that it has a better waveform or better voltage level, and output the initially amplified inverted bit. bit data to the internal tri-state buffer 213 . In FIG. 5F , it is an example of using a differential amplifier (differential amplifier) as the sense amplifier 214. This differential amplifier contains four transistors, including two N-type metal-oxide-semiconductor transistors 2111, 2113 and two P-type metal-oxide-semiconductor transistors 2112, 2114, wherein the differential amplifier uses an N-type metal-oxide-semiconductor transistor 2121 to isolate the differential amplifier from the ground reference voltage Vss, and controls the differential amplifier by means of a line selection signal to avoid power consumption . When the SRAM unit 215 is not in the read state, that is, when both the word line and the bit line connected to the SRAM unit 215 are not selected, the NMOS transistor 2121 is turned off. The inverted bit (bit) data output from the gate of the NMOS transistor 2113 of the sense amplifier 214 is an input to an internal driver, internal buffer or internal tri-state buffer 213 (as shown in FIG. 5F ). Node Xi. In addition, the control signals En, En are output from a read enable circuit (not shown in the figure), and the internal tri-state buffer 213 is controlled to be turned on or off by using the control signals En, En. In FIG. 5F, the output node Xo of the internal tri-state buffer 213 outputs more amplified bit data to the internal circuits 22, 23, 24 through the metal line or plane 83 on the protective layer 5 (as shown in FIG. 5B, FIG. 6B, and FIG. 7B, Figure 7C and Figure 7D). Therefore, in summary of the above, a SRAM cell 215 is formed by passing through the sense amplifier 214, the internal tri-state buffer 213, the fine line metal structure 631 under the protection layer 5, the protection layer opening 531 in the protection layer 5, The metal lines or planes 83 on the protective layer 5, the protective layer openings 532, 534 in the protective layer 5, and the thin line metal structures 632, 634 are connected to the internal circuits 22, 23, 24 on the same chip, as shown in Fig. 5B and Fig. 6B , Figure 7B, Figure 7C and Figure 7D. Wherein, the internal circuit 21 is an internal tri-state buffer 213 here, but the internal circuit 21 can also be an internal driver 212 (as shown in FIG. 5D ) or other internal circuits, such as NOR gates, NOR gates, NAND gate, AND gate, OR gate, adder, multiplexer, diplexer, multiplier, complementary metal Oxide semiconductor, bipolar complementary metal oxide semiconductor or bipolar circuit (bipolar circuit), and when the internal circuit 21 is an internal driver 212, the internal circuit 21 is at least composed of a metal oxide semitransistor, and the gold Oxygen-semiconductor transistors include a P-type metal oxide semiconductor transistor with a channel width/channel length ratio between 3 and 60 or between 5 and 20, or a channel width/channel length ratio between 1.5 and 30 or An N-type metal-oxide-semiconductor transistor between 2.5 and 10, and the current flowing through the metal line or plane 83 at this time is between 500 microamperes and 10 milliamperes or between 700 microamperes and 2 milliamperes ; In addition, when the internal circuit 21 is the above-mentioned other internal circuit, the internal circuit 21 at least includes an N-type metal oxide semiconductor with a channel width/channel length ratio between 0.1 and 5 or between 0.2 and 2 Transistor, or a P-type metal oxide semiconductor transistor with a channel width/channel length ratio between 0.2 and 10 or between 0.4 and 4, and the current flowing through the metal line or plane 83 is between 50 Between microampere and 2mA or between 100 microampere and 1mA.

请参阅图5G所示,感测放大器214输出的反向位(bit)数据在到达内部电路21的输出节点Xo的前,将会先经过一通过电路(pass circuit)216,在此内部电路21即为通过电路216。此通过电路216可以是一简单的金氧半晶体管,例如N型金氧半晶体管2124,并且通过一读取讯号来加以控制。在此设计中,一静态随机存取内存单元215是通过感测放大器214、通过电路216、保护层5下的细线路金属结构631、保护层5中的保护层开口531、保护层5上的金属线路或平面83、保护层5中的保护层开口532、534以及保护层5下的细线路金属结构632、634连接到内部电路22、23、24,如图5B、图6B、图7B、图7C与图7D所示。Please refer to FIG. 5G , before the inverse bit (bit) data output by the sense amplifier 214 reaches the output node Xo of the internal circuit 21, it will first pass through a pass circuit 216, where the internal circuit 21 That is, through the circuit 216 . The pass circuit 216 can be a simple MOS transistor, such as NMOS transistor 2124, and is controlled by a read signal. In this design, a SRAM cell 215 is passed through the sense amplifier 214, through the circuit 216, the fine line metal structure 631 under the passivation layer 5, the passivation layer opening 531 in the passivation layer 5, the The metal lines or planes 83, the protective layer openings 532, 534 in the protective layer 5 and the fine line metal structures 632, 634 under the protective layer 5 are connected to the internal circuits 22, 23, 24, as shown in Fig. 5B, Fig. 6B, Fig. 7B, Figure 7C and Figure 7D.

请参阅图5H所示,感测放大器214输出的反向位(bit)数据在到达内部电路21的输出节点Xo的前,将会先经过一闩锁电路(latch circuit)217,在此内部电路21即为闩锁电路217。闩锁电路217可以是一静态随机存取内存单元,用以在感测放大器214输出的数据送达逻辑电路(如内部电路22、23、24)的前,暂时储存感测放大器214输出的数据(也即数据被闩锁住)。另,N型金氧半晶体管2129、2130可通过一读取讯号来加以控制。在此设计中,一静态随机存取内存单元215是通过感测放大器214、闩锁电路217、保护层5下的细线路金属结构631、保护层5中的保护层开口531、保护层5上的金属线路或平面83、保护层5中的保护层开口532、534以及细线路金属结构632、634连接到内部电路22、23、24,如图5B、图6B、图7B、图7C与图7D所示。Please refer to FIG. 5H , before the inverted bit (bit) data output by the sense amplifier 214 reaches the output node Xo of the internal circuit 21, it will first pass through a latch circuit (latch circuit) 217. In the internal circuit 21 is the latch circuit 217. The latch circuit 217 can be a static random access memory unit, which is used to temporarily store the data output by the sense amplifier 214 before the data output by the sense amplifier 214 is sent to logic circuits (such as internal circuits 22, 23, 24). (ie the data is latched). In addition, the NMOS transistors 2129 and 2130 can be controlled by a read signal. In this design, a SRAM cell 215 is passed through the sense amplifier 214, the latch circuit 217, the fine-line metal structure 631 under the passivation layer 5, the passivation layer opening 531 in the passivation layer 5, the passivation layer 5 The metal lines or planes 83, the protective layer openings 532, 534 in the protective layer 5, and the thin line metal structures 632, 634 are connected to the internal circuits 22, 23, 24, as shown in Fig. 5B, Fig. 6B, Fig. 7B, Fig. 7C and Fig. 7D.

然而,图5G的通过电路216或者是图5H的闩锁电路217并未提供大的驱动能力。为了驱动需要高负载之内部电路22、23、24,或者是长距离传输通过电路216输出的反向位(bit)数据或闩锁电路217输出的位(bit)数据到内部电路22、23、24,可以在通过电路的输出节点(如图5I所示)或闩锁电路的输出节点(如图5J所示)增加上述内容所提与的一内部驱动器212,以利用此内部驱动器212放大通过电路216输出的反向位(bit)数据或闩锁电路217输出的位(bit)资料。However, the pass circuit 216 in FIG. 5G or the latch circuit 217 in FIG. 5H does not provide a large driving capability. In order to drive the internal circuits 22, 23, 24 that require high loads, or transmit the reverse bit (bit) data output by the circuit 216 or the bit (bit) data output by the latch circuit 217 to the internal circuits 22, 23, 24. An internal driver 212 mentioned above can be added to the output node of the pass circuit (as shown in FIG. 5I) or the output node of the latch circuit (as shown in FIG. 5J), so as to use this internal driver 212 to amplify the pass The inverted bit data output by the circuit 216 or the bit data output by the latch circuit 217 .

请参阅5K图所示,除了内部电路21是接收来自内部电路24(在此是为一或非门)的讯号,而不是驱动内部电路24的外,其余电路设计均与图5B相似。此内部电路24(在此是为一或非门)是通过保护层5下的细线路金属结构634’、保护层5中的保护层开口534’、保护层5上的金属线路或平面83、保护层5中的保护层开口531’以及保护层5下的细线路金属结构631’,将其输出节点Wo发送的一讯号或数据传送到内部电路21的输入节点Xi’(通常是内部电路21的一金氧半晶体管的栅极),同时内部电路24(在此是为一或非门)也通过保护层5下的细线路金属结构634’、保护层5中的保护层开口534’、保护层5上的金属线路或平面83、保护层5中的保护层开口532’以及保护层5下的细线路金属结构632a’、632b’,将其输出节点Wo发送的讯号或数据传送到内部电路22(在此是为一或非门)的输入节点Ui。再者,同时内部电路24(在此是为一或非门)也通过保护层5下的细线路金属结构634’、保护层5中的保护层开口534’、保护层5上的金属线路或平面83、保护层5中的保护层开口532’以及保护层5下的细线路金属结构632a’、632c’,将其输出节点Wo发送的讯号或数据传送到内部电路23(在此是为一与非门)的输入节点Vi。其中,细线路金属结构634’、631’可以由金属线路以及平面形成,而在此范例中,细线路金属结构634’、631’是由介电层中的导电栓塞和金属接垫以及细线路金属层形成,例如以约略对准的堆栈方式形成。在某些集成电路技术中,导电栓塞是为钨插塞(tungsten plug)或镶嵌铜(  damascene copper)。内部电路21、22、23是以输入节点Xi’、Ui、Vi接收讯号,而在输出节点Xo’、Uo、Vo将讯号输出到其它内部电路。另外,内部电路21在此可以是一内部接受器212’(如图5L所示)、一内部三态缓冲器213’(如图5M所示)或是其它内部电路,比如是或非门(NORgate)、与非门(NAND gate)、且闸(AND gate)、或门(OR gate)、运算放大器(operational amplifier)、加法器(adder)、多任务器(multiplexer)、双工器(diplexer)、乘法器(multiplier)、模拟/数字转换器(A/D converter)、数字/模拟转换器(D/AConverter)、互补式金属氧化物半导体、双载子互补式金属氧化物半导体或双载子电路(bipolar circuit),而当内部电路21为内部接受器212’时,内部电路21至少由一金氧半晶体管构成,且此金氧半晶体管包括信道寛度/信道长度比值介于3至60之间或介于5至20之间的一P型金氧半晶体管或者是信道寛度/信道长度比值介于1.5至30之间或介于2.5至10之间的一N型金氧半晶体管,而且此时流经金属线路或平面83的电流是介于500微安培至10毫安之间或是介于700微安培至2毫安之间;另,当内部电路21为上述的其它内部电路时,此内部第路21至少包括信道寛度/信道长度比值介于0.1至5之间或介于0.2至2之间的一N型金氧半晶体管或者是信道寛度/信道长度比值介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管,而且此时流经金属线路或平面83的电流是介于50微安培至2毫安之间或是介于100微安培至1毫安之间。除此的外,内部电路21尚包括一静态随机存取内存单元(SRAM cell)、动态随机存取内存单元(DRAM cell)、非挥发性内存单元(non-volatile memorycell)、闪存单元(flash memory cell)、可消除可程序只读存储器单元(EPRO Mcell)只读存储器单元(ROM cell)、磁性随机存取内存(magnetic RAM,MRAM)单元或感测放大器(senseamplifier)。另,内部电路21的输入节点通常是一金氧半晶体管的栅极。请参阅图5L所示,内部接收器212’可经由保护层5上的金属线路或平面83接受一讯号,并从输出节点Xo’输出一讯号至其它内部电路,但并不将此讯号输出至一外部电路。请参阅图5M所示,内部三态缓冲器213’可经由保护层5上的金属线路或平面83接受一讯号,并从输出节点Xo’输出一讯号至其它内部电路,但并不将此讯号输出至一外部电路。Please refer to FIG. 5K, except that the internal circuit 21 receives a signal from the internal circuit 24 (here, a NOR gate) instead of driving the internal circuit 24. The other circuit designs are similar to those in FIG. 5B. This internal circuit 24 (here a NOR gate) is through the fine line metal structure 634' under the protective layer 5, the protective layer opening 534' in the protective layer 5, the metal line or plane 83 on the protective layer 5, The protective layer opening 531' in the protective layer 5 and the thin line metal structure 631' under the protective layer 5 transmit a signal or data sent from the output node Wo to the input node Xi' of the internal circuit 21 (usually the internal circuit 21 The gate of a metal-oxide-semiconductor transistor), while the internal circuit 24 (here is a NOR gate) also passes through the thin line metal structure 634' under the protective layer 5, the protective layer opening 534' in the protective layer 5, The metal line or plane 83 on the protective layer 5, the protective layer opening 532' in the protective layer 5, and the thin line metal structures 632a', 632b' under the protective layer 5 transmit the signal or data sent by the output node Wo to the internal The input node Ui of the circuit 22 (here, a NOR gate). Furthermore, at the same time, the internal circuit 24 (here, a NOR gate) also passes through the metal structure 634 ′ under the protective layer 5 , the protective layer opening 534 ′ in the protective layer 5 , the metal circuit on the protective layer 5 or The plane 83, the protective layer opening 532' in the protective layer 5, and the fine line metal structures 632a', 632c' under the protective layer 5 transmit the signal or data sent by the output node Wo to the internal circuit 23 (here it is a NAND gate) input node Vi. Wherein, the thin line metal structures 634', 631' can be formed by metal lines and planes, and in this example, the thin line metal structures 634', 631' are formed by conductive plugs and metal pads in the dielectric layer and thin line Metal layers are formed, for example, in approximately aligned stacks. In some integrated circuit technologies, the conductive plug is a tungsten plug or damascene copper. Internal circuits 21, 22, 23 receive signals at input nodes Xi', Ui, Vi, and output signals at output nodes Xo', Uo, Vo to other internal circuits. In addition, the internal circuit 21 may be an internal receiver 212' (as shown in FIG. 5L), an internal tri-state buffer 213' (as shown in FIG. 5M ) or other internal circuits, such as a NOR gate ( NORgate), NAND gate, AND gate, OR gate, operational amplifier, adder, multiplexer, diplexer ), multiplier, analog/digital converter (A/D converter), digital/analog converter (D/AConverter), complementary metal oxide semiconductor, bicarrier complementary metal oxide semiconductor or dual carrier Sub-circuit (bipolar circuit), and when the internal circuit 21 is an internal receiver 212', the internal circuit 21 is composed of at least one metal oxide semiconductor transistor, and the metal oxide semiconductor transistor includes a channel width/channel length ratio between 3 and A P-type metal-oxide-semiconductor transistor between 60 or between 5 and 20 or an N-type metal-oxide-semiconductor transistor with a channel width/channel length ratio between 1.5 and 30 or between 2.5 and 10, And at this time, the current flowing through the metal line or the plane 83 is between 500 microamperes and 10 milliamperes or between 700 microamperes and 2 milliamperes; in addition, when the internal circuit 21 is the above-mentioned other internal circuits, this The inner circuit 21 at least includes an N-type metal oxide semiconductor transistor with a channel width/channel length ratio between 0.1 and 5 or between 0.2 and 2, or a channel width/channel length ratio between 0.2 and 10 A P-type metal-oxide-semiconductor transistor between 0.4 and 4, and the current flowing through the metal line or plane 83 is between 50 microamperes and 2 milliamperes or between 100 microamperes and 1 milliamperes between. In addition, the internal circuit 21 also includes a static random access memory unit (SRAM cell), a dynamic random access memory unit (DRAM cell), a non-volatile memory unit (non-volatile memory cell), a flash memory unit (flash memory cell), can eliminate programmable read-only memory unit (EPRO Mcell) read-only memory unit (ROM cell), magnetic random access memory (magnetic RAM, MRAM) unit or sense amplifier (senseamplifier). In addition, the input node of the internal circuit 21 is usually the gate of a metal oxide semiconductor transistor. Please refer to FIG. 5L, the internal receiver 212' can receive a signal through the metal line or plane 83 on the protective layer 5, and output a signal from the output node Xo' to other internal circuits, but does not output the signal to an external circuit. Please refer to FIG. 5M, the internal tri-state buffer 213' can receive a signal through the metal line or plane 83 on the protective layer 5, and output a signal from the output node Xo' to other internal circuits, but does not transmit the signal output to an external circuit.

在图5L中,N型金氧半晶体管2103’的尺寸是介于1.5至30之间,并以介于2.5至10之间为较佳者,而P型金氧半晶体管2104’的尺寸则是介于3至60之间,并以介于5至20之间为较佳者,此外经过保护层5上方的金属线路或平面83以及输入内部接收器212’的输入节点Xi的电流是介于500微安培至10毫安之间的范围,并以介于700微安培至2毫安之间的范围为较佳者。另外,内部接收器212’的输入节点Xi’可经由保护层5上的金属线路或平面83接受内部电路24的输出节点Wo输出的一讯号,但并不接收一外部电路输出的讯号,如图5B、图6B、图7B、图7C与图7D所示。In FIG. 5L, the size of the N-type metal-oxide-semiconductor transistor 2103' is between 1.5 and 30, and preferably between 2.5 and 10, while the size of the P-type metal-oxide-semiconductor transistor 2104' is is between 3 and 60, and preferably between 5 and 20, and the current passing through the metal line or plane 83 above the protective layer 5 and the input node Xi of the internal receiver 212' is between The range between 500 microamperes and 10 milliamperes, and preferably the range between 700 microamperes and 2 milliamperes. In addition, the input node Xi' of the internal receiver 212' can receive a signal output from the output node Wo of the internal circuit 24 via the metal line or plane 83 on the protective layer 5, but does not receive a signal output from an external circuit, as shown in FIG. 5B, 6B, 7B, 7C and 7D.

在图5N至图5R中,其是公开出将内部电路24(逻辑闸)输出的数据写入到一内存数组的一内存单元的设计。请同时参阅图5K与图5N所示,内部电路21可以是一内部三态缓冲器213’。此内部三态缓冲器213’具有放大数据以及开关的功能,另控制讯号En、En是输出自一读取电路(图中未示),并利用此控制讯号En、En控制内部三态缓冲器213的开启或关闭。此外,通过保护层5上的金属线路或平面83,可将一位(bit)数据传送至内部三态缓冲器213’的输入节点Xi’,且当一放大的反向位(bit)数据是为一电源电压时,放大的反向位(bit)数据是由P型金氧半晶体管2110’输出至反向位(bit)线,而当一放大的反向位(bit)数据是为一接地参考电压时,放大的反向位(bit)数据是由N型金氧半晶体管2109’输出至反向位(bit)线。输出节点Xo’输出的放大反向位(bit)数据可以经过由一行选择(CS)讯号控制的行选择晶体管2122以及经过N型金氧半晶体管2119传送到静态随机存取内存单元215。请同时参阅图5K与图5N所示,内部电路24(在此是为一或非门)是通过一细线路金属结构634’、一保护层开口534’、保护层5上方的金属线路或平面83、一保护层开口531’、一细线路金属结构631’以及一内部三态缓冲器213’传送数据去写入一内存数组中的一静态随机存取内存单元215。In FIG. 5N to FIG. 5R , it discloses the design of writing the data output by the internal circuit 24 (logic gate) into a memory unit of a memory array. Please refer to FIG. 5K and FIG. 5N at the same time, the internal circuit 21 may be an internal tri-state buffer 213'. The internal tri-state buffer 213' has the functions of amplifying data and switching, and the control signals En and En are output from a reading circuit (not shown in the figure), and the control signals En and En are used to control the internal tri-state buffer 213 on or off. In addition, through the metal line or plane 83 on the protection layer 5, one bit (bit) data can be transmitted to the input node Xi' of the internal tri-state buffer 213', and when an amplified inverted bit (bit) data is When it is a power supply voltage, the amplified reverse bit (bit) data is output to the reverse bit (bit) line by the P-type metal oxide semiconductor transistor 2110', and when the amplified reverse bit (bit) data is a When the reference voltage is grounded, the amplified inverted bit data is output to the inverted bit line by the NMOS transistor 2109 ′. The amplified reverse bit (bit) data output from the output node Xo' can be transmitted to the SRAM unit 215 through the row select transistor 2122 controlled by the row select (CS) signal and through the NMOS transistor 2119. Please refer to FIG. 5K and FIG. 5N at the same time, the internal circuit 24 (here is a NOR gate) is through a thin line metal structure 634', a protective layer opening 534', a metal line or plane on the protective layer 5 83. A protective layer opening 531', a fine line metal structure 631' and an internal tri-state buffer 213' transfer data to be written into a SRAM cell 215 in a memory array.

请参阅图5O所示,内部电路24(在此是为一或非门)输出的位数据在经过一通过电路216’后,连接到静态随机存取内存单元数组的位线,再来通过行选择晶体管而写入静态随机存取内存单元215。其中,图5K中之内部电路21即为一通过电路216’,而此通过电路216’可以是一简单的金氧半晶体管,例如N型金氧半晶体管2124’,并由一写入讯号(write enable signal)所控制。在此设计中(请同时参考图5K和图5O),由内部电路24(在此是为一或非门)的输出节点Wo输出的一数据是通过下列途径写入到一静态随机存取内存单元215中:从一细线路金属结构634’开始,往上经过一保护层开口534’,经过保护层5上的一金属线路或平面83,往下经过一保护层开口531’、一细线路金属结构631’、一通过电路216’,然后连接到静态随机存取内存单元数组的位线,再来通过行选择晶体管写入到静态随机存取内存单元215。Please refer to FIG. 5O, the bit data output by the internal circuit 24 (here it is a NOR gate) is connected to the bit line of the static random access memory cell array after passing through a pass circuit 216', and then passed through the row selection transistor to write to SRAM cell 215 . Wherein, the internal circuit 21 in FIG. 5K is a passing circuit 216', and the passing circuit 216' can be a simple metal oxide semiconductor transistor, such as an N-type metal oxide semiconductor transistor 2124', and is controlled by a writing signal ( write enable signal) controlled. In this design (please refer to FIG. 5K and FIG. 5O at the same time), a data output from the output node Wo of the internal circuit 24 (here, a NOR gate) is written into a static random access memory through the following path In unit 215: starting from a thin line metal structure 634', passing through a protective layer opening 534' upward, passing through a metal line or plane 83 on the protective layer 5, passing down a protective layer opening 531', a thin line The metal structure 631', through the circuit 216', is then connected to the bit line of the SRAM cell array, and then written into the SRAM cell 215 through the row select transistor.

请参阅图5P所示,其是与图5H相似,输入位线数据在写入静态随机存取内存单元215的前,可以暂时被储存或闩锁在一闩锁电路217’中。另,N型金氧半晶体管2129’、2130’是用来作为写入的控制。在此设计中(请同时参考图5K和图5P),由内部电路24(在此是为一或非门)的输出节点Wo输出的一数据是通过下列途径写入到一静态随机存取内存单元215中:从一细线路金属结构634’开始,往上经过一保护层开口534’,经过保护层5上的一金属线路或平面83,往下经过一保护层开口531’、一细线路金属结构631’、一闩锁电路217’,然后连接到静态随机存取内存单元数组的位线,再来通过行选择晶体管写入到静态随机存取内存单元215。Please refer to FIG. 5P, which is similar to FIG. 5H, the input bit line data can be temporarily stored or latched in a latch circuit 217' before being written into the SRAM unit 215. In addition, N-type metal oxide semiconductor transistors 2129', 2130' are used for writing control. In this design (please refer to FIG. 5K and FIG. 5P at the same time), a data output from the output node Wo of the internal circuit 24 (here, a NOR gate) is written into a static random access memory through the following path In unit 215: starting from a thin line metal structure 634', passing through a protective layer opening 534' upward, passing through a metal line or plane 83 on the protective layer 5, passing down a protective layer opening 531', a thin line The metal structure 631 ′, a latch circuit 217 ′, are then connected to the bit line of the SRAM cell array, and then written to the SRAM cell 215 through the row select transistor.

然而,图5O的通过电路216’或者是图5P的闩锁电路217’可能无法提供足够的灵敏度来检测在输入节点的弱讯号。为了重建(restore)弱数据讯号(weak datasignal),可以增加一内部接收器212’在通过电路216’的输入端(如图5Q所示)或在闩锁电路217’的输入端(如图5R所示)。However, the pass circuit 216' of FIG. 5O or the latch circuit 217' of FIG. 5P may not provide sufficient sensitivity to detect weak signals at the input nodes. In order to restore (restore) weak data signal (weak datasignal), can add an internal receiver 212' at the input end of pass circuit 216' (as shown in Figure 5Q) or at the input end of latch circuit 217' (as shown in Figure 5R shown).

保护层上方连接线路的另一个重要应用是在传送精确的模拟讯号(analogsignal)。保护层上方金属线路或平面的低单位长度电阻与电容(resistance andcapacitance perunit length)特性提供了一低讯号失真(signaldistortion)的数字仿真模拟讯号。请参阅图5S所示,其是公开出利用保护层5上的金属线路或平面83连接模拟电路的一模拟设计。除了内部电路21、22、23、24为模拟电路或混合式电路(mixed-mode circuit)、金属线路或平面83传输的讯号为数字仿真模拟讯号以及内部电路21、22、23、24输出/接收的讯号为一数字仿真模拟讯号的外,图5S的设计是与图5B相似。在图5S中,内部电路21的一输出节点Yo连接细线路金属结构631,接着往上经过保护层5的保护层开口531连接保护层5上的金属线路或平面83,再来经过保护层开口532、534连接细线路金属结构632(包括632a、632b、632c)、634,最后再利用细线路金属结构632(包括632a、632b、632c)、634连接到内部电路22、23、24的一输入节点Ui’、Vi’、Wi’,其中作为模拟电路之内部电路21、22、23、24是包括一P型金氧半晶体管、一N型金氧半晶体管、一或非门(NORgate)、一与非门(NANDgate)、一且闸(ANDgate)、一或门(ORgate)、一感测放大器(senseamplifier)、一运放算大器(OperationalAmplifier)、一模拟/数字转换器(A/Dconverter)、一数字/模拟转换器(D/AConverter)、一脉波再成形电路(pulsereshapingcircuit)、一切换式电容滤波器(switched-capacitorfilter)、一电阻电容滤波器(RCfilter)或是其它类型的模拟电路等,至于其它相关部份请参阅图5B叙述,在此不再详加叙述。Another important application of the connection line above the protection layer is in the transmission of accurate analog signals (analogsignal). The low resistance and capacitance per unit length characteristics of the metal lines or planes above the protective layer provide a digitally simulated analog signal with low signal distortion. Please refer to FIG. 5S , which discloses an analog design using metal lines or planes 83 on the protective layer 5 to connect analog circuits. Except that the internal circuits 21, 22, 23, 24 are analog circuits or mixed-mode circuits, the signals transmitted by metal lines or plane 83 are digital simulation analog signals and the internal circuits 21, 22, 23, 24 output/receive The signal of FIG. 5S is similar to that of FIG. 5B except that the signal is a digital simulation of an analog signal. In FIG. 5S , an output node Yo of the internal circuit 21 is connected to the thin line metal structure 631 , then passes through the protective layer opening 531 of the protective layer 5 to connect to the metal line or plane 83 on the protective layer 5 , and then passes through the protective layer opening 532 , 534 is connected to the thin line metal structure 632 (including 632a, 632b, 632c), 634, and finally the thin line metal structure 632 (including 632a, 632b, 632c), 634 is connected to an input node of the internal circuit 22, 23, 24 Ui', Vi', Wi', wherein the internal circuit 21, 22, 23, 24 as an analog circuit comprises a P-type metal oxide semiconductor transistor, an N-type metal oxide semiconductor transistor, a NOR gate (NORgate), a NAND gate, AND gate, OR gate, sense amplifier, Operational Amplifier, analog/digital converter (A/Dconverter) , a digital/analog converter (D/AConverter), a pulse reshaping circuit (pulsereshapingcircuit), a switched-capacitor filter (switched-capacitorfilter), a resistor-capacitor filter (RCfilter) or other types of analog circuits etc. For other relevant parts, please refer to FIG. 5B for description, and no more detailed description is given here.

请参阅图5T所示,其是公开出图5S中之内部电路21为运算放大器218,且其输出节点Yo连接到保护层5上的金属线路或平面83的一范例,此运放算大器是依据一互补式金属氧化物半导体(CMOS)技术来设计,请参考1987年M.Shoji着且由Prentice-Hall公司所发行的“CMOSDigitalCircuitTechnology”。差动模拟讯号是输入至由两个N型金氧半晶体管2125、2127和两个P型金氧半晶体管2126、2128所形成的一差动电路(differentialcircuit)219的输入节点Yi+与Yi-中,其中此输入节点Yi+与Yi-是分别连接到P型金氧半晶体管2126与P型金氧半晶体管2128的栅极。差动电路219在N型金氧半晶体管2127的漏极与P型金氧半晶体管2128的漏极的输出是连接到N型金氧半晶体管2135的栅极与电容器(capacitor)2133的第一电极上。一输出节点Yo是连接到电容器2133的第二电极、N型金氧半晶体管2135的漏极与P型金氧半晶体管2136的漏极。因此,在输出节点Yo的讯号可以通过N型金氧半晶体管2135的开启程度来控制,其中N型金氧半晶体管2135也受到差动电路219输出的控制。差动电路219的电源节点P是与P型金氧半晶体管2132的漏极连接,其中差动电路219内是以P型金氧半晶体管2126的源极与P型金氧半晶体管2128的源极与电源节点P连接。此外,P型金氧半晶体管2132栅极的电压准位会受到电阻器2134的控制。另,通过电容器2133,可以放大差动电路219输出的讯号。电容器2133常被使用在一模拟电路的设计中,且通常是以一金氧半电容器(MOScapacitor)或是一多晶硅对多晶硅电容器(poly-to-polycapacitor)来形成,其中此金氧半电容器是使用多晶硅栅极(polygate)与硅基底(siliconsubstrate)作为电容器2133的两电极,而多晶硅对多晶硅电容器则是使用一第一多晶硅(polysilicon)与一第二多晶硅作为电容器2133的两电极。电阻器也常被使用在一模拟电路上,且通常是以硅基底中的杂质掺杂扩散区(impurity-dopeddiffusionarea),例如n井、p井、N+扩散、P+扩散,以及/或者是杂质掺杂多晶硅(impurity-dopedpolysilicon)来形成。Please refer to FIG. 5T, which discloses an example in which the internal circuit 21 in FIG. 5S is an operational amplifier 218, and its output node Yo is connected to the metal line or plane 83 on the protective layer 5. This operational amplifier is an operational amplifier. It is designed based on a complementary metal oxide semiconductor (CMOS) technology, please refer to "CMOS Digital Circuit Technology" written by M. Shoji in 1987 and issued by Prentice-Hall Company. The differential analog signal is input to the input nodes Yi+ and Yi- of a differential circuit (differential circuit) 219 formed by two N-type MOS transistors 2125, 2127 and two P-type MOS transistors 2126, 2128. , wherein the input nodes Yi+ and Yi− are respectively connected to the gates of the PMOS transistor 2126 and the PMOS transistor 2128 . The output of the differential circuit 219 at the drain of the N-type MOS transistor 2127 and the drain of the P-type MOS transistor 2128 is connected to the gate of the N-type MOS transistor 2135 and the first capacitor (capacitor) 2133. on the electrode. An output node Yo is connected to the second electrode of the capacitor 2133 , the drain of the NMOS transistor 2135 and the drain of the PMOS transistor 2136 . Therefore, the signal at the output node Yo can be controlled by the turn-on degree of the NMOS transistor 2135 , wherein the NMOS transistor 2135 is also controlled by the output of the differential circuit 219 . The power supply node P of the differential circuit 219 is connected to the drain of the P-type metal-oxide-semiconductor transistor 2132, wherein the source of the P-type metal-oxide-semiconductor transistor 2126 and the source of the P-type metal-oxide-semiconductor transistor 2128 are used in the differential circuit 219 pole is connected to the power node P. In addition, the voltage level of the gate of the PMOS transistor 2132 is controlled by the resistor 2134 . In addition, the signal output by the differential circuit 219 can be amplified by the capacitor 2133 . The capacitor 2133 is often used in the design of an analog circuit, and is usually formed by a MOS capacitor or a poly-to-poly capacitor, wherein the MOS capacitor is used The polysilicon gate (polygate) and the silicon substrate (silicon substrate) are used as the two electrodes of the capacitor 2133 , and the polysilicon-to-polysilicon capacitor uses a first polysilicon and a second polysilicon as the two electrodes of the capacitor 2133 . Resistors are also often used in an analog circuit, and are usually impurity-doped diffusion areas in the silicon substrate, such as n-well, p-well, N+ diffusion, P+ diffusion, and/or impurity-doped diffusion area. heteropolysilicon (impurity-dopedpolysilicon) to form.

第三实施例:本发明的完整结构。The third embodiment: the complete structure of the present invention.

形成保护层上方厚金属导体(或是保护层上方的金属线路或平面)的技术可提供芯片额外的好处。保护层上方厚金属导体(或是保护层上方的金属线路或平面)的材质是包括金、铜、银、钯、铑、铂、钌或镍,其不仅可以形成为导体本体,也可形成为其它的接触结构。利用各种不同种类的接触结构,例如焊料凸块(solderbump)、焊料接垫(solderpad)、焊料球(solderball)、金凸块(Aubomp)、金接垫(goldpad)、钯接垫(Pdpad)、铝接垫(Alpad)或打线接垫(wirebondingpad),芯片可以轻易地利用不同的方法来与外部电路接合。在图5B、图5K、图5S、图7B、图7C与图7D中,保护层上方的金属线路或平面是用来传送内部电路所输出或输入的讯号,且内部电路并未连接到外部电路。惟,一芯片必须连接到外部电路,并与外部电路进行传输。接着,请同时参阅图8B至图8F、图9B至图9D和图10B至图10I所示,其是公开出本发明的一完整结构,并以此作为本发明的第三实施例。图8B至图8F、图9B至图9D和图10B至图10I叙述了内部电路所产生的讯号如何通过保护层上方的金属线路或平面以及保护层下方的细线路金属结构传送到外部电路,或者是外部电路所产生的讯号如何通过保护层上方的金属线路或平面以及保护层下方的细线路金属结构传送到内部电路。图8B至图8F、图9B至图9D和图10B至图10I是分别为本实施例的电路结构、俯视示意图与剖面示意图,其是以内部电路连接外部电路的整体芯片设计公开出本发明使用细线路金属结构和保护层上方金属的完整结构。另,有关图5B至图5T、图6B和图7B至图7D所叙述之内部电路20(包括21、22、23、24)也适用在本实施例中之内部电路20(包括21、22、23、24)。The technique of forming thick metal conductors (or metal lines or planes above the passivation layer) above the passivation layer can provide additional benefits to the chip. The material of the thick metal conductor above the protective layer (or the metal circuit or plane above the protective layer) includes gold, copper, silver, palladium, rhodium, platinum, ruthenium or nickel, which can be formed not only as a conductor body, but also as a other contact structures. Utilize various types of contact structures such as solder bumps, solder pads, solder balls, gold bumps (Aubomp), gold pads, palladium pads (Pdpad) , Aluminum pad (Alpad) or wire bonding pad (wirebondingpad), the chip can easily use different methods to bond with the external circuit. In FIG. 5B, FIG. 5K, FIG. 5S, FIG. 7B, FIG. 7C and FIG. 7D, the metal lines or planes above the protective layer are used to transmit the output or input signals of the internal circuit, and the internal circuit is not connected to the external circuit. . However, a chip must be connected to and communicate with external circuits. Next, please refer to FIG. 8B to FIG. 8F , FIG. 9B to FIG. 9D and FIG. 10B to FIG. 10I , which disclose a complete structure of the present invention, and use it as the third embodiment of the present invention. 8B to 8F, FIG. 9B to FIG. 9D and FIG. 10B to FIG. 10I describe how the signal generated by the internal circuit is transmitted to the external circuit through the metal line or plane above the protective layer and the thin line metal structure below the protective layer, or It is how the signal generated by the external circuit is transmitted to the internal circuit through the metal line or plane above the protective layer and the thin line metal structure below the protective layer. 8B to 8F, FIG. 9B to FIG. 9D and FIG. 10B to FIG. 10I are respectively the circuit structure, top view and cross-sectional view of this embodiment, which disclose the use of the present invention by connecting the internal circuit to the overall chip design of the external circuit. Complete structure of fine line metal structure and metal over cap. In addition, the internal circuit 20 (including 21, 22, 23, 24) described in relation to Fig. 5B to Fig. 5T, Fig. 6B and Fig. 7B to Fig. 7D is also applicable to the internal circuit 20 (comprising 21, 22, 24) in this embodiment. 23, 24).

在本实施例中,内部结构200的讯号是通过一芯片接外(off-chip)结构400传送到外部电路(图中未示),如图8B所示,或外部电路(图中未示)的讯号是通过芯片接外(off-chip)结构400传送到内部结构200,如图8C所示。保护层5上方的金属线路或平面83r可以用来作为细线路金属结构的(输入/输出)接垫(例如图10B中的金属接垫6390)的重新配置线路,换言的,就是将细线路金属结构的(输入/输出)接垫利用重新配置线路重新定位到一不同位置的接垫(例如图10B中的接触接垫8310),然后利用位于此接垫上的一导线或凸块连接到外部电路,所以由俯视透视图观的,此接垫的位置是不同在细线路金属结构的(输入/输出)接垫位置,例如在图10B中,由俯视透视图观的,接触接垫8310的位置是不同在金属接垫6390的位置,此外,用在形成接触接垫8310的重新配置线路的厚度是大于1.5微米。另,保护层5上的金属线路或平面83r可与保护层5上的金属线路或平面83同时形成。此时流经金属线路或平面83的电流是介于50微安培至10毫安之间。In this embodiment, the signal of the internal structure 200 is transmitted to the external circuit (not shown in the figure) through an off-chip structure 400, as shown in FIG. 8B, or the external circuit (not shown in the figure) The signal is transmitted to the internal structure 200 through the off-chip structure 400, as shown in FIG. 8C. The metal lines or planes 83r above the protective layer 5 can be used as reconfiguration lines for (input/output) pads (such as metal pads 6390 in FIG. The (input/output) pads of the metal structure are relocated to a pad at a different location (such as contact pad 8310 in FIG. 10B ) using reconfiguration lines, and then connected to the external circuit, so from the top perspective view, the position of this pad is different from the (input/output) pad position of the thin line metal structure, for example, in FIG. 10B, from the top perspective view, the contact pad 8310 The location is different at the location of the metal pad 6390, moreover, the thickness of the reconfiguration lines used to form the contact pad 8310 is greater than 1.5 microns. In addition, the metal line or plane 83r on the passivation layer 5 can be formed simultaneously with the metal line or plane 83 on the passivation layer 5 . At this time, the current flowing through the metal line or the plane 83 is between 50 microamperes and 10 milliamperes.

由位于顶端聚合物层99的一聚合物开口9939所暴露出的接触接垫8310可以使用打线或其它如后续图15是列中所述的接合方法连接到外部电路。另,为了覆晶组装(flip-chipassembly)、卷带自动接合(TapeAutomatedBonding,TAB)或其它如后续图15是列中所述的接合方法,可选择性在接触接垫8310上以及聚合物层开口9939中形成一接触结构89,至于形成接触结构89的方法及其详细叙述也将在后续图15是列中说明。接触接垫8310可以和芯片接外电路40连接。因此,综合上述说明,芯片接外结构400包括有一芯片接外电路40、一金属接垫6390、一接触结构89(选择性)以及保护层上方的重新配置线路83r(选择性)。Contact pads 8310 exposed by a polymer opening 9939 in the top polymer layer 99 can be connected to external circuitry using wire bonding or other bonding methods as described in the subsequent column of FIG. 15 . In addition, for flip-chip assembly (flip-chip assembly), tape automated bonding (Tape Automated Bonding, TAB) or other bonding methods as described in the subsequent column of FIG. A contact structure 89 is formed in 9939, and the method for forming the contact structure 89 and its detailed description will also be described in the subsequent column of FIG. 15 . The contact pads 8310 can be connected to the external circuit 40 on the chip. Therefore, based on the above description, the chip-connection structure 400 includes a chip-connection circuit 40, a metal pad 6390, a contact structure 89 (optional), and a reconfiguration circuit 83r (optional) above the protection layer.

芯片接外电路40包括有作为芯片接外电路42的一芯片接外输入/输出(I/O)电路,以及作为芯片接外电路43的至少一静电放电(ElectrostaticDischarge,ESD)防护电路,例如图8D所示,芯片接外电路43包括有两个静电放电防护电路。在上述内容中,芯片接外输入/输出电路可以是一芯片接外驱动器、一芯片接外接收器或一芯片接外缓冲器(例如芯片三态缓冲器),而相关内容则分别在图11A、图11B、图11C和图11E中叙述;另,静电放电防护电路可以是由两个逆偏压二极管(reverse-biaseddiode)4331、4332所组成的结构,如图11F所示。芯片接外输入/输出电路中的金氧半晶体管尺寸对内部电路中的金氧半晶体管尺寸将在后续图15是列中说明。The chip connection circuit 40 includes a chip connection input/output (I/O) circuit as the chip connection circuit 42, and at least one electrostatic discharge (Electrostatic Discharge, ESD) protection circuit as the chip connection circuit 43, as shown in FIG. As shown in 8D, the chip connection circuit 43 includes two electrostatic discharge protection circuits. In the above content, the off-chip input/output circuit can be an off-chip driver, an off-chip receiver or an off-chip buffer (such as on-chip tri-state buffer), and the related contents are respectively shown in FIG. 11A , described in FIG. 11B, FIG. 11C and FIG. 11E; in addition, the electrostatic discharge protection circuit may be a structure composed of two reverse-biased diodes (reverse-biaseddiode) 4331, 4332, as shown in FIG. 11F. The size of the MOS transistor in the external input/output circuit connected to the chip and the size of the MOS transistor in the internal circuit will be described in the following column of FIG. 15 .

图8A、图9A和图10A是为现有晶圆的设计结构,如图所示,所有的电路(包括内部电路21、22、23、24和芯片接外电路40)是通过细线路金属结构638、6311、6321(包括6321a、6321b、6321c)、6341、6391’互相连接在一起,然而现有并未有使用保护层上方的金属线路或平面来连接所有电路,现有仅在接触结构为锡铅凸块89t时,使用保护层上方的一重配置金属线路83t重新配置对外连接接垫的位置。Fig. 8A, Fig. 9A and Fig. 10A are the design structures for existing wafers, as shown in the figure, all circuits (comprising internal circuits 21, 22, 23, 24 and chip-connected external circuits 40) are made through thin line metal structures 638, 6311, 6321 (including 6321a, 6321b, 6321c), 6341, 6391' are connected to each other, but the metal lines or planes above the protective layer are not used to connect all circuits. When the tin-lead bump 89t is used, a reconfiguration metal line 83t above the protection layer is used to reconfigure the position of the external connection pad.

请同时参阅图9B和图10B所示,其是分别为图8B所示的电路设计的俯视示意图和剖面示意图。一内部电路21是通过下列所述的路径连接到接触接垫8310或接触结构89,让内部电路21产生的讯号传送到一外部电路:内部电路21首先经过一细线路金属结构631,往上经过一保护层开口531,继续经过单层(如图10B中的图案化金属层831)或多层的金属线路或平面83,然后往下经过一保护层开口539’与一细线路金属结构639’连接到芯片接外电路42的输入节点,另通过细线路金属结构69让芯片接外电路42的输出节点连接到作为静电放电防护电路的芯片接外电路43的讯号接点上,接着往上经过一细线路金属结构639与一保护层开口539,最后经过作为保护层上方重配置线路的一金属线路或平面83r连接到接触接垫8310或接触结构89。此外,连接芯片接外电路42与芯片接外电路43的方式也可以是利用保护层上方的金属线路或平面来达成,也即利用细线路金属结构和保护层上方的金属线路或平面两者来取代细线路金属结构69。Please also refer to FIG. 9B and FIG. 10B , which are a schematic top view and a schematic cross-sectional view of the circuit design shown in FIG. 8B , respectively. An internal circuit 21 is connected to the contact pad 8310 or the contact structure 89 through the following path, so that the signal generated by the internal circuit 21 is transmitted to an external circuit: the internal circuit 21 first passes through a thin line metal structure 631, and then passes through A passivation layer opening 531 continues to pass through a single layer (such as the patterned metal layer 831 in FIG. 10B ) or a multi-layer metal line or plane 83, and then passes through a passivation layer opening 539' and a fine line metal structure 639'. It is connected to the input node of the chip external circuit 42, and the output node of the chip external circuit 42 is connected to the signal contact of the chip external circuit 43 as an electrostatic discharge protection circuit through a thin line metal structure 69, and then passes through a The fine line metal structure 639 and a passivation layer opening 539 are finally connected to the contact pad 8310 or the contact structure 89 through a metal line or plane 83r as a reconfiguration line over the passivation layer. In addition, the connection between the chip-connected external circuit 42 and the chip-connected external circuit 43 can also be achieved by using metal lines or planes above the protective layer, that is, using both the thin line metal structure and the metal lines or planes above the protective layer. Substitute fine line metal structure 69 .

请参阅图10C所示,其是公开了金属线路或平面83具有相似在图7C所示知两图案化金属层831、832。另外,图10D和图10E除了在保护层5和图案化金属层831最底端之间增加一聚合物层95的外,其余分别与图10B和图10C相似。请参阅图10D所示,利用作为重新配置线路的金属线路或平面83r,原本的金属接垫6390可以被重新配置到保护层5上的接触接垫8310。使用重新配置线路来重新配置输入/输出接垫特别在堆栈封装闪存、动态随机存取内存或静态随机存取内存芯片上有用。另,一动态随机存取内存芯片的输入/输出接垫通常是约略地设计在沿着芯片的中心在线,所以无法使用在堆栈封装中。然而,利用作为重新配置线路的金属线路或平面83r将中央接垫重新配置到芯片的周围,则可让芯片使用在封装(例如堆栈封装)中的打线接合上。Please refer to FIG. 10C , which discloses that the metal line or plane 83 has two patterned metal layers 831 , 832 similar to those shown in FIG. 7C . In addition, FIG. 10D and FIG. 10E are similar to FIG. 10B and FIG. 10C except that a polymer layer 95 is added between the protective layer 5 and the bottom end of the patterned metal layer 831 . Referring to FIG. 10D , the original metal pad 6390 can be reconfigured to the contact pad 8310 on the passivation layer 5 by using the metal line or plane 83r as the reconfiguration line. Using reconfiguration lines to reconfigure I/O pads is particularly useful on stacked package flash, DRAM or SRAM chips. In addition, the I/O pads of a DRAM chip are usually designed roughly along the center line of the chip, so they cannot be used in stacked packages. However, reconfiguring the central pads to the periphery of the chip using metal lines or planes 83r as reconfiguration lines allows the chip to be used on wire bonds in packages such as stacked packages.

请同时参阅图10F和图10G所示,其是分别为接触接垫8310具有一打线接合的具体范例。在图10F与图10G中,一静态随机存取内存单元、一闪存单元或一动态随机存取内存单元是连接到内部电路21中的输入节点Xi,而有关内部电路21以及内存单元连接到内部电路21的方法则已分别在图5F至图5J中说明。首先请参阅图10F所示,一静态随机存取内存单元、一闪存单元或一动态随机存取内存单元连接到外部电路是经由:(1)感测放大器;(2)内部缓冲器、通过电路、闩锁电路、通过电路与内部驱动器或者是闩锁电路与内部驱动器;(3)细线路金属结构6311;(4)细线路金属结构638;(5)经由细线路金属结构6391’连接到一芯片接外电路42的输入节点;(6)经由芯片接外电路42的输出节点连接细线路金属结构6391,以及通过细线路金属结构69连接到作为静电放电防护电路的一芯片接外电路43;(7)一保护层开口539;(8)经过作为重新配置线路的一金属线路或平面83r;(9)经过由一聚合物层开口9939所暴露出的接触接垫8310;以及(10)经过接触接垫8310上的一打线导线89’连接到外部电路。再来,请参阅图10G所示,一静态随机存取内存单元、一闪存单元或一动态随机存取内存单元连接到外部电路是经由:(1)感测放大器;(2)内部三态缓冲器、通过电路、闩锁电路、通过电路与内部驱动器或者是闩锁电路与内部驱动器;(3)细线路金属结构631;(4)往上经过保护层开口531;(5)聚合物层开口9531;(6)图案化金属层831;(7)往下经过聚合物层开口9539’;(8)保护层开口539’;(9)经过细线路金属结构639’连接到一芯片接外电路42的输入节点;(10)经由芯片接外电路42的输出节点连接细线路金属结构639,以及通过细线路金属结构69连接到作为静电放电防护电路的一芯片接外电路43;(11)保护层开口539;(12)聚合物层开口9539;(13)经过作为重新配置线路的一金属线路或平面83r;(14)经过由一聚合物层开口9939所暴露出的接触接垫8310;以及(15)经过接触接垫8310上的一打线导线89’连接到外部电路。Please refer to FIG. 10F and FIG. 10G at the same time, which are specific examples of the contact pads 8310 having a wire bonding. In Fig. 10F and Fig. 10G, a static random access memory unit, a flash memory unit or a dynamic random access memory unit are connected to the input node Xi in the internal circuit 21, and the relevant internal circuit 21 and the memory unit are connected to the internal The method of circuit 21 has been illustrated in FIG. 5F to FIG. 5J respectively. First please refer to FIG. 10F, a static random access memory unit, a flash memory unit or a dynamic random access memory unit is connected to the external circuit through: (1) sense amplifier; (2) internal buffer, through circuit , latch circuit, through circuit and internal driver or latch circuit and internal driver; (3) thin line metal structure 6311; (4) thin line metal structure 638; (5) connected to a The input node of the chip connected to the external circuit 42; (6) connect the thin line metal structure 6391 via the output node of the chip connected to the external circuit 42, and connect to a chip connected to the external circuit 43 as an electrostatic discharge protection circuit through the thin line metal structure 69; (7) a protective layer opening 539; (8) pass through a metal line or plane 83r as a reconfiguration line; (9) pass through a contact pad 8310 exposed by a polymer layer opening 9939; and (10) pass through A bond wire 89' on the contact pad 8310 is connected to external circuitry. Again, referring to Fig. 10G, a static random access memory unit, a flash memory unit or a dynamic random access memory unit is connected to the external circuit via: (1) sense amplifier; (2) internal tri-state buffer , through circuit, latch circuit, through circuit and internal driver or latch circuit and internal driver; (3) thin line metal structure 631; (4) pass through protective layer opening 531 upward; (5) polymer layer opening 9531 (6) patterned metal layer 831; (7) down through the polymer layer opening 9539'; (8) protective layer opening 539'; (9) connected to a chip connected to the external circuit 42 through the thin line metal structure 639' (10) connect the thin line metal structure 639 via the output node of the chip connection external circuit 42, and connect to a chip connection external circuit 43 as an electrostatic discharge protection circuit through the thin line metal structure 69; (11) protective layer Opening 539; (12) polymer layer opening 9539; (13) through a metal line or plane 83r as a reconfiguration line; (14) through contact pad 8310 exposed by a polymer layer opening 9939; and ( 15) Connect to an external circuit through a bonding wire 89 ′ on the contact pad 8310 .

此外,在作为重新配置线路的金属线路或平面83r的下方或上方可形成一聚合物层,例如在图10G中,金属线路或平面83r下形成有一聚合物层95,且金属线路或平面83r上形成有一顶层聚合物层99。另,作为重新配置线路的金属线路或平面83r可以是由厚度介于1.5微米至30微米之间范围(以介于2微米至10微米之间为较佳者)的一金层形成(以电镀或无电电镀形成),或由是厚度介于2微米至100微米之间范围(以介于3微米至20微米之间为较佳者)的一铜层形成(以电镀形成)。其中,铜层顶端有一镍层(其厚度介于0.5微米至5微米之间)以及金、钯或钌的一组装(assembly)金属层(其厚度介于0.05微米至5微米之间)。一打线接合在接触接垫8310上的金、钯或钌层表面上进行。In addition, a polymer layer may be formed below or above the metal line or plane 83r as a reconfiguration line. For example, in FIG. A top polymer layer 99 is formed. In addition, the metal line or plane 83r as the reconfiguration line can be formed (by electroplating or electroless plating), or formed by a copper layer (formed by electroplating) with a thickness ranging from 2 microns to 100 microns (preferably between 3 microns to 20 microns). Wherein, there is a nickel layer (thickness between 0.5 micron and 5 micron) and an assembly metal layer of gold, palladium or ruthenium (thickness between 0.05 micron and 5 micron) on top of the copper layer. A wire bond is performed on the surface of the gold, palladium or ruthenium layer on the contact pad 8310 .

当讯号传送到外部电路或组件时,某些芯片接外电路需要去(1)驱动需要大电流负载的外部电路或组件;(2)检测来自外部电路或组件的含有噪声的讯号(noisysignal);以及(3)保护内部电路免在受到来自外部电路或组件的突波(surge)讯号所产生的损害。请参阅图11A、图11B与图11E与图11G所示,其是分别公开出以芯片接外驱动器421、芯片接外驱动器422与内部三态缓冲器作为芯片接外电路42的范例。在图11A中,其是为两级串联(two-stagecascade)的一芯片接外驱动器421。为了驱动需要高负载(heavyload)的外部电路(封装、其它芯片或组件等等),芯片接外驱动器421被设计成可以产生大电流。另,芯片接外驱动器是可使用一互补式金属氧化物半导体串联驱动器来形成。此串联驱动器可能包括有数级的反相器。一芯片接外驱动器的输出电流是与级数以及使用在每一级芯片接外驱动器中的晶体管大小(W/L,金氧半晶体管信道宽度对信道长度的比值,更精确地是指金氧半晶体管有效信道宽度对有效信道长度的比值)成比例。When signals are transmitted to external circuits or components, some chips need to be connected to external circuits to (1) drive external circuits or components that require high current loads; (2) detect noise-containing signals from external circuits or components (noisysignal); And (3) protecting the internal circuit from being damaged by surge signals from external circuits or components. Please refer to FIG. 11A , FIG. 11B , and FIG. 11E and FIG. 11G , which respectively disclose an example of using the off-chip driver 421 , the off-chip driver 422 and the internal tri-state buffer as the off-chip circuit 42 . In FIG. 11A , it is a two-stage cascade chip-connected external driver 421 . In order to drive external circuits (packages, other chips or components, etc.) that require heavy loads, the chip-connected driver 421 is designed to generate a large current. Alternatively, the off-chip driver can be formed using a CMOS serial driver. The series driver may include several stages of inverters. The output current of an on-chip driver is a function of the number of stages and the size of the transistors used in each stage of the on-chip driver (W/L, the ratio of channel width to channel length of metal oxide semiconductor transistors, more precisely refers to metal oxide The ratio of the half-transistor effective channel width to the effective channel length) is proportional.

在图11A中,芯片接外驱动器421的第一级421’是为一反相器,其是由N型金氧半晶体管4201与P型金氧半晶体管4202形成,且N型金氧半晶体管4201与P型金氧半晶体管4202的尺寸是大于内部电路的尺寸(如第一实施例、第二实施例、第三实施例以及后续第四实施例之内部电路21、22、23、24的尺寸)。此外,芯片接外驱动器421的第一级421’是在输入节点F接收来自内部电路21、22、23、24的一讯号。另,芯片接外驱动器421的第二级421”也是一反相器,其是由一更大尺寸的N型金氧半晶体管4203与P型金氧半晶体管4204形成。芯片接外驱动器421提供一驱动电流,此驱动电流是介于5毫安(miliaamperes,mA)至5安培(amperes,A)之间的范围,并以介于10毫安至100毫安之间的范围为较佳者。为了达到这些目标输出驱动电流,第二级421”(换言的,也就是芯片接外驱动器421的输出级)的N型金氧半晶体管4203的尺寸是介于20至20,000之间的范围,并以介于30至300之间的范围为较佳者。另外,因为一P型金氧半晶体管的驱动电流大约是一N型金氧半晶体管的驱动电流的一半。所以,第二级421”(换言的,也就是芯片接外驱动器421的输出级)的P型金氧半晶体管4204的尺寸是介于40至40,000之间的范围,并以介于60至600之间的范围为较佳者。然而,对于一电源芯片(powerchip)或一电源管理芯片(powermanagementchip)而言,驱动电流必须更大,例如10安培或20安培,而其驱动电流是介于500毫安至50安培之间的范围,并以介于500毫安至5安培之间的范围为较佳者。因此,一电源芯片或电源管理芯片的一芯片接外驱动器的N型金氧半晶体管的尺寸是介于2,000至200,000之间的范围,并以介于2,000至20,000之间的范围为较佳者,而P型金氧半晶体管的尺寸则是介于4,000至400,000之间的范围,并以介于4,000至40,000之间的范围为较佳者。此外,请参阅图11D所示,芯片接外驱动器421可以在第二级421”中并联多个反相器,使第二级421”的驱动器可以提供尺寸(信道宽度除以信道长度的比值)更大的N型金氧半晶体管与P型金氧半晶体管,因此芯片接外驱动器421可以提供一较大的驱动电流,其中在第二级421”的驱动器中,是将多个反向器的N型金氧半晶体管与P型金氧半晶体管的栅极相联接,与多个反向器的N型金氧半晶体管与P型金氧半晶体管的漏极相联接。另图8E、图9C与图10H是分别为本实施例应用图11D的电路设计的电路示意图、俯视示意图和剖面示意图。请参阅图11G所示,芯片接外驱动器421也可凭借于第一级421’的后串联多个反相器的方式,形成一串联驱动器(cascadedriver),并通过逐级加大尺寸的反相器来使芯片接外驱动器421逐级放大讯号,其中后级的反相器的N型金氧半晶体管与P型金氧半晶体管的尺寸(信道宽度除以信道长度的比值)是分别大于的前一级的反相器的N型金氧半晶体管与P型金氧半晶体管的尺寸(信道宽度除以信道长度的比值),其较佳倍率为自然指数(e,naturalexponent)的倍率,另外其连接方式为前一级的反相器的N型金氧半晶体管与P型金氧半晶体管的漏极是连接到后一级的反相器的N型金氧半晶体管与P型金氧半晶体管的栅极。另图8F、图9D与图10I是分别为本实施例应用图11G的电路设计的电路示意图、俯视示意图和剖面示意图。In FIG. 11A, the first stage 421' of the chip-connected external driver 421 is an inverter, which is formed by an N-type metal-oxide-semiconductor transistor 4201 and a P-type metal-oxide-semiconductor transistor 4202, and the N-type metal-oxide-semiconductor transistor The size of 4201 and P-type metal oxide semiconductor transistor 4202 is larger than the size of the internal circuit (such as the internal circuits 21, 22, 23, 24 of the first embodiment, the second embodiment, the third embodiment and the subsequent fourth embodiment. size). In addition, the first stage 421' of the off-chip driver 421 receives a signal from the internal circuits 21, 22, 23, 24 at the input node F. In addition, the second stage 421" of the chip-connected external driver 421 is also an inverter, which is formed by a larger-sized N-type metal-oxide-semiconductor transistor 4203 and a P-type metal-oxide-semiconductor transistor 4204. The chip-connected external driver 421 provides A driving current, the driving current ranges from 5 milliamperes (mA) to 5 amperes (amperes, A), and preferably ranges from 10 milliamperes to 100 milliamperes. In order to achieve these target output driving currents, the size of the NMOS transistor 4203 of the second stage 421″ (in other words, the output stage of the on-chip driver 421) is in the range of 20 to 20,000, And the range between 30 and 300 is the better one. In addition, because the driving current of a P-type MOS transistor is about half of that of an N-type MOS transistor. Therefore, the size of the P-type metal-oxide-semiconductor transistor 4204 of the second stage 421" (in other words, the output stage of the chip connected to the external driver 421) is between 40 and 40,000, and the size is between 60 and 40,000. The range between 600 is better. However, for a power chip (powerchip) or a power management chip (powermanagementchip), the driving current must be larger, such as 10 amperes or 20 amperes, and its driving current is between The range between 500 milliamps and 50 amps, and preferably the range between 500 milliamperes and 5 amps. Therefore, a chip of a power supply chip or a power management chip is connected to the N-type metal oxide of the external driver. The size of semi-transistors is in the range of 2,000 to 200,000, preferably in the range of 2,000 to 20,000, and the size of PMOS transistors is between 4,000 and 400,000 range, and the range between 4,000 and 40,000 is the preferred one. In addition, as shown in FIG. The driver of stage 421" can provide larger N-type metal-oxide-semiconductor transistors and P-type metal-oxide-semiconductor transistors in size (ratio of channel width divided by channel length), so the chip-connected external driver 421 can provide a larger drive current, Among them, in the driver of the second stage 421", the N-type metal oxide semiconductor transistors of multiple inverters are connected to the gates of P-type metal oxide semiconductor transistors, and the N-type metal oxide semiconductor transistors of multiple inverters are connected to each other. The transistor is connected with the drain of the P-type metal oxide semiconductor transistor. In addition, FIG. 8E , FIG. 9C and FIG. 10H are respectively a schematic circuit diagram, a schematic top view and a schematic cross-sectional view of the circuit design of FIG. 11D applied in this embodiment. Please refer to FIG. 11G , the chip-connected external driver 421 can also form a cascaded driver (cascaded driver) by means of connecting multiple inverters in series after the first stage 421', and increase the size of the inverter step by step. device to make the chip connect to the external driver 421 to amplify the signal step by step, wherein the size of the N-type MOS transistor and the P-type MOS transistor (the ratio of the channel width divided by the channel length) of the subsequent inverter is respectively greater than The size of the N-type metal-oxide-semiconductor transistor and the P-type metal-oxide-semiconductor transistor of the previous stage inverter (the ratio of the channel width divided by the channel length), the preferred magnification is the magnification of the natural exponent (e, naturalexponent), and in addition The connection mode is that the drains of the N-type metal-oxide-semiconductor transistor and the P-type metal-oxide-semiconductor transistor of the previous stage inverter are connected to the N-type metal-oxide-semiconductor transistor and the P-type metal oxide semiconductor transistor of the latter stage inverter. The gate of the semi-transistor. In addition, FIG. 8F , FIG. 9D and FIG. 10I are circuit schematic diagrams, top view schematic diagrams, and cross-sectional schematic diagrams, respectively, of this embodiment applying the circuit design of FIG. 11G .

请参阅图11B所示,其是为两级串联的一芯片接外接收器422,此芯片接外接收器422可以接收来自外部电路(图中未示)的讯号,并输出讯号至内部电路的输入节点。芯片接外接收器422的第一级422’(靠近外部电路)是为一反相器,其是是由N型金氧半晶体管4205和P型金氧半晶体管4206形成,且此N型金氧半晶体管4205和P型金氧半晶体管4206具有设计用来检测含有噪声的外部讯号的尺寸。芯片接外接收器422的第一级422’是在E点接收来自外部电路或组件的一含有噪声的讯号(可以是来自其它芯片的一讯号)。芯片接外接收器422的第二级422”也是一反相器,其是是由一较大尺寸的N型金氧半晶体管4207和P型金氧半晶体管4208形成。芯片接外接收器422的第二级422”是用来复原(restore)往内部电路的含有噪声的外部讯号的完整性。Please refer to FIG. 11B , which is a two-stage series-connected chip external receiver 422. This chip external receiver 422 can receive signals from external circuits (not shown in the figure) and output signals to internal circuits. Enter the node. The first stage 422' of the chip-connected external receiver 422 (close to the external circuit) is an inverter, which is formed by an N-type metal-oxide-semiconductor transistor 4205 and a P-type metal-oxide-semiconductor transistor 4206, and the N-type gold The oxygen semiconductor transistor 4205 and the PMOS transistor 4206 have dimensions designed to detect external signals containing noise. The first stage 422' of the off-chip receiver 422 receives a noise-containing signal from an external circuit or component at point E (it may be a signal from another chip). The second stage 422″ of the chip-connected external receiver 422 is also an inverter, which is formed by a larger-sized N-type metal-oxide-semiconductor transistor 4207 and a P-type metal-oxide-semiconductor transistor 4208. The chip-connected external receiver 422 The second stage 422" is used to restore the integrity of the noisy external signal to the internal circuit.

请参阅图11C所示,其是为一芯片三态缓冲器作为一芯片接外驱动器的一范例,且此芯片三态缓冲器可输出讯号至一总线(bus),然后再传输到多个逻辑闸。图11C中的芯片三态缓冲器可以被视为是一闸控反相器(gatedinverter)。当促成讯号(enablingsignal)En是为高准位(En为低准位)时,芯片三态缓冲器让来自内部电路的讯号传送至外部电路,而当讯号En处在低准位时,内部电路则与外部电路切断。在此种情况中,芯片三态缓冲器是用来驱动外部数据总线(externaldatabus)。另有关芯片三态缓冲器作为芯片接外驱动器的N型金氧半晶体管4209尺寸和P型金氧半晶体管4210尺寸的范围则已叙述在图11A中,并将在图15是列中进一步说明。Please refer to FIG. 11C, which is an example of an on-chip tri-state buffer used as an on-chip external driver, and this chip tri-state buffer can output signals to a bus (bus), and then transmit to multiple logics brake. The on-chip tri-state buffer in FIG. 11C can be regarded as a gated inverter. When the enabling signal (enabling signal) En is high level (En is low level), the chip tri-state buffer allows the signal from the internal circuit to be transmitted to the external circuit, and when the signal En is low level, the internal circuit It is cut off from the external circuit. In this case, the on-chip tri-state buffer is used to drive the external data bus (external data bus). In addition, the size ranges of the N-type metal-oxide-semiconductor transistor 4209 and the P-type metal-oxide-semiconductor transistor 4210 related to the on-chip tri-state buffer used as the chip-connected external driver have been described in FIG. 11A and will be further explained in the columns of FIG. 15 .

请参阅图11E所示,其是为一芯片三态缓冲器作为一芯片接外接收器的一范例。当促成讯号En是为高准位(En为低准位)时,芯片三态缓冲器让来自外部电路的讯号传送至内部电路,而当讯号En处在低准位时,内部电路则与外部电路切断。在此种情况中,芯片三态缓冲器是在节点E接收来自外部数据总线的讯号。另有关芯片三态缓冲器作为芯片接外接收器的N型金氧半晶体管4209尺寸和P型金氧半晶体管4210尺寸的范围是叙述在图11B中,并将在图15是列中进一步说明。Please refer to FIG. 11E , which is an example of an on-chip tri-state buffer as an off-chip receiver. When the enabling signal En is at a high level (En is at a low level), the chip tri-state buffer allows the signal from the external circuit to be transmitted to the internal circuit, and when the signal En is at a low level, the internal circuit communicates with the external Circuit cut. In this case, the on-chip tri-state buffer is at node E receiving the signal from the external data bus. In addition, the size range of the N-type metal-oxide-semiconductor transistor 4209 and the size of the P-type metal-oxide-semiconductor transistor 4210 related to the on-chip tri-state buffer used as the off-chip receiver is described in FIG. 11B, and will be further illustrated in FIG. 15. .

上述范例是用在互补式金属氧化物半导体准位讯号(CMOSlevelsignal)。假若此外部讯号是为晶体管-晶体管逻辑(transistor-transistorlogic,TTL)准位,则需要一CMOS/TTL缓冲器,而假若此外部讯号是为射极耦合逻辑(emittercoupledlogic,ECL)准位,则需要一CMOS/ECL界面缓冲器。在内部电路和芯片三态缓冲器之间可以增加单极或更多极的反相器。The above examples are for CMOS level signals. If the external signal is a transistor-transistor logic (TTL) level, a CMOS/TTL buffer is required, and if the external signal is an emitter coupled logic (ECL) level, a CMOS/TTL buffer is required. A CMOS/ECL interface buffer. A single-pole or multi-pole inverter can be added between the internal circuit and the on-chip tri-state buffer.

请参阅图11F所示,其是进一步公开了一芯片接外接受器422具有作为静电放电防护电路的芯片接外接受器43的一范例。在此范例中,作为静电放电防护电路的芯片接外电路43包括两个逆偏压二极管(reverse-biaseddiode)4331、4332。底端的逆偏压二极管4331可在外部输入电压(E点的电压)与接地参考电压Vss之间进行逆向偏压,而顶端的逆偏压二极管4332则可在外部输入电压与电源电压Vdd之间进行逆向偏压。当来自一外部电路的外部输入电压突然增强至超过电源电压Vdd时,电流将会被放电经过顶端的逆偏压二极管4332,而当外部输入电压低在接地参考电压Vss时,电流则会被放电经过底端的逆偏压二极管4331。因此,往内部电路的输入电压将会被维持在电源电压Vdd与接地参考电压Vss之间,且芯片接外接收器422或内部电路20中的半导体组件将会受到保护而免在受到静电破坏。Please refer to FIG. 11F , which further discloses an example of an ESO receiver 422 having an OEO receiver 43 as an ESD protection circuit. In this example, the off-chip circuit 43 serving as the ESD protection circuit includes two reverse-biased diodes 4331 , 4332 . The bottom reverse biased diode 4331 can be reverse biased between the external input voltage (the voltage at point E) and the ground reference voltage Vss, while the top reverse biased diode 4332 can be reverse biased between the external input voltage and the power supply voltage Vdd for reverse bias. When the external input voltage from an external circuit suddenly increases to exceed the supply voltage Vdd, the current will be discharged through the top reverse bias diode 4332, and when the external input voltage is lower than the ground reference voltage Vss, the current will be discharged Through the reverse biased diode 4331 at the bottom. Therefore, the input voltage to the internal circuit will be maintained between the power supply voltage Vdd and the ground reference voltage Vss, and the off-chip receiver 422 or semiconductor components in the internal circuit 20 will be protected from electrostatic damage.

第四实施例:电源/接地参考电压总线设计结构。Fourth embodiment: design structure of power/ground reference voltage bus.

在本发明第一实施例中,一外部供应电源是经由一稳压器或变压器41输入电压到内部电路20(包括21、22、23、24),而在本实施例中,一外部供应电源是直接输入电压到内部电路20(包括21、22、23、24),但在此种情况中,则需要利用一静电放电防护电路44来预防外部供应电源所产生的电压或电流突波(surge)。In the first embodiment of the present invention, an external power supply is input voltage to the internal circuit 20 (including 21, 22, 23, 24) via a voltage stabilizer or transformer 41, and in this embodiment, an external power supply It is a direct input voltage to the internal circuit 20 (including 21, 22, 23, 24), but in this case, it is necessary to use an electrostatic discharge protection circuit 44 to prevent the voltage or current surge (surge) generated by the external power supply. ).

首先,请图12A所示,其是为本实施例的相关现有技术。在图12A中,一外部电压Vdd是经由一保护层开口549输入,接着经过位于保护层5下的细线路金属结构618、6111、6121(包括6121a、6121b、6121c)、6141分配至内部电路21、22、23、24的一电源节点Tp、Up、Vp、Wp。一静电放电防护电路44的电源节点Dp是经由一细线路金属结构6491连接到细线路金属结构618。图13A和图14A为图12A相对应的俯视示意图与剖面示意图。First, please refer to FIG. 12A , which is the related prior art of this embodiment. In FIG. 12A, an external voltage Vdd is input through a protective layer opening 549, and then distributed to the internal circuit 21 through the thin line metal structures 618, 6111, 6121 (including 6121a, 6121b, 6121c), 6141 located under the protective layer 5. , 22, 23, 24 a power supply node Tp, Up, Vp, Wp. The power node Dp of an ESD protection circuit 44 is connected to the thin-line metal structure 618 via a thin-line metal structure 6491 . 13A and 14A are schematic top views and schematic cross-sectional views corresponding to FIG. 12A .

接着,有关图12B至12C图、图13B至图13C与图14B至14D图所示,其是分别为本发明第四实施例的电路结构示意图、俯视示意图和剖面示意图,如图所示,一静电放电防护电路44是通过保护层5上的金属线路或平面81以及/或是金属线路或平面82与内部电路21、22、23、24平行连接,其中内部电路21、22、23、24比如是或非门(NORgate)、与非门(NANDgate)、且闸(ANDgate)、或门(ORgate)、运算放大器(operationalamplifier)、加法器(adder)、多任务器(multiplexer)、双工器(diplexer)、乘法器(multiplier)、模拟/数字转换器(A/Dconverter)、数字/模拟转换器(D/AConverter)、互补式金属氧化物半导体、双载子互补式金属氧化物半导体、双载子电路(bipolarcircuit)、静态随机存取内存单元(SRAMcell)、动态随机存取内存单元(DRAMcell)、非挥发性内存单元(non-volatilememorycell)、闪存单元(flashmemorycell)、可消除可程序只读存储器单元(EPROMcell)、只读存储器单元(ROMcell)、磁性随机存取内存(magneticRAM,MRAM)单元或感测放大器(senseamplifier)。此内部电路21、22、23、24是至少由一信道寛度/信道长度比值介于0.1至5之间或介于0.2至2之间的一N型金氧半晶体管(NMOStransistor),或是信道寛度/信道长度比值介于0.2至10之间或介于0.4至4之间的一P型金氧半晶体管(PMOStransistor)所构成,且此时流经金属线路或平面81、82的电流比如是介于50微安培至2毫安之间或是介于100微安培至1毫安之间,而金属线路或平面81、82比如是利用一导线形成在金属线路或平面81、82上,进而电连接至一外界电源;此外,静电放电防护电路44比如是一逆偏压二极管(reverse-biaseddiode)4333,如图12E所示,其是具有一电源接点与一接地接点。另,在图1是列、图2是列以及图3是列所示的第一实施例中,也可增加静电放电防护电路,并且平行连接稳压器或变压器41以及内部电路21、22、23、24。Next, as shown in Figures 12B to 12C, Figures 13B to 13C and Figures 14B to 14D, they are respectively a schematic diagram of the circuit structure, a schematic top view and a schematic cross section of the fourth embodiment of the present invention, as shown in the figure, a The electrostatic discharge protection circuit 44 is connected in parallel with the internal circuits 21, 22, 23, 24 through the metal lines or the plane 81 and/or the metal lines or the plane 82 on the protective layer 5, wherein the internal circuits 21, 22, 23, 24 are such as NOR gate, NAND gate, AND gate, OR gate, operational amplifier, adder, multiplexer, duplexer ( diplexer), multiplier (multiplier), analog/digital converter (A/Dconverter), digital/analog converter (D/AConverter), complementary metal oxide semiconductor, bicarrier complementary metal oxide semiconductor, dual carrier Subcircuit (bipolarcircuit), static random access memory unit (SRAMcell), dynamic random access memory unit (DRAMcell), non-volatile memory unit (non-volatilememorycell), flash memory unit (flashmemorycell), can eliminate programmable read-only memory cell (EPROM cell), read only memory cell (ROM cell), magnetic random access memory (magnetic RAM, MRAM) cell, or sense amplifier (sense amplifier). The internal circuits 21, 22, 23, 24 are at least composed of an N-type metal oxide semiconductor transistor (NMOS transistor) with a channel width/channel length ratio between 0.1 and 5 or between 0.2 and 2, or a channel A P-type metal oxide semiconductor transistor (PMOS transistor) whose width/channel length ratio is between 0.2 and 10 or between 0.4 and 4, and the current flowing through the metal lines or planes 81 and 82 at this time is, for example, Between 50 microamperes and 2 milliamperes or between 100 microamperes and 1 milliamperes, and the metal lines or planes 81, 82 are formed on the metal lines or planes 81, 82, such as by using a wire, and then electrically connected to An external power supply; in addition, the electrostatic discharge protection circuit 44 is, for example, a reverse-biased diode 4333, as shown in FIG. 12E, which has a power contact and a ground contact. In addition, in the first embodiment shown in Fig. 1 is a column, Fig. 2 is a column and Fig. 3 is a column, an electrostatic discharge protection circuit can also be added, and a voltage stabilizer or transformer 41 and internal circuits 21, 22, 23, 24.

在图12B与图13B中,静电放电防护电路44与内部电路20(包括21、22、23、24)均包括一电源节点(powernode)和一接地节点(groundnode),其中一外部电压Vdd输入的节点Ep是经由保护层5上的金属线路或平面81、保护层5的保护层开口511、512、514和保护层5下的细线路金属结构611、612(包括612a、612b、612c)、614,连接到内部电路21、22、23、24的一电源节点(powernode)Tp、Up、Vp、Wp,进而将外部电压Vdd分配至内部电路21、22、23、24的电源节点Tp、Up、Vp、Wp。另外,节点Ep也经由保护层5上的金属线路或平面81、保护层5的保护层开口549和保护层5下的细线路金属结构649连接到一静电放电防护电路44的一电源节点Dp。In Fig. 12B and Fig. 13B, the electrostatic discharge protection circuit 44 and the internal circuit 20 (including 21, 22, 23, 24) all include a power node (powernode) and a ground node (groundnode), wherein an external voltage Vdd input The node Ep is via the metal line or plane 81 on the protective layer 5, the protective layer openings 511, 512, 514 of the protective layer 5, and the thin line metal structures 611, 612 (including 612a, 612b, 612c), 614 under the protective layer 5 , connected to a power node (powernode) Tp, Up, Vp, Wp of the internal circuit 21, 22, 23, 24, and then distribute the external voltage Vdd to the power node Tp, Up, of the internal circuit 21, 22, 23, 24 Vp, Wp. In addition, the node Ep is also connected to a power node Dp of an ESD protection circuit 44 via the metal line or plane 81 on the passivation layer 5 , the passivation layer opening 549 of the passivation layer 5 and the thin line metal structure 649 under the passivation layer 5 .

图14B是为图12B相对应的剖面示意图。在图14B中,作为金属线路或平面81的图案化金属层811包括有一黏着/阻障/种子层(adhesion/barrier/seedlayer)8111以及一厚金属层8112。图12C除了公开出如图12B的外部电压Vdd的连接外,也公开出一接地参考电压Vss的连接。FIG. 14B is a schematic cross-sectional view corresponding to FIG. 12B . In FIG. 14B , patterned metal layer 811 as metal line or plane 81 includes an adhesion/barrier/seed layer 8111 and a thick metal layer 8112 . FIG. 12C discloses the connection of a ground reference voltage Vss in addition to the connection of the external voltage Vdd as shown in FIG. 12B.

在图12C与图13C中,接地参考电压Vss输入的节点Eg是经由保护层5上的金属线路或平面82、保护层5的保护层开口521、522、524和保护层5下的细线路金属结构621、622(包括622a、622b、622c)、624连接到内部电路21、22、23、24的一接地节点Ts、Us、Vs、Ws。另外,节点Eg也经由保护层5上的金属82、保护层5的保护层开口549’和保护层5下的细线路金属结构649’连接到静电放电防护电路44的一接地节点Dg。In FIG. 12C and FIG. 13C , the node Eg where the ground reference voltage Vss is input is via the metal line or plane 82 on the protective layer 5 , the protective layer openings 521 , 522 , 524 of the protective layer 5 , and the fine line metal under the protective layer 5 . The structures 621 , 622 (including 622 a , 622 b , 622 c ), 624 are connected to a ground node Ts, Us, Vs, Ws of the internal circuits 21 , 22 , 23 , 24 . In addition, the node Eg is also connected to a ground node Dg of the ESD protection circuit 44 via the metal 82 on the passivation layer 5, the passivation layer opening 549' of the passivation layer 5, and the thin line metal structure 649' under the passivation layer 5.

图14C是为图12C相对应的剖面示意图。图14C公开出在保护层上方具有两图案化金属层,其中图案化金属层821是用在接地参考电压Vss连接上,而图案化金属层812则是用在电源Vdd连接上。图案化金属层821包括有一黏着/阻障/种子层8211以及一厚金属层8212,而图案化金属层812则包括有一黏着/阻障/种子层8121以及一厚金属层8122。图14D除了在保护层5与作为金属线路或平面81的图案化金属层811最底端之间形成有一聚合物层95的外,其余都与图14B相似。FIG. 14C is a schematic cross-sectional view corresponding to FIG. 12C . FIG. 14C discloses that there are two patterned metal layers above the protection layer, wherein the patterned metal layer 821 is used for the ground reference voltage Vss connection, and the patterned metal layer 812 is used for the power Vdd connection. The patterned metal layer 821 includes an adhesion/barrier/seed layer 8211 and a thick metal layer 8212 , while the patterned metal layer 812 includes an adhesion/barrier/seed layer 8121 and a thick metal layer 8122 . FIG. 14D is similar to FIG. 14B except that a polymer layer 95 is formed between the passivation layer 5 and the bottommost end of the patterned metal layer 811 as the metal line or plane 81 .

请参阅图12D所示,其是与图12C相似,差别在于图12C仅有一静电放电防护电路44,而图12D则有两静电放电防护电路44、45,其中此静电放电防护电路45比如是一逆偏压二极管。在图12D中,静电放电防护电路44、45与内部电路20(包括21、22、23、24)均包括一电源节点和一接地节点,一外部电压Vdd是经由保护层5上的金属线路或平面81、保护层5的保护层开口511、512、514和保护层5下的细线路金属结构611、612a、612b、612c、614,输入到内部电路21、22、23、24的一电源节点Tp、Up、Vp、Wp,进而将外部电压Vdd分配至内部电路21、22、23、24的电源节点Tp、Up、Vp、Wp。此外,外部电压Vdd也经由保护层5上的金属线路或平面81、保护层5的保护层开口549、559和保护层5下的细线路金属结构649、659输入到静电放电防护电路44、45的一电源节点Dp、Dp’。另,一接地参考电压Vss是经由保护层5上的金属线路或平面82、保护层5的保护层开口521、522、524和保护层5下的细线路金属结构621、622a、622b、622c、624输入到内部电路21、22、23、24的一接地节点Ts、Us、Vs、Ws。此外,接地参考电压Vss也经由保护层5上的金属82、保护层5的保护层开口549’、559’和保护层5下的细线路金属结构649’、659’连接到静电放电防护电路44、45的一接地节点Dg、Dg’。Please refer to Fig. 12D, which is similar to Fig. 12C, the difference is that Fig. 12C has only one ESD protection circuit 44, while Fig. 12D has two ESD protection circuits 44, 45, wherein this ESD protection circuit 45 is, for example, a reverse biased diode. In FIG. 12D, the electrostatic discharge protection circuits 44, 45 and the internal circuit 20 (including 21, 22, 23, 24) all include a power supply node and a ground node, and an external voltage Vdd is passed through the metal line on the protective layer 5 or The plane 81, the protective layer openings 511, 512, 514 of the protective layer 5 and the thin line metal structures 611, 612a, 612b, 612c, 614 under the protective layer 5 are input to a power supply node of the internal circuit 21, 22, 23, 24 Tp, Up, Vp, Wp, and then distribute the external voltage Vdd to the power supply nodes Tp, Up, Vp, Wp of the internal circuits 21 , 22 , 23 , 24 . In addition, the external voltage Vdd is also input to the electrostatic discharge protection circuits 44, 45 via the metal lines or planes 81 on the protective layer 5, the protective layer openings 549, 559 of the protective layer 5, and the thin line metal structures 649, 659 under the protective layer 5. A power supply node Dp, Dp'. In addition, a ground reference voltage Vss is passed through the metal line or plane 82 on the protective layer 5, the protective layer openings 521, 522, 524 of the protective layer 5, and the thin line metal structures 621, 622a, 622b, 622c, 624 is input to a ground node Ts, Us, Vs, Ws of the internal circuits 21, 22, 23, 24. In addition, the ground reference voltage Vss is also connected to the electrostatic discharge protection circuit 44 via the metal 82 on the protective layer 5, the protective layer openings 549', 559' of the protective layer 5, and the thin line metal structures 649', 659' under the protective layer 5. , a ground node Dg, Dg' of 45 .

另本实施例的其它相关内容是与第一实施例、第二实施例以及第三实施例相同,都将在后续的图15是列、图16是列、图17是列、图18是列与图19是列中进一步详细说明。In addition, other relevant content of this embodiment is the same as that of the first embodiment, the second embodiment and the third embodiment, and will be listed in the subsequent Fig. 15, Fig. 16, Fig. 17, and Fig. 18 and Figure 19 is further detailed in the column.

此外,在第三实施例中叙述的重新配置线路也可适用在本发明的第一实施例与第四实施例上,也就是在第一实施例与第四实施例中,用来接受外部电压Vdd或接地参考电压Vss的接触接垫(例如图3B至图3D中的接触接垫8110、8120,图14B至图14D中的接触接垫8110、8120)也可利用重配置线路重新定位到一不同位置的接触接垫,使此不同位置的接触接垫位置与细线路金属结构的金属接垫(例如图3B至图3D中的金属接垫6190、6290,图14B至图14D中的金属接垫6490、6490’)位置不同,然后利用位于此不同位置的接触接垫上的一导线或凸块连接到外部电路。In addition, the reconfiguration circuit described in the third embodiment can also be applied to the first embodiment and the fourth embodiment of the present invention, that is, in the first embodiment and the fourth embodiment, it is used to accept external voltage Contact pads for Vdd or ground reference voltage Vss (eg contact pads 8110, 8120 in FIGS. 3B-3D , contact pads 8110, 8120 in FIGS. 14B-14D ) can also be relocated to a Contact pads at different positions, so that the positions of the contact pads at different positions are consistent with the metal pads of the thin line metal structure (such as the metal pads 6190, 6290 in FIGS. 3B to 3D, and the metal pads in FIGS. 14B to 14D). The pads 6490, 6490') are located in different positions, and then use a wire or bump on the contact pads in the different positions to connect to the external circuit.

保护层上方(over-paeeivation)结构的形成方法及其相关说明Formation method of over-paeeivation structure and related description

在本发明的所有实施例(第一实施例、第二实施例、第三实施例以及第四实施例)中,保护层上方(over-passivation)结构的主要特征在于:厚的图案化金属层(厚度介于2微米至200微米)以及厚的介电层(厚度介于2微米至300微米)。图15是列与图16是列分别公开一种浮凸(embossing)制程与一种双浮凸(doubleembossing)制程,其可用来制造本发明所有实施例中保护层上方的图案化金属层与介电层。在这两种制程(图15是列与图16是列)中,其是利用聚合物材料(polymermaterial)作为介电层,并形成在每一图案化金属层上、每一图案化金属层之间以及/或者是每一图案化金属层下。另外,图15是列与图16是列是以第三实施例中的图10E为基础,并以此作为范例说明本发明所有实施例形成保护层上方结构的方法。换言的,以下所叙述的方法以其相关说明可适用在本发明的所有实施例。In all embodiments of the invention (first, second, third and fourth embodiments), the over-passivation structure is mainly characterized by a thick patterned metal layer (thickness between 2 microns and 200 microns) and thick dielectric layers (thickness between 2 microns and 300 microns). FIG. 15 and FIG. 16 respectively disclose an embossing process and a double embossing process, which can be used to manufacture the patterned metal layer and interposer above the protective layer in all embodiments of the present invention. electrical layer. In these two processes (Fig. 15 is a row and Fig. 16 is a row), polymer material is used as a dielectric layer, and is formed on each patterned metal layer, between each patterned metal layer between and/or under each patterned metal layer. In addition, the columns in FIG. 15 and the columns in FIG. 16 are based on FIG. 10E in the third embodiment, and use it as an example to illustrate the methods for forming structures above the protective layer in all embodiments of the present invention. In other words, the methods described below and their related descriptions are applicable to all embodiments of the present invention.

形成保护层上方结构的制程是在集成电路晶圆(ICwafer)制程结束以后开始。请参阅图15A所示,其是公开出一种作为形成保护层上方结构的起始材料(startingmaterial),如图所示,形成保护层上方结构的制程是开始在一传统半导体制造厂(ICfab)制造完成的一集成电路晶圆10上,此晶圆10包括:The process of forming the structure above the protective layer starts after the IC wafer process is completed. Please refer to FIG. 15A, which discloses a starting material (starting material) for forming the structure above the protective layer. As shown in the figure, the process of forming the structure above the protective layer is started in a traditional semiconductor manufacturing plant (ICfab) On a manufactured integrated circuit wafer 10, this wafer 10 includes:

(一)基底(substrate)1(1) Substrate1

基底1通常是为一硅基底(siliconsubstrate),此硅基底可以是一本质(intrinsic)硅基底、一p型硅基底或是一n型硅基底。对于高性能的芯片,则是使用硅锗(SiGe)或绝缘层上覆硅(Silicon-On-Insulator,SOI)基底。其中,硅锗基底包括一硅锗附生层(epitaxiallayer)在硅基底的表面上,另绝缘层上覆硅基底则包括一绝缘层(较佳为氧化硅)在一硅基底上,且一硅或硅锗附生层形成在绝缘层上。The substrate 1 is usually a silicon substrate, and the silicon substrate can be an intrinsic silicon substrate, a p-type silicon substrate or an n-type silicon substrate. For high-performance chips, silicon-germanium (SiGe) or silicon-on-insulator (SOI) substrates are used. Wherein, the silicon germanium substrate includes a silicon germanium epitaxial layer (epitaxial layer) on the surface of the silicon substrate, and the silicon substrate on the insulating layer includes an insulating layer (preferably silicon oxide) on a silicon substrate, and a silicon Or the silicon germanium epigenetic layer is formed on the insulating layer.

(二)组件层(devicelayer)2(2) Component layer (device layer) 2

组件层2通常包括至少一半导体组件(semiconductordevice),且此组件层2是在基底1的表面内以及/或是表面上。其中,半导体组件可以是一金氧半晶体管(MOStransistor)2’,例如N型金氧半晶体管(NMOStransistor,n-channelMOStransistor)或P型金氧半晶体管(PMOStransistor,p-channelMOStransistor),且此金氧半晶体管2’包括一源极201、一漏极202与一栅极203,而栅极203通常是为一多晶硅(polysilicon)、一复晶金属硅化钨(tungstenpolycide)、一硅化钨(tungstensilicide)、一硅化钛(titaniumsilicide)、一钴化硅(cobaltsilicide)或一硅化物栅极(salicidegate)。另,半导体组件也可以是双载子晶体管(bipolartransistor)、扩散金属氧化物半导体(DiffusedMOS,DMOS)、横向扩散金属氧化物半导体(LateralDiffusedMOS,LDMOS)、电荷耦合组件(Charged-CoupledDevice,CCD)、互补式金属氧化物半导体(CMOS)感测组件、光敏二极管(photo-sensitivediode)、电阻组件(由于硅基底内的多晶硅层或扩散区所形成)。利用这些半导体组件可以形成各种电路,例如互补式金属氧化物半导体(CMOS)电路、N型金属氧化物半导体电路、P型金属氧化物半导体电路、双载子互补式金属氧化物半导体(BiCMOS)电路、互补式金属氧化物半导体传感器电路、扩散金属氧化物半导体电源电路、横向扩散金属氧化物半导体电路等。此外,组件层2也包括内部电路20(包括21、22、23、24)在所有实施例中,稳压器或变压器41在第一实施例中,芯片接外电路40(包括42、43)在第三实施例中,以及静电放电防护电路44在第四实施例中。The device layer 2 generally includes at least one semiconductor device, and the device layer 2 is in and/or on the surface of the substrate 1 . Wherein, the semiconductor component can be a metal oxide semitransistor (MOStransistor) 2', such as an N-type metal oxide semitransistor (NMOStransistor, n-channelMOStransistor) or a P-type metal oxide semitransistor (PMOStransistor, p-channelMOStransistor), and the metal oxide The half transistor 2' includes a source 201, a drain 202 and a gate 203, and the gate 203 is usually polysilicon, tungstenpolycide, tungstensilicide, A titanium silicide (titanium silicide), a cobalt silicide (cobalt silicide) or a silicide gate (salicide gate). In addition, the semiconductor component can also be bipolar transistor (bipolartransistor), diffused metal oxide semiconductor (DiffusedMOS, DMOS), lateral diffused metal oxide semiconductor (LateralDiffusedMOS, LDMOS), charge-coupled device (Charged-CoupledDevice, CCD), complementary Type Metal Oxide Semiconductor (CMOS) sensing components, photo-sensitive diodes (photo-sensitivediode), resistive components (formed due to the polysilicon layer or diffusion region in the silicon substrate). Various circuits can be formed using these semiconductor components, such as complementary metal oxide semiconductor (CMOS) circuits, N-type metal oxide semiconductor circuits, P-type metal oxide semiconductor circuits, bicarrier complementary metal oxide semiconductor (BiCMOS) circuit, complementary metal oxide semiconductor sensor circuit, diffused metal oxide semiconductor power supply circuit, lateral diffused metal oxide semiconductor circuit, etc. In addition, the component layer 2 also includes an internal circuit 20 (including 21, 22, 23, 24) in all embodiments, a voltage regulator or a transformer 41. In the first embodiment, the chip is connected to an external circuit 40 (including 42, 43) In the third embodiment, and the electrostatic discharge protection circuit 44 is in the fourth embodiment.

(三)细线路结构(fine-linescheme)6(3) Fine-line scheme 6

此细线路结构6包括复数细线路金属层(fine-linemetallayer)60、复数细线路介电层(fine-linedielectriclayer)30以及复数在细线路介电层30的开口30’内的导电栓塞(fine-lineviaplug)60’。另,细线路金属结构63包括细线路金属层60与导电栓塞60’,而此细线路金属结构63结构在本发明中包括:(1)细线路金属结构611、612(包括612a、612b与612c)、614、619、619’、621、622(包括622a、622b与622c)、624、629在第一实施例;(2)细线路金属结构631、632(包括632a、632b与632c)、634在第二实施例;(3)细线路金属结构631、632(包括632a、632b与632c)、634、639、639’在第三实施例;(4)细线路金属结构611、612(包括612a、612b与612c)、614、649、659、621、622(包括622a、622b与622c)、624、649’与659’在第四实施例。The fine-line structure 6 includes a plurality of fine-line metal layers (fine-line metal layer) 60, a plurality of fine-line dielectric layers (fine-line dielectric layer) 30, and a plurality of conductive plugs (fine-line dielectric layer) in the opening 30' of the fine-line dielectric layer 30. line via plug) 60'. In addition, the fine-line metal structure 63 includes the thin-line metal layer 60 and the conductive plug 60', and the structure of the thin-line metal structure 63 in the present invention includes: (1) the thin-line metal structures 611, 612 (including 612a, 612b and 612c ), 614, 619, 619', 621, 622 (including 622a, 622b and 622c), 624, 629 in the first embodiment; (2) fine line metal structures 631, 632 (including 632a, 632b and 632c), 634 In the second embodiment; (3) thin line metal structures 631, 632 (including 632a, 632b and 632c), 634, 639, 639' in the third embodiment; (4) thin line metal structures 611, 612 (including 612a , 612b and 612c), 614, 649, 659, 621, 622 (including 622a, 622b and 622c), 624, 649' and 659' are in the fourth embodiment.

细线路金属层60可以是铝层或铜层,或更具体来说,可以是以溅镀方式形成的铝层或者是以镶嵌方式形成的铜层。所以,细线路金属层60可以是:(1)所有的细线路金属层60均为铝层;(2)所有的细线路金属层60均为铜层;(3)底层的细线路金属层60为铝层,而顶层的细线路金属层60为铜层;或是(4)底层的细线路金属层60为铜层,而顶层的细线路金属层60为铝层。此外,每一细线路金属层60的厚度是介于0.05微米(μm)至2微米之间,而以介于0.2微米至1微米之间的厚度为较佳者,另细线路金属层60若为线路,则其横向设计标准(宽度)是介于20纳米(nano-meter)至15微米之间,并以介于20纳米至2微米之间为较佳者。The fine line metal layer 60 may be an aluminum layer or a copper layer, or more specifically, an aluminum layer formed by sputtering or a copper layer formed by damascene. Therefore, the thin line metal layer 60 can be: (1) all the thin line metal layers 60 are aluminum layers; (2) all the thin line metal layers 60 are copper layers; (3) the bottom thin line metal layer 60 or (4) the bottom metal layer 60 is a copper layer, and the top metal layer 60 is an aluminum layer. In addition, the thickness of each fine-line metal layer 60 is between 0.05 micron (μm) and 2 microns, preferably between 0.2 micron and 1 micron, and if the thin-line metal layer 60 is If it is a circuit, its lateral design standard (width) is between 20 nanometers (nano-meter) and 15 micrometers, and preferably between 20 nanometers and 2 micrometers.

在上述内容中,铝层通常是利用物理气相沉积(PhysicalVaporDeposition,PVD)的方式来形成,例如利用溅镀(sputtering)的方式来形成,接着通过沉积厚度介于0.1微米至4微米之间(较佳为介于0.3微米至2微米之间)的一光阻层对此铝层进行图案化,再来对此铝层进行一湿蚀刻(wetetching)或一干蚀刻(dryetching),较佳的方式是为干式电浆(dryplasma)蚀刻(通常包含氟电浆)。另,在铝层下可选择性形成一黏着/阻障层(adhesion/barrierlayer),其中此黏着/阻障层可以是钛、钛钨合金、氮化钛或者是上述材料所形成的复合层;而在铝层上也可选择性形成一抗反射层(例如氮化钛)。此外,开口30’可选择性以化学气相沉积(chemicalvapordeposition,CVD)钨金属的方式填满,接着再以化学机械研磨(chemicalmechanicalpolish,CMP)的方式研磨钨金属层,以形成金属栓塞60’。In the above content, the aluminum layer is usually formed by physical vapor deposition (Physical Vapor Deposition, PVD), for example, by sputtering (sputtering), and then deposited with a thickness between 0.1 microns and 4 microns (compared to A photoresist layer (preferably between 0.3 micron to 2 microns) is used to pattern the aluminum layer, and then perform a wet etching or a dry etching (dryetching) to the aluminum layer, preferably as Dry plasma (dryplasma) etching (usually including fluorine plasma). In addition, an adhesion/barrier layer (adhesion/barrier layer) can be selectively formed under the aluminum layer, wherein the adhesion/barrier layer can be titanium, titanium-tungsten alloy, titanium nitride or a composite layer formed of the above materials; An anti-reflection layer (such as titanium nitride) can also be selectively formed on the aluminum layer. In addition, the opening 30' can be selectively filled by chemical vapor deposition (CVD) tungsten metal, and then the tungsten metal layer is polished by chemical mechanical polish (CMP) to form the metal plug 60'.

另在上述内容中,铜层通常是利用电镀与镶嵌制程(damasceneprocess)的方式来形成,其叙述如下:(1)沉积一铜扩散阻障层(例如厚度介于0.05微米至0.25微米之间的氮氧化合物层或氮化物层);(2)利用电浆辅助化学气相沉积(plasmaenhancedCVD,PECVD)、旋转涂布(spin-oncoating)或高密度电浆化学气相沉积(HighDensityPlasmaCVD,HDPCVD)的方式沉积厚度介于0.1微米至2.5微米之间的一细线路介电层30,其中此细线路介电层30是以介于0.3微米至1.5微米之间的厚度为较佳者;(3)利用沉积厚度介于0.1微米至4微米之间的一光阻层来图案化细线路介电层30,其中光阻层的厚度又以介于0.3微米至2微米之间为较佳者,接着对此光阻层进行曝光与显影,使光阻层形成复数开口以及/或是复数沟渠,再来去除此光阻层;(4)利用溅镀或化学气相沉积的方式,沉积一黏着/阻障层与一种子层(seedlayer)。其中,此黏着/阻障层包括钽、氮化钽、氮化钛、钛或钛钨合金,或者是由上述材料所形成的一复合层。另外,此种子层通常是一铜层,而此铜层可以是利用溅镀铜金属、化学气相沉积铜金属,或者是先以化学气相沉积一铜金属,然后再溅镀一铜金属的方式形成;(5)电镀厚度介于0.05微米至2微米之间的一铜层在此种子层上,其中又以电镀铜层厚度介于0.2微米至1微米之间的一铜层为较佳者;(6)以研磨(较佳的方式为化学机械研磨)晶圆的方式去除未在细线路介电层30的开口或沟渠内的铜层、种子层以及黏着/阻障层,直至暴露出位于黏着/阻障层下的细线路介电层30为止。在经过化学机械研磨的后,仅剩下位于开口或沟渠内的金属,而剩下的金属则用来作为金属导体(线路或是平面)或导电栓塞60’(连接两相邻的细线路金属层60)。另外,也可利用一双镶嵌(double-damascene)制程,在一次电镀制程与一次化学机械研磨中同时形成导电栓塞60’以及金属线路或金属平面。两次微影(photolithography)制程与两次电镀制程是适用在双镶嵌制程上。双镶嵌制程在上述单次镶嵌制程中的图案化一介电层的步骤(3)与沉积金属层的步骤(4)间,增加更多沉积与图案化另一介电层的制程步骤。In addition, in the above content, the copper layer is usually formed by means of electroplating and damascene process, which is described as follows: (1) Deposit a copper diffusion barrier layer (such as a layer with a thickness between 0.05 micron and 0.25 micron) Nitride layer or nitride layer); (2) deposited by plasma-assisted chemical vapor deposition (plasmaenhancedCVD, PECVD), spin-oncoating (spin-oncoating) or high-density plasma chemical vapor deposition (HighDensityPlasmaCVD, HDPCVD) A thin line dielectric layer 30 with a thickness between 0.1 micron and 2.5 microns, wherein the thin line dielectric layer 30 is preferably between 0.3 micron and 1.5 micron; (3) by depositing A photoresist layer with a thickness between 0.1 micron and 4 microns is used to pattern the fine line dielectric layer 30, wherein the thickness of the photoresist layer is preferably between 0.3 micron and 2 microns, and then Expose and develop the photoresist layer to form multiple openings and/or multiple trenches on the photoresist layer, and then remove the photoresist layer; (4) Deposit an adhesion/barrier layer and A seed layer (seedlayer). Wherein, the adhesion/barrier layer includes tantalum, tantalum nitride, titanium nitride, titanium or titanium-tungsten alloy, or a composite layer formed of the above materials. In addition, the seed layer is usually a copper layer, and the copper layer can be formed by sputtering copper metal, chemical vapor deposition of copper metal, or first depositing a copper metal by chemical vapor phase, and then sputtering a copper metal. (5) Electroplating a copper layer with a thickness between 0.05 micron and 2 microns on the seed layer, wherein a copper layer with an electroplated copper layer thickness between 0.2 micron and 1 micron is preferred; (6) Remove the copper layer, seed layer and adhesion/barrier layer that are not in the openings or trenches of the thin-line dielectric layer 30 by grinding (preferably chemical mechanical grinding) the wafer until exposed The fine line dielectric layer 30 under the adhesion/barrier layer. After chemical mechanical polishing, only the metal in the opening or trench remains, and the remaining metal is used as a metal conductor (line or plane) or a conductive plug 60' (connecting two adjacent thin line metal layer 60). In addition, a double-damascene process can also be used to simultaneously form the conductive plug 60' and the metal lines or metal planes in one electroplating process and one chemical mechanical polishing process. Two photolithography processes and two electroplating processes are applicable to the dual damascene process. The dual damascene process adds more process steps of depositing and patterning another dielectric layer between the step (3) of patterning a dielectric layer and the step (4) of depositing a metal layer in the above single damascene process.

细线路介电层30是利用化学气相沉积、电浆辅助化学气相沉积、高密度电浆化学气相沉积或旋涂(spin-on)的方式形成。细线路介电层30的材质包括氧化硅(siliconoxide)、氮化硅(siliconnitride)、氮氧化硅(siliconoxynitride)、以电浆辅助化学气相沉积形成的四乙氧基硅烷(PECVDTEOS)、旋涂玻璃(SOG,硅氧化物或硅氧烷基)、氟硅玻璃(FluorinatedSilicateGlass,FSG)或一低介电常数(low-K)材质,例如黑钻石薄膜(BlackDiamond,其是为AppliedMaterials的产品,公司译名为应用材料公司)、ULKCORAL(为Novellus公司的产品)或SiLK(IBM公司)的低介电常数的介电材质。以电浆辅助化学气相沉积形成的氧化硅、以电浆辅助化学气相沉积形成的四乙氧基硅烷或以高密度电浆形成的氧化物具有介于3.5至4.5之间的介电常数K;以电浆辅助化学气相沉积形成的氟硅玻璃或以高密度电浆形成的氟硅玻璃具有介于3.0至3.5之间的介电常数值,而低介电常数介电材料则具有介于1.5至3.5之间的介电常数值。低介电常数介电材料,例如黑钻石薄膜,其是为多孔性,并包括有氢、碳、硅与氧,其分子式为HwCxSiyOz。此细线路介电层30通常包括无机材料(inorganicmaterial),用以达到厚度大于2微米。每一细线路介电层30的厚度是介于0.05微米至2微米之间。另,细线路介电层30内的开口30’是利用湿蚀刻或干蚀刻的方式蚀刻图案化光阻层形成,其中较佳的蚀刻方式是为干蚀刻。干蚀刻种类包括氟电浆(fluorineplasma)。The thin line dielectric layer 30 is formed by chemical vapor deposition, plasma assisted chemical vapor deposition, high density plasma chemical vapor deposition or spin-on. The thin line dielectric layer 30 is made of silicon oxide, silicon nitride, silicon oxynitride, PECVDTEOS formed by plasma-assisted chemical vapor deposition, spin-on-glass (SOG, silicon oxide or siloxane-based), fluorosilicate glass (FluorinatedSilicateGlass, FSG) or a low dielectric constant (low-K) material, such as black diamond film (BlackDiamond, which is a product of AppliedMaterials, the company's translation name Applied Materials), ULKCORAL (a product of Novellus) or SiLK (IBM) is a dielectric material with a low dielectric constant. Silicon oxide formed by plasma-assisted chemical vapor deposition, tetraethoxysilane formed by plasma-assisted chemical vapor deposition, or oxide formed by high-density plasma has a dielectric constant K between 3.5 and 4.5; Fluoro-silicate glass formed by plasma-assisted chemical vapor deposition or high-density plasma has a dielectric constant value between 3.0 and 3.5, while low-k dielectric materials have a dielectric constant value between 1.5 Dielectric constant values between to 3.5. Low-k dielectric materials, such as black diamond films, are porous and contain hydrogen, carbon, silicon, and oxygen, and their molecular formula is HwCxSiyOz. The fine-line dielectric layer 30 usually includes inorganic materials to achieve a thickness greater than 2 microns. The thickness of each fine-line dielectric layer 30 is between 0.05 microns and 2 microns. In addition, the opening 30' in the thin line dielectric layer 30 is formed by etching the patterned photoresist layer by wet etching or dry etching, wherein the preferred etching method is dry etching. Types of dry etching include fluorine plasma.

(四)保护层(passivationlayer)5(4) Passivation layer 5

保护层5在本发明中扮演着非常重要的角色。保护层5在集成电路产业中是为一个重要的组成部分,如1990年由S.Wolf着,并由LatticePress所发行的“SiliconProcessingintheVLSIera”第2册所述,保护层5在集成电路制程中是被定义作为最终层,并沉积在晶圆的整体上表面上。保护层5是为一绝缘、保护层,可以防止在组装与封装期间所造成的机械与化学伤害。除了防止机械刮痕的外,保护层5也可以防止移动离子(mobileion),比如是钠(sodium)离子,以及过渡金属(transitionmetal),比如是金、铜,穿透进入至下方的集成电路组件。另外,保护层5也可以保护下方的组件与连接线路(细线路金属结构与细线路介电层)免在受到水气(moisture)的侵入。The protective layer 5 plays a very important role in the present invention. The protective layer 5 is an important component in the integrated circuit industry. As described in Volume 2 of "Silicon Processing in the VLSIera" written by S.Wolf in 1990 and issued by LatticePress, the protective layer 5 is used in the integrated circuit manufacturing process. Defined as the final layer and deposited on the bulk upper surface of the wafer. The protective layer 5 is an insulating and protective layer, which can prevent mechanical and chemical damage during assembly and packaging. In addition to preventing mechanical scratches, the protective layer 5 can also prevent mobile ions, such as sodium ions, and transition metals, such as gold and copper, from penetrating into the underlying integrated circuit components . In addition, the protection layer 5 can also protect the underlying components and connection lines (fine-line metal structure and thin-line dielectric layer) from moisture intrusion.

保护层5通常包括一氮化硅(siliconnitride)层以及/或是一氮氧化硅(siliconoxynitride)层,且其厚度是介于0.2微米至1.5微米之间,并以介于0.3微米至1.0微米之间的厚度为较佳者。其它使用在保护层5的材料则有以电浆辅助化学气相沉积形成的氧化硅、电浆加强型二氧化四乙基正硅酸盐(plasma-enhancedtetraethylorthosilicate,PETEOS)的氧化物、磷硅玻璃(phosphosilicateglass,PSG)、硼磷硅玻璃(borophosphosilicateglass,BPSG)、以高密度电浆(HDP)形成的氧化物。接着,叙述保护层5由复合层组成的一些范例,其底部至顶部的顺序是为:(1)厚度介于0.1微米至1.0微米之间(较佳厚度则介于0.3微米至0.7微米之间)的氧化物/厚度介于0.25微米至1.2微米之间(较佳厚度则介于0.35微米至1.0微米之间)的氮化硅,这种型式的保护层5通常是覆盖在以铝形成的金属连接线路上,其中以铝形成的金属连接线路通常包括溅镀铝与蚀刻铝的制程;(2)厚度介于0.05微米至0.35微米(较佳厚度则介于0.1微米至0.2微米之间)的氮氧化合物/厚度介于0.2微米至1.2微米(较佳厚度则介于0.1微米至0.2微米之间)的氧化物/厚度介于0.2微米至1.2微米(较佳厚度则介于0.3微米至0.5微米之间)的氮化物/厚度介于0.2微米至1.2微米(较佳厚度则介于0.3微米至0.6微米之间)的氧化物,这种型式的保护层5通常是覆盖在以铜形成的金属连接线路上,其中以铜形成的金属连接线路通常包括电镀、化学机械研磨与镶嵌制程。另,上述两范例中的氧化物层可以是利用电浆辅助化学气相沉积形成的氧化硅、电浆加强型二氧化四乙基正硅酸盐(plasma-enhancedtetraethylorthosilicate,PETEOS)的氧化物、利用高密度电浆形成的氧化物。以上之内容是适用在本发明的所有实施例(第一实施例、第二实施例、第三实施例与第四实施例)中。The protective layer 5 usually includes a silicon nitride (siliconnitride) layer and/or a silicon oxynitride (siliconoxynitride) layer, and its thickness is between 0.2 microns to 1.5 microns, and is between 0.3 microns to 1.0 microns. The thickness between is better. Other materials used in the protective layer 5 include silicon oxide formed by plasma-assisted chemical vapor deposition, plasma-enhanced tetraethylorthosilicate (Plasma-enhancedtetraethylorthosilicate, PETEOS) oxide, phosphosilicate glass ( phosphosilicateglass, PSG), borophosphosilicateglass (BPSG), oxide formed by high-density plasma (HDP). Next, describe some examples that the protective layer 5 is composed of composite layers, the order from the bottom to the top is: (1) the thickness is between 0.1 micron and 1.0 micron (the preferred thickness is then between 0.3 micron and 0.7 micron) ) oxide/silicon nitride with a thickness between 0.25 microns and 1.2 microns (preferably between 0.35 microns and 1.0 microns), this type of protective layer 5 is usually covered with aluminum On the metal connection lines, the metal connection lines formed of aluminum usually include the processes of sputtering aluminum and etching aluminum; (2) the thickness is between 0.05 microns and 0.35 microns (the preferred thickness is between 0.1 microns and 0.2 microns) Nitrogen compound/thickness between 0.2 micron and 1.2 micron (preferably between 0.1 micron and 0.2 micron) oxide/thickness between 0.2 micron and 1.2 micron (preferable thickness between 0.3 micron and between 0.5 microns)/oxide with a thickness between 0.2 microns and 1.2 microns (preferably between 0.3 microns and 0.6 microns), this type of protective layer 5 is usually covered with copper On the metal connection lines, the metal connection lines formed of copper usually include electroplating, chemical mechanical polishing and damascene processes. In addition, the oxide layers in the above two examples can be silicon oxide formed by plasma-assisted chemical vapor deposition, oxides of plasma-enhanced tetraethylorthosilicate (PETEOS), or oxides using high Density plasma formed oxide. The above content is applicable to all the embodiments (the first embodiment, the second embodiment, the third embodiment and the fourth embodiment) of the present invention.

保护层开口50是利用湿蚀刻或干蚀刻的方式形成,其中又以干蚀刻为较佳方式。在本发明中,保护层开口50包括:(1)保护层开口511、512、514、519、519’、521、522、524以及529在第一实施例中;(2)保护层开口531、532以及534在第二实施例中;(3)保护层开口531、532、534、539以及539’在第三实施例中;(4)保护层开口511、512、514、549、521、522、524、549’、559以及559’在第四实施例中。此外,保护层开口50的尺寸是介于0.1微米至200微米之间,并以介于1微米至100微米之间或5微米至30微米之间为较佳者,另保护层开口50的形状可以是圆形、正方形、长方形或多边形,所以上述保护层开口50的尺寸是指圆形的直径尺寸、正方形的边长尺寸、多边形的最长对角线尺寸或长方形的宽度尺寸,其中长方形的长度尺寸则是介于1微米至1厘米,并以介于5微米至200微米为较佳者。对于内部电路而言,其保护层开口531、532、534的尺寸是介于0.1微米至100微米之间,并以介于0.3微米至30微米之间为较佳者,对于稳压器或变压器41的保护层开口519、519’、529或对于芯片接外电路42、43的保护层开口539、539’或对于静电放电防护电路44的保护层开口549、549’、559、559’而言,开口的尺寸较大,其范围是介于1微米至150微米之间,并以介于5微米至100微米之间为较佳者。另外,保护层开口50暴露出细线路金属层60最上层的金属接垫(metalpad),用以电性连接保护层上方(over-passivation)的金属线路或平面。The protection layer opening 50 is formed by wet etching or dry etching, wherein dry etching is a preferred method. In the present invention, the protective layer opening 50 includes: (1) protective layer openings 511, 512, 514, 519, 519', 521, 522, 524 and 529 in the first embodiment; (2) protective layer openings 531, 532 and 534 in the second embodiment; (3) protective layer openings 531, 532, 534, 539 and 539' in the third embodiment; (4) protective layer openings 511, 512, 514, 549, 521, 522 , 524, 549', 559 and 559' in the fourth embodiment. In addition, the size of the protective layer opening 50 is between 0.1 micron and 200 microns, preferably between 1 micron and 100 microns or between 5 microns and 30 microns, and the shape of the protective layer opening 50 can be It is circular, square, rectangular or polygonal, so the size of the above-mentioned protective layer opening 50 refers to the diameter of the circle, the side length of the square, the longest diagonal of the polygon or the width of the rectangle, wherein the length of the rectangle The size is between 1 micron and 1 cm, preferably between 5 microns and 200 microns. For internal circuits, the size of the protective layer openings 531, 532, 534 is between 0.1 micron and 100 microns, preferably between 0.3 micron and 30 microns, for voltage regulators or transformers 41's protective layer openings 519, 519', 529 or for the protective layer openings 539, 539' of the chip-connected external circuits 42, 43 or for the protective layer openings 549, 549', 559, 559' of the electrostatic discharge protection circuit 44 , the size of the opening is relatively large, ranging from 1 micron to 150 microns, preferably 5 microns to 100 microns. In addition, the protection layer opening 50 exposes the uppermost metal pad of the fine line metal layer 60 for electrically connecting the metal circuit or plane over-passivation of the protection layer.

一芯片10,例如硅晶圆(siliconwafer),是使用不同世代的集成电路制程技术来制造,例如1微米、0.8微米、0.6微米、0.5微米、0.35微米、0.25微米、0.18微米、0.25微米、0.13微米、90纳米(nm)、65纳米、45纳米、35纳米、25纳米技术,而这些集成电路制程技术的世代是以金氧半晶体管2’的栅极长度(gatelength)或有效通道长度(channellength)来定义。另,晶圆10的尺寸大小比如是5时、6时、8时、12时或18时等。晶圆10是使用微影制程来制作,此微影制程包含涂布(coating)、曝光(exposing)以及显影(developing)光阻。用在制作晶圆10的光阻,其厚度是介于0.1微米至0.4微米之间,并以五倍(5X)步进曝光机(stepper)或扫描机(scanner)曝光此光阻。其中,步进曝光机的倍数是指当光束从一光罩(通常是以石英构成)投影至晶圆上时,光罩上的图形缩小于晶圆上的比例,而五倍(5X)即是指光罩上的图案比例是为晶圆上的图案比例的五倍。使用在先进世代的集成电路制程技术上的扫描机,通常是以四倍(4X)尺寸比例缩小来改善分辨率。步进曝光机或扫描机所使用的光束波长是为436纳米(g-line)、365纳米(i-line)、248纳米(深紫外光,DUV)、193纳米(DUV)、157纳米(DUV)或13.5纳米(极短紫外光,EUV)。另,高索引侵润式(high-indeximmersion)微影技术也可用以完成晶圆10的细线路特征。A chip 10, such as a silicon wafer (silicon wafer), is manufactured using different generations of integrated circuit process technology, such as 1 micron, 0.8 micron, 0.6 micron, 0.5 micron, 0.35 micron, 0.25 micron, 0.18 micron, 0.25 micron, 0.13 micron Micron, 90 nanometer (nm), 65 nanometer, 45 nanometer, 35 nanometer, 25 nanometer technology, and the generation of these integrated circuit process technologies is based on the gate length (gatelength) or effective channel length (channellength) of the metal oxide semiconductor transistor 2' ) to define. In addition, the size of the wafer 10 is, for example, 5 o'clock, 6 o'clock, 8 o'clock, 12 o'clock, or 18 o'clock. The wafer 10 is fabricated using a lithography process including coating, exposing and developing photoresist. The thickness of the photoresist used to fabricate the wafer 10 is between 0.1 μm and 0.4 μm, and the photoresist is exposed by a 5X stepper or scanner. Among them, the multiple of the stepper means that when the light beam is projected from a mask (usually made of quartz) onto the wafer, the figure on the mask is reduced to the ratio of the wafer, and five times (5X) is It means that the proportion of the pattern on the mask is five times that of the pattern on the wafer. Scanners used in the advanced generation of integrated circuit process technology are usually scaled down by four times (4X) to improve the resolution. The beam wavelengths used by steppers or scanners are 436 nm (g-line), 365 nm (i-line), 248 nm (deep ultraviolet, DUV), 193 nm (DUV), 157 nm (DUV ) or 13.5 nm (extremely short ultraviolet, EUV). In addition, high-index immersion (high-index immersion) lithography technology can also be used to complete the thin circuit features of the wafer 10 .

此外,晶圆10是在具有等级10(class10)或更佳(例如等级1)的无尘室(cleanroom)中制作。等级10的无尘室允许每立方英呎的最大灰尘粒子数目是为:含有大于或等于1微米的灰尘粒子不超过1颗、含有大于或等于0.5微米的灰尘粒子不超过10颗、含有大于或等于0.3微米的灰尘粒子不超过30颗、含有大于或等于0.2微米的灰尘粒子不超过75颗、含有大于或等于0.1微米的灰尘粒子不超过350颗,而等级1的无尘室则允许每立方英呎的最大灰尘粒子数目是为:含有大于或等于0.5微米的灰尘粒子不超过1颗、含有大于或等于0.3微米的灰尘粒子不超过3颗、含有大于或等于0.2微米的灰尘粒子不超过7颗、含有大于或等于0.1微米的灰尘粒子不超过35颗。In addition, the wafer 10 is fabricated in a clean room with class 10 or better (eg, class 1). The maximum number of dust particles per cubic foot allowed in a class 10 clean room is: no more than 1 dust particle greater than or equal to 1 micron, no more than 10 dust particles greater than or equal to 0.5 micron, no more than 10 dust particles greater than or equal to No more than 30 dust particles equal to 0.3 microns, no more than 75 dust particles greater than or equal to 0.2 microns, no more than 350 dust particles greater than or equal to 0.1 microns, and the clean room of level 1 allows per cubic meter The maximum number of dust particles per foot is: no more than 1 dust particle greater than or equal to 0.5 microns, no more than 3 dust particles greater than or equal to 0.3 microns, no more than 7 dust particles greater than or equal to 0.2 microns particles, containing no more than 35 dust particles greater than or equal to 0.1 micron.

请参阅图15B所示,当使用铜作为细线路金属层60时,则需要使用一金属顶层(metalcap)66(包括661、662、664、669与669’)来保护保护层开口50所暴露出的铜接垫(copperpad),使此铜接垫免在受到氧化而侵蚀损坏,并可作为后续芯片的打线接合。此金属顶层66包括一铝(aluminum)层、一金(gold)层、一钛(Ti)层、一钛钨合金层、一钽(Ta)层、一氮化钽(TaN)层或一镍(Ni)层。其中,当金属顶层66是为一铝层时,则在铜接垫与金属顶层66之间形成有一阻障层(barrierlayer),而此阻障层包括钛、钛钨合金、氮化钛、钽、氮化钽、铬(Cr)或镍。在本发明的所有实施例中,晶圆10可选择性形成金属顶层66。Please refer to FIG. 15B , when copper is used as the fine line metal layer 60, a metal cap 66 (including 661, 662, 664, 669 and 669') is required to protect the exposed part of the protective layer opening 50. The copper pad (copperpad) protects the copper pad from corrosion and damage due to oxidation, and can be used as a wire bond for subsequent chips. The metal top layer 66 includes an aluminum (aluminum) layer, a gold (gold) layer, a titanium (Ti) layer, a titanium-tungsten alloy layer, a tantalum (Ta) layer, a tantalum nitride (TaN) layer or a nickel (Ni) layer. Wherein, when the metal top layer 66 is an aluminum layer, a barrier layer (barrier layer) is formed between the copper pad and the metal top layer 66, and the barrier layer includes titanium, titanium-tungsten alloy, titanium nitride, tantalum , tantalum nitride, chromium (Cr) or nickel. In all embodiments of the present invention, wafer 10 may optionally be formed with metal top layer 66 .

请参阅图15C至图15K所示,其是公开出在如图15A或图15B所示的晶圆10上制造一保护层上方结构(over-passivationscheme)8的制程步骤,其中此制程步骤在保护层上方形成两层图案化金属层,并利用此二图案化金属层连接内部电路与连接芯片接外电路。惟,虽然此范例只公开出保护层上方具有两层图案化金属层,但也可以使用与图15C至图15K所叙的相同或相似的方式,在保护层上方形成一层图案化金属层、三层图案化金属层、四层图案化金属层或者是更多层的图案化金属层。另外,以下所叙述之内容是适用在本发明的所有实施例中。Please refer to FIG. 15C to FIG. 15K, which disclose the process steps of manufacturing a protective layer upper structure (over-passivationscheme) 8 on the wafer 10 as shown in FIG. 15A or FIG. Two patterned metal layers are formed on the upper layer, and the two patterned metal layers are used to connect the internal circuit and connect the chip to the external circuit. However, although this example only discloses that there are two patterned metal layers above the protective layer, it is also possible to form a patterned metal layer, Three patterned metal layers, four patterned metal layers or more patterned metal layers. In addition, the content described below is applicable to all embodiments of the present invention.

首先请参阅图15K所示,一保护层上方结构8形成在一起始材料(startingmaterial)上,此起始材料是为一半导体制造厂所制作的一晶圆10(如图15A或图15B所示)。另,保护层上方结构8包括有图案化金属层80以及聚合物层(或绝缘层)90两部份,其中图案化金属层80包括一层、两层、三层、四层或更多层的金属层,而且此图案化金属层80可以比如是除了最顶层的图案化金属层为金层的外,其余都为铜层及其黏着/阻障层(例如铬或钛钨合金)。First please refer to shown in FIG. 15K, a structure 8 above a protective layer is formed on a starting material (starting material), and this starting material is a wafer 10 made for a semiconductor manufacturing plant (as shown in FIG. 15A or FIG. 15B ). In addition, the structure 8 above the protective layer includes two parts: a patterned metal layer 80 and a polymer layer (or insulating layer) 90, wherein the patterned metal layer 80 includes one, two, three, four or more layers metal layer, and the patterned metal layer 80 can be, for example, copper layer and its adhesion/barrier layer (such as chrome or titanium-tungsten alloy) except the topmost patterned metal layer is a gold layer.

本发明的所有实施例是以图案化金属层80包括一层或两层图案化金属层作为范例,其是包括:All embodiments of the present invention are exemplified by the patterned metal layer 80 comprising one or two patterned metal layers, which include:

(一)图案化金属层801,包括(1)811与821在第一实施例中;(2)831(包括831a、831b)在第二实施例中;(3)83r、831(包括831a、831b)在第三实施例中;以及(4)811与821在第四实施例中。(1) Patterned metal layer 801, including (1) 811 and 821 in the first embodiment; (2) 831 (including 831a, 831b) in the second embodiment; (3) 83r, 831 (including 831a, 831b) in the third embodiment; and (4) 811 and 821 in the fourth embodiment.

(二)图案化金属层802,包括(1)812在第一实施例中;(2)832在第二实施例中;(3)832(包括832a、832b)在第三实施例中;以及(4)812在第四实施例中。(2) patterned metal layer 802, including (1) 812 in the first embodiment; (2) 832 in the second embodiment; (3) 832 (including 832a, 832b) in the third embodiment; and (4) 812 in the fourth embodiment.

另,图案化金属层80的材质包括金、银、铜、钯、铂、铑、钌、镍,而构成金属线路或平面的图案化金属层80通常是由金属堆栈而成的复合层。在图15K中,图案化金属层801与图案化金属层802均是一复合层,其中复合层的底层是为一黏着/阻障/种子层(adhesion/barrier/seedlayer)8011、8021,其是包括:(1)8111、8121与8211在第一实施例中;(2)8311、8311a、8311b与8321在第二实施例中;(3)8311、8311a、8311b、8321a与8321b在第三实施例中;以及(4)8111、8211与8121在第四实施例中;另,复合层的顶层是为一厚金属层8012、8022,其是包括:(1)8112、8122与8212在第一实施例中;(2)8312、8312a、8312b与8322在第二实施例中;(3)8312、8312a、8312b、8322a与8322b在第三实施例中;以及(4)8112、8212与8122在第四实施例中。In addition, the material of the patterned metal layer 80 includes gold, silver, copper, palladium, platinum, rhodium, ruthenium, nickel, and the patterned metal layer 80 constituting the metal circuit or plane is usually a composite layer formed by stacking metals. In FIG. 15K, the patterned metal layer 801 and the patterned metal layer 802 are both a composite layer, wherein the bottom layer of the composite layer is an adhesion/barrier/seed layer (adhesion/barrier/seedlayer) 8011, 8021, which are Including: (1) 8111, 8121 and 8211 in the first embodiment; (2) 8311, 8311a, 8311b and 8321 in the second embodiment; (3) 8311, 8311a, 8311b, 8321a and 8321b in the third embodiment and (4) 8111, 8211 and 8121 in the fourth embodiment; in addition, the top layer of the composite layer is a thick metal layer 8012, 8022, which is composed of: (1) 8112, 8122 and 8212 in the first In the embodiment; (2) 8312, 8312a, 8312b and 8322 in the second embodiment; (3) 8312, 8312a, 8312b, 8322a and 8322b in the third embodiment; and (4) 8112, 8212 and 8122 in the In the fourth embodiment.

在上述内容中,黏着/阻障/种子层8011、8021包括一黏着/阻障层(图中未示)以及位于黏着/阻障层上的一种子(seed)层(图中未示),其中此黏着/阻障层的材质可以是钛、钨、钴、镍、氮化钛、钛钨合金、钒、铬、铜、铬铜合金、钽、氮化钽、上述材质所形成的合金或是由上述材质所组成的复合层。另,黏着/阻障层可以利用电镀(electroplating)、无电电镀(electrolessplating)、化学气相沉积或物理气相沉积(例如溅镀)的方式形成,其中又以物理气相沉积为较佳的形成方式,例如金属溅镀制程。另,此黏着/阻障层的厚度是介于0.02微米至0.8微米之间,并以介于0.05微米至0.2微米之间的厚度为较佳者。In the above content, the adhesion/barrier/seed layer 8011, 8021 includes an adhesion/barrier layer (not shown in the figure) and a seed (seed) layer (not shown in the figure) on the adhesion/barrier layer, The material of the adhesion/barrier layer can be titanium, tungsten, cobalt, nickel, titanium nitride, titanium-tungsten alloy, vanadium, chromium, copper, chrome-copper alloy, tantalum, tantalum nitride, an alloy formed of the above materials or It is a composite layer composed of the above materials. In addition, the adhesion/barrier layer can be formed by means of electroplating, electroless plating, chemical vapor deposition or physical vapor deposition (such as sputtering), among which physical vapor deposition is a preferred formation method, Such as metal sputtering process. In addition, the thickness of the adhesion/barrier layer is between 0.02 micron and 0.8 micron, and preferably between 0.05 micron and 0.2 micron.

黏着/阻障/种子层8011、8021顶层的种子层可有利于后续的电镀制程,而且种子层通常是利用物理气相沉积或溅镀制程的方式来形成。此外,用在种子层的材质可以是金、铜、银、镍、钯、铑、铂或钌,而且通常是与后续电镀制程中的厚金属层材质相同。另,种子层可以利用电镀、无电电镀、化学气相沉积或物理气相沉积(例如溅镀)的方式形成,其中又以物理气相沉积为较佳的形成方式,例如金属溅镀制程。种子层的厚度是介于0.05微米至1.2微米之间,而以介于0.05微米至0.8微米之间的厚度为较佳者。The seed layer on top of the adhesion/barrier/seed layer 8011, 8021 is beneficial to the subsequent electroplating process, and the seed layer is usually formed by physical vapor deposition or sputtering process. In addition, the material used in the seed layer can be gold, copper, silver, nickel, palladium, rhodium, platinum or ruthenium, and is usually the same material as the thick metal layer in the subsequent electroplating process. In addition, the seed layer can be formed by means of electroplating, electroless plating, chemical vapor deposition or physical vapor deposition (such as sputtering), wherein physical vapor deposition is a preferred formation method, such as a metal sputtering process. The thickness of the seed layer is between 0.05 micron and 1.2 micron, preferably between 0.05 micron and 0.8 micron.

厚金属层8012、8022是以低电阻导体形成,而且通常是利用电镀方式形成,此外,厚金属层8012、8022的厚度通常是介于0.5微米至100微米之间,并以介于3微米至20微米之间的厚度为较佳者,而厚金属层8012、8022的材质可以是金、铜、银、镍、钯、铑、铂或钌,其中金、银、钯、铑、铂或钌的较佳厚度是介于1.5微米至15微米之间,铜的较佳厚度是介于1.5微米至50微米之间,而镍的较佳厚度则是介于0.5微米至6微米之间。另,也可选择性形成一防护/阻障(cap/barrier)层(图中未示)在厚金属层8012、8022上,作为保护或扩散阻障的用。此防护/阻障层可以利用电镀、无电电镀、化学气相沉积或物理气相沉积(例如溅镀)的方式形成,并以电镀方式沉积形成为较佳者。另,防护/阻障层的厚度是介于0.05微米至5微米之间的范围,其中又以介于0.5微米至3微米之间的厚度为较佳者。此防护/阻障层可以是一镍层、钴层或是钒层。此外,在组装(assembly)或封装上,可选择性形成一组装接触(assembly-contact)层(图中未示)在厚金属层8012、8022或防护/阻障层(图中未示)上,特别是形成在图案化金属层80最顶层的厚金属层或防护/阻障层(图中未示)上。此组装接触层可以作为打线接合或者是作为焊料助湿剂(solderwettable),进而用来打线(wirebonding)、金连接(goldconnection)、焊料球焊接(solderballmounting)或焊接(solderconnection)。另,组装接触层可以是金、银、铂、钯、铑或钌。顶端聚合物层(polymerlayer)99内的聚合物层开口990(包括9919与9929在第一实施例中;9939与9939’在第三实施例中;以及9949与9949’在第四实施例中)暴露出位于最顶端的图案化金属层80的接触接垫(contactpad)8000(包括8110与8120在第一实施例中;8310与8320在第三实施例中;以及8110与8120在第四实施例中)表面。连接到聚合物层开口990所暴露出的组装接触层可以是一打线导线(bondingwire)、一焊料球(以电镀形成的焊料球或以焊接方式连接一焊料球)、一金属球(比如是以电镀形成的锡银合金或以焊接方式连接一锡银合金)、在其它基底或芯片上的一金属凸块(metalbump)、在其它基底或芯片上的一金凸块(goldbump)、在其它基底或芯片上的一金属柱(metalpost)或者是在其它基底或芯片上的一铜柱(copperpost)。对于以溅镀形成的铝或是以电镀形成的铜(利用化学机械研磨镶嵌制程形成)所制成的集成电路接触接垫(contactpad),保护层上方的金属线路或平面可以是下列所述的其中一种型式,由下到上分别是:(1)钛钨合金/以溅镀形成的金材质的种子层/以电镀形成的金;(2)钛/以溅镀形成的金材质的种子层/以电镀形成的金;(3)钽/以溅镀形成的金材质的种子层/以电镀形成的金;(4)铬/以溅镀形成的铜材质的种子层/以电镀形成的铜;(5)钛钨合金/以溅镀形成的铜材质的种子层/以电镀形成的铜;(6)钽/以溅镀形成的铜材质的种子层/以电镀形成的铜;(7)钛/以溅镀形成的铜材质的种子层/以电镀形成的铜;(8)铬、钛钨合金、钛或钽/以溅镀形成的铜材质的种子层/以电镀形成的铜/以电镀形成的镍;(9)铬、钛钨合金、钛或钽/以溅镀形成的铜材质的种子层/以电镀形成的铜/以电镀形成的镍/以电镀形成的金、银、铂、钯、铑或钌;以及(10)铬、钛钨合金、钛或钽/以溅镀形成的铜材质的种子层/以电镀形成的铜/以电镀形成的镍/以无电电镀形成的金、银、铂、钯、铑或钌。每一图案化金属层80的厚度是介于2微米至50微米之间,并以介于3微米至20微米之间的厚度为较佳厚度,另图案化金属层80若是金属线路,则其横向设计标准(宽度)是介于1微米至200微米之间,并以介于2微米至50微米之间为较佳者,而图案化金属层80若是金属平面,特别是作为电源或接地参考电压平面,其横向设计标准(宽度)则是以大于200微米为较佳者。此外,两相邻的金属线路或平面的最小距离是介于1微米至500微米之间,并以介于2微米至150微米之间为较佳者。The thick metal layers 8012, 8022 are formed of low-resistance conductors, and are usually formed by electroplating. In addition, the thickness of the thick metal layers 8012, 8022 is usually between 0.5 microns and 100 microns, and the thickness is between 3 microns and 100 microns. The thickness between 20 microns is preferred, and the material of the thick metal layer 8012, 8022 can be gold, copper, silver, nickel, palladium, rhodium, platinum or ruthenium, wherein gold, silver, palladium, rhodium, platinum or ruthenium The preferred thickness of copper is between 1.5 microns and 15 microns, the preferred thickness of copper is between 1.5 microns and 50 microns, and the preferred thickness of nickel is between 0.5 microns and 6 microns. In addition, a cap/barrier layer (not shown) can also be optionally formed on the thick metal layers 8012, 8022 for protection or diffusion barrier. The protective/barrier layer can be formed by electroplating, electroless plating, chemical vapor deposition or physical vapor deposition (such as sputtering), and is preferably deposited by electroplating. In addition, the thickness of the protection/barrier layer is in the range of 0.05 microns to 5 microns, and the thickness of 0.5 microns to 3 microns is preferred. The protective/barrier layer can be a nickel layer, cobalt layer or vanadium layer. In addition, an assembly-contact layer (not shown) can be optionally formed on the thick metal layers 8012, 8022 or protection/barrier layers (not shown) on the assembly or package. , especially formed on the topmost thick metal layer or protective/barrier layer (not shown) of the patterned metal layer 80 . The assembly contact layer can be used as wire bonding or as a solder wetting agent (solderwettable), and then used for wire bonding, gold connection, solder ball mounting or solder connection. In addition, the assembly contact layer can be gold, silver, platinum, palladium, rhodium or ruthenium. Polymer layer opening 990 in top polymer layer 99 (including 9919 and 9929 in the first embodiment; 9939 and 9939' in the third embodiment; and 9949 and 9949' in the fourth embodiment) The contact pad (contactpad) 8000 (including 8110 and 8120 in the first embodiment; 8310 and 8320 in the third embodiment; and 8110 and 8120 in the fourth embodiment) exposing the topmost patterned metal layer 80 is exposed. middle) surface. The assembly contact layer exposed by the polymer layer opening 990 can be a bonding wire, a solder ball (formed by electroplating or connected by soldering), a metal ball (such as A tin-silver alloy formed by electroplating or a tin-silver alloy connected by soldering), a metal bump (metal bump) on other substrates or chips, a gold bump (gold bump) on other substrates or chips, other A metal post on a substrate or chip or a copper post on another substrate or chip. For integrated circuit contact pads made of sputtered aluminum or electroplated copper (formed by a damascene process using chemical mechanical polishing), the metal lines or planes above the protective layer can be as follows One of the types, from bottom to top, is: (1) titanium-tungsten alloy/gold seed layer formed by sputtering/gold formed by electroplating; (2) titanium/gold seed layer formed by sputtering layer/gold formed by electroplating; (3) tantalum/seed layer of gold formed by sputtering/gold formed by electroplating; (4) chromium/copper seed layer formed by sputtering/seed layer formed by electroplating Copper; (5) titanium-tungsten alloy/copper seed layer formed by sputtering/copper formed by electroplating; (6) tantalum/copper seed layer formed by sputtering/copper formed by electroplating; (7) ) titanium/copper seed layer formed by sputtering/copper formed by electroplating; (8) chromium, titanium-tungsten alloy, titanium or tantalum/copper seed layer formed by sputtering/copper formed by electroplating/ Nickel formed by electroplating; (9) chromium, titanium-tungsten alloy, titanium or tantalum/copper seed layer formed by sputtering/copper formed by electroplating/nickel formed by electroplating/gold, silver, Platinum, palladium, rhodium, or ruthenium; and (10) chromium, titanium-tungsten alloy, titanium, or tantalum/copper seed layer formed by sputtering/copper formed by electroplating/nickel formed by electroplating/formed by electroless plating gold, silver, platinum, palladium, rhodium or ruthenium. The thickness of each patterned metal layer 80 is between 2 microns and 50 microns, and preferably between 3 microns and 20 microns. If the patterned metal layer 80 is a metal circuit, its The lateral design criteria (width) is between 1 micron and 200 microns, preferably between 2 microns and 50 microns, and the patterned metal layer 80 is a metal plane, especially as a power or ground reference The horizontal design standard (width) of the voltage plane is preferably greater than 200 microns. In addition, the minimum distance between two adjacent metal lines or planes is between 1 micron and 500 microns, preferably between 2 microns and 150 microns.

在本发明的某些应用中,金属线路或平面可以仅包括以溅镀方式所形成的厚度介于2微米至6微米间(较佳是介于3微米至5微米间)的铝以及位于此铝层下的一选择性黏着/阻障层(包括钛、钛钨合金、氮化钛、钽或氮化钽层)。In some applications of the present invention, the metal lines or planes may only include sputtered aluminum with a thickness between 2 microns and 6 microns (preferably between 3 microns and 5 microns) and the A selective adhesion/barrier layer (including titanium, titanium-tungsten alloy, titanium nitride, tantalum or tantalum nitride layer) under the aluminum layer.

继续,一接触结构(contactstructure)89可选择性形成在图案化金属层80的接垫8000上。此接触结构89可以是一金属凸块(metalbump)、一焊料凸块(solderbump)、一焊料球(solderball)、一金凸块(goldbump)、一铜凸块(copperbump)、一金属接垫(metalpad)、一焊料接垫(solderpad)、一金接垫(goldpad)、一金属柱(metalpost)、一焊料柱(solderpost)、一金柱(goldpost)或一铜柱(copperpost)。一凸块底层金属(underbumpmetal,UBM)层位于此接触结构89下,此凸块底层金属层包括钛、钛钨合金、氮化钛、铬、铜、铬铜合金、钽、氮化钽、镍、镍钒合金、钒或钴层,或者是由上述材料所组成的复合层。此接触结构89(包含凸块底层金属层)可以是下列所述的其中一种型式,由下到上分别是:(1)钛/金接垫(金层的厚度是介于1微米至15微米之间);(2)钛钨合金/金接垫(金层的厚度是介于1微米至15微米之间);(3)镍/金接垫(镍层的厚度是介于0.5微米至10微米之间,金层的厚度则介于0.2微米至15微米之间);(4)钛/金凸块(金层的厚度是介于7微米至40微米之间);(5)钛钨合金/金凸块(金层的厚度是介于7微米至40微米之间);(6)镍/金凸块(镍层的厚度是介于0.5微米至10微米之间,金层的厚度则介于7微米至40微米之间);(7)钛、钛钨合金或铬/铜/镍/金接垫(铜层的厚度是介于0.1微米至10微米之间,金层的厚度则介于0.2微米至15微米之间);(8)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜/镍/金凸块(铜层的厚度是介于0.1微米至10微米之间,金层的厚度则介于7微米至40微米之间);(9)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜/镍/焊料接垫(铜层的厚度是介于0.1微米至10微米之间,焊料层的厚度则介于0.2微米至30微米之间);(10)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜/镍/焊料凸块或焊料球(铜层的厚度是介于0.1微米至10微米之间,焊料层的厚度则介于10微米至500微米之间);(11)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜柱(铜层的厚度是介于10微米至300微米之间);(12)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜柱/镍(铜层的厚度是介于10微米至300微米之间);(13)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜柱/镍/焊料(铜层的厚度是介于10微米至300微米之间,焊料层的厚度则介于1微米至20微米之间);(14)钛、钛钨合金、铬、铬铜合金或镍钒合金/铜柱/镍/焊料(铜层的厚度是介于10微米至300微米之间,焊料层的厚度则介于20微米至100微米之间)。另,组装的方式可以是打线、卷带自动接合(TapeAutomatedBonding,TAB)、玻璃覆晶封装(chip-on-glass,COG)、芯片直接封装(chip-on-board,COB)、球门阵列基板覆晶封装(flipchiponBGAsubstrate)、薄膜覆晶接合(chip-on-film,COF)、堆栈型多芯片封装结构(chip-on-chipstackinterconnection)、硅基底上堆栈型芯片封装结构(chip-on-Si-substratestackinterconnection)等等。Continuing, a contact structure 89 can be optionally formed on the pad 8000 of the patterned metal layer 80 . The contact structure 89 can be a metal bump, a solder bump, a solder ball, a gold bump, a copper bump, a metal pad ( metalpad), a solder pad, a gold pad, a metal post, a solder post, a gold post or a copper post. An underbump metal (UBM) layer is located under the contact structure 89, and the under bump metal layer includes titanium, titanium-tungsten alloy, titanium nitride, chromium, copper, chrome-copper alloy, tantalum, tantalum nitride, nickel , nickel vanadium alloy, vanadium or cobalt layer, or a composite layer composed of the above materials. The contact structure 89 (including the UBM layer) can be one of the following types, from bottom to top: (1) Titanium/gold pads (the thickness of the gold layer is between 1 micron and 15 microns); (2) titanium-tungsten alloy/gold pads (the thickness of the gold layer is between 1 micron and 15 microns); (3) nickel/gold pads (the thickness of the nickel layer is between 0.5 microns between 0.2 microns and 15 microns); (4) titanium/gold bumps (thickness of the gold layer is between 7 microns and 40 microns); (5) Titanium-tungsten alloy/gold bump (the thickness of the gold layer is between 7 microns and 40 microns); (6) nickel/gold bumps (the thickness of the nickel layer is between 0.5 microns and 10 microns, and the gold layer The thickness is between 7 microns and 40 microns); (7) Titanium, titanium-tungsten alloy or chromium/copper/nickel/gold pads (the thickness of the copper layer is between 0.1 microns and 10 microns, and the gold layer (8) Titanium, titanium-tungsten alloy, chromium, chrome-copper alloy or nickel-vanadium alloy/copper/nickel/gold bump (thickness of copper layer is between 0.1 micron to 10 microns, and the thickness of the gold layer is between 7 microns and 40 microns); (9) titanium, titanium-tungsten alloy, chromium, chrome-copper alloy or nickel-vanadium alloy/copper/nickel/solder pad (copper The thickness of the layer is between 0.1 micron and 10 microns, and the thickness of the solder layer is between 0.2 micron and 30 microns); (10) Titanium, titanium-tungsten alloy, chromium, chrome-copper alloy or nickel-vanadium alloy/copper /Nickel/Solder bumps or solder balls (thickness of the copper layer is between 0.1 micron and 10 microns, and the thickness of the solder layer is between 10 microns and 500 microns); (11) Titanium, titanium-tungsten alloy, Chromium, chrome-copper or nickel-vanadium alloy/copper pillars (the thickness of the copper layer is between 10 microns and 300 microns); (12) titanium, titanium-tungsten alloy, chrome, chrome-copper alloy or nickel-vanadium alloy/copper pillars / Nickel (the thickness of the copper layer is between 10 microns and 300 microns); (13) Titanium, titanium-tungsten alloy, chromium, chrome-copper alloy or nickel-vanadium alloy/copper pillar/nickel/solder (the thickness of the copper layer is between 10 microns and 300 microns, and the thickness of the solder layer is between 1 micron and 20 microns); (14) titanium, titanium-tungsten alloy, chromium, chrome-copper alloy or nickel-vanadium alloy/copper pillar/nickel/ Solder (the thickness of the copper layer is between 10 microns and 300 microns, and the thickness of the solder layer is between 20 microns and 100 microns). In addition, the assembly method can be wire bonding, tape automated bonding (TAB), glass-on-glass packaging (chip-on-glass, COG), chip direct packaging (chip-on-board, COB), goal array substrate Flip-chip packaging (flipchiponBGAsubstrate), thin-film flip-chip bonding (chip-on-film, COF), stacked multi-chip packaging structure (chip-on-chipstackinterconnection), stacked chip packaging structure on a silicon substrate (chip-on-Si- substrate stack interconnection) and so on.

保护层上方结构8的另一个重要特点是:在图案化金属层80上、下或之间是使用聚合物材料作为介电层或是绝缘层。聚合物材料的使用可制造厚度大于2微米的介电层。由聚合物材料形成的聚合物层,其厚度可介于2微米至100微米之间,并以介于3微米至30微米之间的厚度为较佳者。使用在保护层5上的聚合物层90(包括95、98、99)可以是聚酰亚胺(polyimide,PI)、苯基环丁烯(benzocyclobutene,BCB)、聚对二甲苯(parylene)、环氧基材料(epoxy-basedmaterial),例如环氧树脂或是由位于瑞士的Renens的SotecMicrosystems所提供的photoepoxySU-8、弹性材料(elastomer),例如硅酮(silicone)。另,使用在印刷电路板产业中的焊罩(soldermask)材料可以用来作为顶端聚合物层99(位于所有图案化金属层80上的最顶端的聚合物层)。聚酰亚胺可以是一感旋旋光性材料(photosensitivematerial)。此外,聚酰亚胺可以是一非离子性聚酰亚胺(non-ionicpolymide),例如由日本的AsahiChemical所提供的醚基聚酰亚胺(ether-basedpolyimide),PIMELTM。另,由于铜并不会扩散或穿透到非离子性聚酰亚胺中,所以允许铜和聚酰亚胺之间可以直接接触,且由于非离子性聚酰亚胺的关系,保护层上方结构8中的铜线路或平面间的距离可以靠近到1微米,比如是1微米至5微米之间,换言的,两金属线路或平面间的距离是可以大于1微米。此外,对于以铜为材质的金属线路或平面与覆盖所述的金属线路或平面的聚合物层为非离子性聚酰亚胺时,金属线路或平面上可以选择性不需防护层(protectioncap),例如一镍防护层(Nicaplayer)。当然,在形成金属线路或平面时,也可以形成比如是镍的防护层在铜层上,更可以防止铜离子扩散到聚合物层中。Another important feature of the structure 8 above the passivation layer is that polymer material is used as a dielectric layer or insulating layer on, under or between the patterned metal layer 80 . The use of polymeric materials allows the fabrication of dielectric layers with a thickness greater than 2 microns. The thickness of the polymer layer formed of polymer material may be between 2 microns and 100 microns, preferably between 3 microns and 30 microns. The polymer layer 90 (including 95, 98, 99) used on the protective layer 5 can be polyimide (polyimide, PI), phenylcyclobutene (benzocyclobutene, BCB), parylene (parylene), Epoxy-based material, such as epoxy resin or photoepoxySU-8 provided by Sotec Microsystems in Renens, Switzerland, and elastomer, such as silicone. Alternatively, a soldermask material used in the printed circuit board industry can be used as the top polymer layer 99 (the topmost polymer layer on top of all patterned metal layers 80). Polyimide can be a photosensitive material. In addition, the polyimide can be a non-ionic polyimide, such as ether-based polyimide (PIMEL™) provided by Asahi Chemical of Japan. In addition, since copper does not diffuse or penetrate into nonionic polyimide, direct contact between copper and polyimide is allowed, and due to the relationship between nonionic polyimide, the protective layer The distance between the copper lines or planes in the structure 8 can be as close as 1 micron, for example, between 1 micron and 5 microns. In other words, the distance between two metal lines or planes can be greater than 1 micron. In addition, when the metal circuit or plane made of copper and the polymer layer covering the metal circuit or plane is non-ionic polyimide, the metal circuit or plane may optionally not require a protection cap , such as a nickel protective layer (Nicaplayer). Of course, when forming metal lines or planes, a protective layer such as nickel can also be formed on the copper layer, which can prevent copper ions from diffusing into the polymer layer.

如图15K所示,在聚合物层中形成开口的目的是为了用来相互连接不同的图案化金属层80、用来连接下方的细线路金属层60或者是用来连接外部电路(externalcircuit)。此聚合物层开口包括(1)9919、9929、9829、9519、9519’、9511、9512与9514在第一实施例中;(2)9831、9834、9531、9532与9534在第二实施例中;(3)9939、9939’、9831、9834、9839、9539、9539’、9531、9532与9534在第三实施例中;以及(4)9949、9949’、9849’、9549、9511、9512与9514在第四实施例中。聚合物材料可以是感旋旋光性(photo-sensitive)或是非感旋旋光性(non-photo-sensitive)。对于感旋旋光性聚合物,其是利用曝光与显影的方式来定义与图案化聚合物层开口,而对于非感旋旋光性聚合物,其是通过第一次涂布一光阻层在聚合物层上时定义开口,接着对此光阻进行曝光与显影以形成开口在光阻中,再来对此光阻开口所暴露出的聚合物层进行湿蚀刻或干蚀刻以形成开口在聚合物层中,最后凭借去除光阻完成聚合物层开口的形成。聚合物层开口的尺寸是介于2微米至1000微米之间,并以介于5微米至200微米之间为较佳者。然而在某些设计中,聚合物层开口也有可能会超过1,000微米的尺寸。另,聚合物层开口可以被设计成圆形、具有圆角的正方形(corner-roundedsquare)、矩形或多边形。As shown in FIG. 15K , the purpose of forming openings in the polymer layer is to connect different patterned metal layers 80 to each other, to connect the underlying fine line metal layer 60 or to connect external circuits. The polymer layer openings include (1) 9919, 9929, 9829, 9519, 9519', 9511, 9512 and 9514 in the first embodiment; (2) 9831, 9834, 9531, 9532 and 9534 in the second embodiment (3) 9939, 9939', 9831, 9834, 9839, 9539, 9539', 9531, 9532 and 9534 in the third embodiment; and (4) 9949, 9949', 9849', 9549, 9511, 9512 and 9514 in the fourth embodiment. The polymer material can be photo-sensitive or non-photo-sensitive. For photosensitive polymers, it uses exposure and development to define and pattern the openings in the polymer layer, while for non-sensitive photopolymers, it uses a photoresist layer for the first time to polymerize Openings are defined on the object layer, then the photoresist is exposed and developed to form openings in the photoresist, and then the polymer layer exposed by the photoresist openings is wet-etched or dry-etched to form openings in the polymer layer In the process, the formation of openings in the polymer layer is finally completed by removing the photoresist. The size of the openings in the polymer layer is between 2 microns and 1000 microns, preferably between 5 microns and 200 microns. In some designs, however, it is possible for the polymer layer openings to exceed a size of 1,000 microns. In addition, the polymer layer opening can be designed as a circle, a corner-rounded square, a rectangle or a polygon.

聚合物层95是位于保护层5与图案化金属层801最底端之间。通过聚合物层95内的聚合物层开口950,讯号、电源(Vdd或Vcc)以及/或是接地参考电压(Vss)可以在细线路金属层60与图案化金属层80之间进行传送。对于内部电路20(包括21、22、23、24),聚合物层开口9531、9532、9534是分别对准保护层开口531、532、534,且其聚合物层开口9531、9532、9534的尺寸是介于1微米至300微米之间,并以介于3微米至100微米之间为较佳者。对于稳压器或变压器41,聚合物层开口9519、9519’、9511、9512、9514是分别对准保护层开口519、519’、511、512、514;对于芯片接外电路40(包括42、43),聚合物层开口9539、9539’、9531、9532、9534是分别对准保护层开口539、539’、531、532、534;对于静电放电防护电路44,聚合物层开口9549、9511、9512、9514是分别对准保护层开口549、511、512、514,另聚合物层开口9519、9519’、9511、9512、9514,或聚合物层开口9539、9539’、9531、9532、9534或者是聚合物层开口9549、9511、9512、9514的尺寸可以较大,其范围是介于5微米至1000微米之间,并以介于10微米至200微米之间为较佳者。在保护层开口50上的聚合物层开口950具有两种开口型式,在第一种开口型式中,聚合物层开口,例如聚合物层开口9531,是大于下方的保护层开口531,且聚合物层开口9531的聚合物侧壁是位于保护层5上。在此种型式中,可以形成一个较小的保护层开口531,进而在细线路金属层顶端形成一个较小的接触接垫,所以此种开口型式允许最顶端的细线路金属层的细线路具有较高的绕线密度(routingdensity);在第二种开口型式中,聚合物层开口的底部,例如聚合物层开口9539的底部,是小于下方的保护层开口539,且聚合物层开口(例如聚合物层开口9539)的聚合物侧壁是位于细线路金属层顶端的金属接垫上。而在此种型式中,聚合物层95覆盖住保护层开口的侧壁,且聚合物层开口(例如聚合物层开口9539)侧壁的斜率小于保护层开口侧壁的斜率,并使后续金属溅镀形成的黏着/阻障/种子层8011具有较好的阶梯覆盖(stepcoverage)。较好的黏着/阻障/种子金属阶梯覆盖对于芯片的可靠度是很重要的,这是因为较好的黏着/阻障/种子金属阶梯覆盖可以防止厚金属层的金属扩散到下方的线路或聚合物层中,以防止介金属化合物(Inter-metalliccompound;IMC)的产生或者是金属扩散的现象发生。The polymer layer 95 is located between the passivation layer 5 and the bottommost end of the patterned metal layer 801 . Through the polymer layer opening 950 in the polymer layer 95 , signals, power (Vdd or Vcc) and/or ground reference voltage (Vss) can be transmitted between the fine line metal layer 60 and the patterned metal layer 80 . For the internal circuit 20 (including 21, 22, 23, 24), the polymer layer openings 9531, 9532, 9534 are respectively aligned with the protective layer openings 531, 532, 534, and the size of the polymer layer openings 9531, 9532, 9534 It is between 1 micron and 300 microns, preferably between 3 microns and 100 microns. For voltage regulator or transformer 41, polymer layer openings 9519, 9519', 9511, 9512, 9514 are respectively aligned with protective layer openings 519, 519', 511, 512, 514; 43), the polymer layer openings 9539, 9539', 9531, 9532, 9534 are respectively aligned with the protective layer openings 539, 539', 531, 532, 534; for the electrostatic discharge protection circuit 44, the polymer layer openings 9549, 9511, 9512, 9514 are respectively aligned with the protective layer openings 549, 511, 512, 514, the other polymer layer openings 9519, 9519', 9511, 9512, 9514, or the polymer layer openings 9539, 9539', 9531, 9532, 9534 or The size of the polymer layer openings 9549, 9511, 9512, 9514 can be larger, ranging from 5 microns to 1000 microns, preferably 10 microns to 200 microns. The polymer layer opening 950 on the protective layer opening 50 has two opening types. In the first opening type, the polymer layer opening, such as the polymer layer opening 9531, is larger than the lower protective layer opening 531, and the polymer layer The polymer sidewalls of the layer opening 9531 are on the protective layer 5 . In this type, a smaller protective layer opening 531 can be formed, thereby forming a smaller contact pad on the top of the thin line metal layer, so this type of opening allows the thin lines of the topmost thin line metal layer to have Higher winding density (routingdensity); In the second opening pattern, the bottom of the polymer layer opening, such as the bottom of the polymer layer opening 9539, is smaller than the protective layer opening 539 below, and the polymer layer opening (such as The polymer sidewalls of the polymer layer openings 9539) are on the metal pads on top of the fine line metal layer. In this type, the polymer layer 95 covers the sidewall of the protective layer opening, and the slope of the sidewall of the polymer layer opening (such as the polymer layer opening 9539) is smaller than the slope of the sidewall of the protective layer opening, and the subsequent metal The adhesion/barrier/seed layer 8011 formed by sputtering has better step coverage. Better adhesion/barrier/seed metal step coverage is important for chip reliability because better adhesion/barrier/seed metal step coverage prevents metal from thick metal layers from diffusing into underlying lines or In the polymer layer, to prevent the generation of inter-metallic compound (IMC) or the phenomenon of metal diffusion.

聚合物层98内的聚合物层开口980是位于图案化金属层801与图案化金属层802之间。对于内部电路21、22、23、24,聚合物层开口9831、9834的尺寸是介于1微米至300微米之间,并以介于3微米至100微米之间为较佳者。对于稳压器或变压器41的聚合物层开口9829,或芯片接外电路40(包括42、43)的聚合物层开口9831、9834、9839或者是静电放电防护电路44的聚合物层开口9849’的尺寸可以较大,其范围介于5微米至1,000微米之间,并以介于10微米至200微米之间为较佳者。The polymer layer opening 980 in the polymer layer 98 is located between the patterned metal layer 801 and the patterned metal layer 802 . For the internal circuits 21, 22, 23, 24, the size of the polymer layer openings 9831, 9834 is between 1 micron and 300 microns, preferably between 3 microns and 100 microns. For the polymer layer opening 9829 of the voltage regulator or transformer 41, or the polymer layer opening 9831, 9834, 9839 of the chip external circuit 40 (including 42, 43) or the polymer layer opening 9849' of the electrostatic discharge protection circuit 44 The size can be larger, ranging from 5 microns to 1,000 microns, preferably between 10 microns to 200 microns.

由顶端聚合物层99内的聚合物层开口990所暴露出的图案化金属层802最顶端的接垫可用来连接外部电路,或者是在芯片测试(chiptesting)中作为探针的接触点。对于内部电路21、22、23、24,顶端聚合物层99并未设有聚合物层开口;另,稳压器或变压器41的聚合物层开口9919、9929,或芯片接外电路40(包括42、43)的聚合物层开口9939或者是静电放电防护电路44的聚合物层开口9949、9949’的尺寸可以较大,其范围介于5微米至1,000微米之间,并以介于10微米至200微米之间为较佳者。The topmost pads of the patterned metal layer 802 exposed by the polymer layer openings 990 in the top polymer layer 99 can be used to connect external circuits, or serve as contact points for probes in chip testing. For the internal circuits 21, 22, 23, 24, the top polymer layer 99 is not provided with polymer layer openings; in addition, the polymer layer openings 9919, 9929 of the voltage regulator or transformer 41, or the chip is connected to the external circuit 40 (including 42, 43) of the polymer layer opening 9939 or the polymer layer opening 9949, 9949' of the ESD protection circuit 44 can be larger in size, ranging from 5 microns to 1,000 microns, and in the range of 10 microns Preferably between 200 microns.

输入保护层上方结构8中的讯号、电源或接地参考电压是通过细线路结构6而传送至内部电路20、稳压器或变压器41、芯片接外电路40或者是静电放电防护电路44中。另,细线路金属结构63可以是以最短路径方式(例如以约略对准的堆栈方式)所形成的细线路金属层60以及导电栓塞60’,如图15A所示的631、632、634、639与639’。Signals, power or ground reference voltages input into the structure 8 above the protective layer are transmitted to the internal circuit 20 , voltage regulator or transformer 41 , chip-connected external circuit 40 or ESD protection circuit 44 through the thin circuit structure 6 . In addition, the thin-line metal structure 63 may be the thin-line metal layer 60 and the conductive plug 60' formed in the shortest path (for example, in a roughly aligned stack), as shown in 631, 632, 634, and 639 in FIG. 15A with 639'.

制作保护层上方结构8的微影技术是显着不同在制作保护层下方集成电路的微影技术。保护层上方的微影制程同样也包括有涂布、曝光与显影光阻。用来形成保护层上方结构8的光阻有两种型式,其是为:(1)湿膜光阻(liquidphotoresist),其是利用单一或多重的旋转涂布方式或者是印刷(printing)方式形成。此湿膜光阻的厚度是介于3微米至60微米之间,而以介于5微米至40微米之间为较佳者;以及(2)干膜光阻(dryfilmPhotoresist),其是利用贴合方式(laminatingmethod)形成。此干膜光阻的厚度是介于30微米至300微米之间,而以介于50微米至150微米之间为较佳者。另外,光阻可以是正型(positive-type)或负型(negative-type),而在获得更好分辨率上,则以正型厚光阻(positive-typethickphotoresist)为较佳者。当聚合物层是为感旋旋光性材质时,可以仅利用微影制程(无须蚀刻制程)来图案化聚合物层上。利用一对准机(aligner)或一倍(1X)步进曝光机曝光此光阻。此一倍(1X)是指当光束从一光罩(通常是以石英或玻璃构成)投影至晶圆上时,光罩上的图形缩小于晶圆上的比例,且在光罩上的图案比例是与在晶圆上的图案比例相同。对准机或一倍步进曝光机所使用的光束波长是为436纳米(g-line)、397纳米(h-line)、365纳米(i-line)、g/hline(结合g-line与h-line)或g/h/iline(结合g-line、h-line与i-line)。使用光束波长为g/hline或g/h/iline的一倍步进曝光机(或一倍对准机)可在厚光阻或厚感旋旋光性聚合物的曝光上,提供较大的光强度(lightintensity)。The lithographic technique for producing the structures 8 above the protective layer is significantly different from the lithographic technique for producing the integrated circuits below the protective layer. The lithography process above the resist layer also includes coating, exposing and developing the photoresist. There are two types of photoresist used to form the structure 8 above the protective layer, which are: (1) wet film photoresist (liquid photoresist), which is formed by a single or multiple spin-coating method or a printing method . The thickness of this wet film photoresist is between 3 microns and 60 microns, and it is better between 5 microns and 40 microns; and (2) dry film photoresist (dryfilm Photoresist), which uses a Combined way (laminatingmethod) formation. The thickness of the dry film photoresist is between 30 microns and 300 microns, preferably between 50 microns and 150 microns. In addition, the photoresist can be positive-type or negative-type, and positive-type thick photoresist is better for obtaining better resolution. When the polymer layer is an optically active material, the polymer layer can be patterned only by lithography (without etching process). The photoresist is exposed using an aligner or a one-fold (1X) stepper. This double (1X) means that when the beam is projected from a mask (usually made of quartz or glass) onto the wafer, the pattern on the mask is reduced to the ratio of the wafer, and the pattern on the mask The scale is the same as the pattern scale on the wafer. The beam wavelengths used by the aligner or double stepper are 436nm (g-line), 397nm (h-line), 365nm (i-line), g/hline (combined with g-line and h-line) or g/h/iline (combination of g-line, h-line and i-line). Using a double stepper (or double aligner) with a beam wavelength of g/hline or g/h/iline can provide a larger light for the exposure of thick photoresists or thick photosensitive polymers Intensity (light intensity).

由于保护层5可以保护下方的金氧半晶体管以及细线路结构6免在受到水气的侵入以及钠或其它移动离子和金、铜或其它过渡金属的穿透,所以一集成电路晶圆上的保护层上方结构8可以在一等级10或者是较不严密的(lessstringent)环境下(例如等级100)的无尘室中进行处理。一等级100的无尘室允许每立方英呎的最大灰尘粒子数目是为:含有大于或等于5微米的灰尘粒子不超过1颗、含有大于或等于1微米的灰尘粒子不超过10颗、含有大于或等于0.5微米的灰尘粒子不超过100颗、含有大于或等于0.3微米的灰尘粒子不超过300颗、含有大于或等于0.2微米的灰尘粒子不超过750颗、含有大于或等于0.1微米的灰尘粒子不超过3500颗。Since the protective layer 5 can protect the metal oxide semiconductor transistor and the thin circuit structure 6 below from the intrusion of water vapor and the penetration of sodium or other mobile ions and gold, copper or other transition metals, so on an integrated circuit wafer The overprotective structure 8 may be processed in a class 10 or less stringent environment (eg class 100) clean room. A class 100 clean room allows the maximum number of dust particles per cubic foot: no more than 1 dust particle greater than or equal to 5 microns, no more than 10 dust particles greater than or equal to 1 micron, and no more than 10 dust particles greater than or equal to 1 micron. Or no more than 100 dust particles equal to 0.5 microns, no more than 300 dust particles greater than or equal to 0.3 microns, no more than 750 dust particles greater than or equal to 0.2 microns, no dust particles greater than or equal to 0.1 microns More than 3500 pieces.

组件层2包括有内部电路20(包括21、22、23与24)在所有实施例中,以及(1)稳压器或变压器41在第一实施例中;(2)芯片接外电路40(包括42、43)在第三实施例中;(3)静电放电防护电路44在第四实施例中。在本发明的所有实施例中,内部电路20(包括21、22、23、24)包括一讯号节点(signalnode),且此讯号节点(signalnode)是不与外部(芯片外部)电路连接。而当内部电路20的讯号需要连接至外部电路时,在连接到外部电路的前,讯号必须先经过一芯片接外电路,例如芯片三态缓冲器、芯片接外驱动器、芯片接外接收器或其它芯片接外输入/输出(I/O)电路。因此,内部电路并不包括芯片接外电路。Component layer 2 includes internal circuit 20 (including 21, 22, 23 and 24) in all embodiments, and (1) voltage regulator or transformer 41 in the first embodiment; (2) chip-connected external circuit 40 ( Including 42, 43) in the third embodiment; (3) ESD protection circuit 44 in the fourth embodiment. In all embodiments of the present invention, the internal circuit 20 (including 21 , 22 , 23 , 24 ) includes a signal node, and the signal node is not connected to the external (outside the chip) circuit. And when the signal of the internal circuit 20 needs to be connected to an external circuit, before being connected to the external circuit, the signal must first pass through an on-chip external circuit, such as an on-chip tri-state buffer, an on-chip external driver, an on-chip external receiver or Other chips are connected to external input/output (I/O) circuits. Therefore, the internal circuit does not include the chip connected to the external circuit.

在本发明中,内部电路20(包括21、22、23、24)除了可以是一或非门(NORgate)或一与非门(NANDgate)的外,也可以是一反相器(inverter)、一且闸(ANDgate)、一或门(ORgate)、一静态随机存取内存单元(SRAMcell)、一动态随机存取内存单元(DRAMcell)、一非挥发性内存单元(non-volatilememorycell)、一闪存单元(flashmemorycell)、一可消除可程序只读存储器单元(EPROMcell)、一只读存储器单元(ROMcell)、一磁性随机存取内存(magneticRAM,MRAM)单元、一感测放大器(senseamplifier)、一运放算大器(operationalamplifier,OpAmp、OPA)、一加法器(adder)、一多任务器(multiplexer)、一双工器(diplexer)、一乘法器(multiplier)、一模拟/数字转换器(A/Dconverter)、一数字/模拟转换器(D/Aconverter)、一互补式金属氧化物半导体感测组件单元(CMOSsensorcell)、一光敏二极管(photo-sensitivediode)、一互补式金属氧化物半导体、一双载子互补式金属氧化物半导体、一双载子电路(bipolarcircuit)或模拟电路(analogcircuit)。In the present invention, the internal circuit 20 (comprising 21, 22, 23, 24) can also be an inverter (inverter), An AND gate, an OR gate, a static random access memory cell (SRAM cell), a dynamic random access memory cell (DRAM cell), a non-volatile memory cell (non-volatile memory cell), a flash memory unit (flashmemorycell), an erasable programmable read-only memory unit (EPROMcell), a read-only memory unit (ROMcell), a magnetic random access memory (magneticRAM, MRAM) unit, a sense amplifier (senseamplifier), a movement Amplifier (operational amplifier, OpAmp, OPA), an adder (adder), a multiplexer (multiplexer), a duplexer (diplexer), a multiplier (multiplier), an analog/digital converter (A /Dconverter), a digital/analog converter (D/Aconverter), a complementary metal oxide semiconductor sensing unit (CMOS sensorcell), a photosensitive diode (photo-sensitivediode), a complementary metal oxide semiconductor, a dual load A sub-complementary metal oxide semiconductor, a bipolar circuit or an analog circuit.

此外,内部电路20(包括21、22、23、24)是至少由一金氧半晶体管(MOStransistor)所构成,例如或非门、或门、且闸或与非门是至少由一金氧半晶体管所构成,另金氧半晶体管可以是“通道寛度(Channelwidth)/通道长度(Channellength)”比值介于0.1至5之间或是介于0.2至2之间的一N型金氧半晶体管,或是“信道寛度/信道长度”比值介于0.2至10之间或是介于0.4至4之间的一P型金氧半晶体管。在第一实施例中,内部电路20(包括21、22、23、24)可以是一电源管理芯片(powermanagementchip)或是一电源供应芯片(powersupplychip),此电源管理芯片与电源供应芯片是至少由一金氧半晶体管所构成,且金氧半晶体管可以是“信道寛度/信道长度”比值介于4,000至400,000之间或是介于4,000至40,000之间的一P型金氧半晶体管,或是“信道寛度/信道长度”比值介于2,000至200,000之间或是介于2,000至20,000之间的一N型金氧半晶体管,而流经金属线路或平面81、82的电流则是介于500毫安至50安培之间或是介于500毫安至5毫安之间。In addition, the internal circuit 20 (including 21, 22, 23, 24) is made of at least one metal oxide semiconductor transistor (MOS transistor), such as a NOR gate, an OR gate, and a gate or NAND gate is made of at least one MOS transistor. The other metal oxide semiconductor transistor can be an N-type metal oxide semiconductor transistor with a "channel width (Channelwidth)/channel length (Channellength)" ratio between 0.1 and 5 or between 0.2 and 2, Or a P-type metal oxide semiconductor transistor with a "channel width/channel length" ratio between 0.2-10 or between 0.4-4. In the first embodiment, the internal circuit 20 (including 21, 22, 23, 24) can be a power management chip (power management chip) or a power supply chip (power supply chip), the power management chip and the power supply chip are at least composed of A metal-oxide-semiconductor transistor, and the metal-oxide-semiconductor transistor can be a P-type metal-oxide-semiconductor transistor with a "channel width/channel length" ratio between 4,000 and 400,000 or between 4,000 and 40,000, or An N-type metal-oxide-semiconductor transistor with a "channel width/channel length" ratio between 2,000 and 200,000 or between 2,000 and 20,000, and the current flowing through the metal lines or planes 81, 82 is between 500 Between mA and 50A or between 500mA and 5mA.

另,内部电路20可以利用它的峰值输入或输出电流(即流经金属线路或平面的电流)来定义,或者是以它的金氧半晶体管尺寸(信道宽度除以信道长度的比值)来定义。一芯片接外电路40(包括42、43),也可以利用它的峰值输入或输出电流(即流经金属线路或平面的电流)来定义,或者是以它的金氧半晶体管尺寸(信道宽度除以信道长度的比值)来定义。而此内部电路20以及芯片接外电路40(包括42、43)的定义是适用在本发明的所有实施例中。In addition, the internal circuit 20 can be defined by its peak input or output current (that is, the current flowing through the metal line or plane), or by its metal oxide semiconductor transistor size (the ratio of the channel width divided by the channel length) . A chip connects external circuit 40 (comprising 42, 43), also can utilize its peak input or output current (that is to flow through the electric current of metal line or plane) to define, or with its metal oxide semitransistor size (channel width divided by the ratio of the channel length) to define. The definitions of the internal circuit 20 and the on-chip external circuit 40 (including 42 and 43 ) are applicable to all embodiments of the present invention.

因此,本发明可通过保护层下方的细线路金属结构与保护层上方的金属线路或平面分别连接同一线路组件中至少二金氧半晶体管的栅极与栅极、栅极与源极、栅极与漏极、源极与源极、源极与漏极或者是漏极与漏极。Therefore, the present invention can respectively connect the gate and the gate, the gate and the source, and the gate of at least two metal-oxide-semiconductor transistors in the same line component through the thin line metal structure below the protective layer and the metal line or plane above the protective layer. and drain, source and source, source and drain, or drain and drain.

以下将叙述与比较本发明所有实施例中,保护层上方结构8的图案化金属层80与细线路金属层60两者间的尺寸特征与电性特性(electricalcharacteristic)。The dimensional characteristics and electrical characteristics between the patterned metal layer 80 and the fine line metal layer 60 of the overpass structure 8 in all embodiments of the present invention will be described and compared below.

金属线路的厚度thickness of metal lines

每一图案化金属层80的厚度是介于2微米至150微米之间,并以介于3微米至20微米之间为较佳者,而每一细线路金属层60的厚度则介于0.05微米至2微米之间,并以介于0.2微米至1微米之间为较佳者。The thickness of each patterned metal layer 80 is between 2 microns and 150 microns, preferably between 3 microns and 20 microns, and the thickness of each fine line metal layer 60 is between 0.05 between microns and 2 microns, and preferably between 0.2 microns and 1 micron.

对于依照本发明的实施例所设计的一晶圆,一保护层上方图案化金属层的厚度是大于任一细线路金属层的厚度,且两者的厚度比是介于2至250之间的范围,而以介于4至20之间的范围为较佳者。For a wafer designed according to an embodiment of the present invention, the thickness of the patterned metal layer above a passivation layer is greater than the thickness of any fine line metal layer, and the thickness ratio between the two is between 2 and 250 range, and a range between 4 and 20 is preferred.

介电层的厚度The thickness of the dielectric layer

每一保护层上方介电层(通常为有机材料,例如聚合物)的厚度,如聚合物层90的厚度,是介于2微米至150微米之间,并以介于3微米至30微米之间为较佳者,而每一细线路介电层30(通常为无机材料,例如氧化物或氮化物)的厚度则介于0.05微米至2微米之间,并以介于0.2微米至1微米之间为较佳者。The thickness of the dielectric layer (typically an organic material such as a polymer) above each protective layer, such as the thickness of the polymer layer 90, is between 2 microns and 150 microns, and between 3 microns and 30 microns. The interval is preferred, and the thickness of each thin-line dielectric layer 30 (usually an inorganic material such as oxide or nitride) is between 0.05 micron and 2 micron, and the thickness is between 0.2 micron and 1 micron. Between is the better one.

对于依照本发明的实施例所设计的晶圆,一保护层上方介电层的厚度是大于任一细线路介电层的厚度,且两者的厚度比是介于2至250之间的范围,而以介于4至20之间的范围为较佳者。For the wafer designed according to the embodiment of the present invention, the thickness of the dielectric layer above a passivation layer is greater than the thickness of any thin line dielectric layer, and the thickness ratio between the two is in the range between 2 and 250 , and the range between 4 and 20 is preferred.

金属层的片电阻(sheetresistance)与电阻Metal layer sheet resistance (sheet resistance) and resistance

一金属层的片电阻是凭借计算金属电阻率(metalresistivity)除以金属厚度而得。一铜(厚度为5微米)材质的保护层上方图案化金属层的片电阻大约为每平方(persquare)4毫奥姆(mili-ohm),而对于一金(厚度为4微米)材质的保护层上方图案化金属层的片电阻则大约为每平方5.5毫奥姆。一保护层上方图案化金属层的片电阻是介于每平方0.1毫奥姆至每平方10毫奥姆之间的范围,并以介于每平方1毫奥姆至每平方7毫奥姆之间的范围为较佳者。以溅镀形成的铝(厚度为0.8微米)材质的细线路金属层,其片电阻大约为每平方35毫奥姆,而对于以镶嵌制程形成一铜(厚度为0.9微米)材质的细线路金属层,其片电阻则大约为20毫奥姆。一细线路金属层的片电阻是介于每平方10毫奥姆至每平方400毫奥姆之间的范围,并以介于每平方15毫奥姆至每平方100毫奥姆之间的范围为较佳者。The sheet resistance of a metal layer is calculated by dividing the metal resistivity by the metal thickness. The sheet resistance of a patterned metal layer over a protective layer of copper (5 microns thick) is approximately 4 mili-ohms per square (persquare), while a protective layer of gold (4 microns thick) The sheet resistance of the patterned metal layer above the layer is then approximately 5.5 milliohms per square. The sheet resistance of the patterned metal layer over a passivation layer is in the range of 0.1 milliohms per square to 10 milliohms per square, and in the range of 1 milliohms per square to 7 milliohms per square The range between is preferable. A fine-line metal layer made of aluminum (thickness 0.8 microns) formed by sputtering has a sheet resistance of about 35 milliohms per square, while a thin-line metal layer of copper (thickness 0.9 microns) formed by a damascene process layer, its sheet resistance is about 20 milliohms. The sheet resistance of a fine line metal layer is in the range of 10 milliohms per square to 400 milliohms per square, and in the range of 15 milliohms per square to 100 milliohms per square is the better one.

一金属线路的单位长度电阻(resistanceperunitlength)是凭借计算片电阻除以其宽度而得。保护层上方图案化金属层的横向设计标准(宽度)是介于1微米至200微米之间,并以介于2微米至50微米之间为较佳者,而细线路金属层的横向设计标准(宽度)则是介于20纳米至15微米之间,并以介于20纳米至2微米之间为较佳者。一保护层上方图案化金属层的每毫米电阻(resistancepermm)是介于每毫米长(resistancepermmlength)2毫奥姆至每毫米长5奥姆之间,并以介于每毫米长50毫奥姆至每毫米长2.5奥姆之间为较佳者,而一细线路金属层的每毫米电阻则是介于每毫米长500毫奥姆至每毫米长3,000奥姆之间,并以介于每毫米长500毫奥姆至每毫米长500奥姆之间为较佳者。The resistance per unit length of a metal line is calculated by dividing the sheet resistance by its width. The lateral design standard (width) of the patterned metal layer above the passivation layer is between 1 micron and 200 microns, preferably between 2 microns and 50 microns, and the lateral design standard of the fine line metal layer (Width) is between 20 nanometers and 15 micrometers, preferably between 20 nanometers and 2 micrometers. The resistance per mm of the patterned metal layer over a protective layer is between 2 milliohms per millimeter length and 5 milliohms per millimeter length, and between 50 milliohms per millimeter length and 5 milliohms per millimeter length. Preferably between 2.5 ohms per mm, and a fine line metal layer with resistance per mm between 500 milliohms per mm and 3,000 ohms per mm, and between Preferably, the length is between 500 milliohms and 500 ohms per millimeter.

对于依照本发明的实施例所设计的晶圆,一保护层上方图案化金属层的单位长度电阻是小于任一细线路金属层的单位长度电阻,且两者的单位长度电阻比(细线路金属层比保护层上方图案化金属层)是介于3至250之间的范围,而以介于10至30之间的范围为较佳者。For the wafer designed according to the embodiments of the present invention, the resistance per unit length of the patterned metal layer above a protective layer is less than the resistance per unit length of any thin line metal layer, and the ratio of the unit length resistance of the two (fine line metal The layer ratio (patterned metal layer above the passivation layer) ranges from 3 to 250, and preferably ranges from 10 to 30.

金属线路的单位长度电容(capacitanceperunitlength)The unit length capacitance of the metal line (capacitanceperunitlength)

单位长度电容是与介电质的类型和厚度、金属线路的宽度、距离和厚度以及水平方向和垂直方向上的周围金属有关。聚酰亚胺的介电常数大约为3.3,而苯基环丁烯的介电常数则大约为2.5。接着,请先参阅至第20图所示,其是公开出在同一图案化金属层802上,一图案化金属层802x具有两相邻的图案化金属层802y与图案化金属层802z,以及在图案化金属层802下具有一图案化金属层801w,且此图案化金属层801w是利用一聚合物层98与图案化金属层802分隔。同样地,第20图也公开出在同一细线路金属层602上,一细线路金属层602x具有两相邻的细线路金属层602y与细线路金属层602z,以及在细线路金属层602下具有一细线路金属层601w,且此细线路金属层601w是利用一细线路介电层30与细线路金属层602分隔。Capacitance per unit length is related to the type and thickness of the dielectric, the width, distance and thickness of the metal lines, and the surrounding metal in the horizontal and vertical directions. Polyimide has a dielectric constant of about 3.3, while phenylcyclobutene has a dielectric constant of about 2.5. Next, please refer to FIG. 20, which discloses that on the same patterned metal layer 802, a patterned metal layer 802x has two adjacent patterned metal layers 802y and 802z, and There is a patterned metal layer 801w under the patterned metal layer 802 , and the patterned metal layer 801w is separated from the patterned metal layer 802 by a polymer layer 98 . Similarly, FIG. 20 also discloses that on the same fine-line metal layer 602, a thin-line metal layer 602x has two adjacent thin-line metal layers 602y and 602z, and under the thin-line metal layer 602 has A fine-line metal layer 601w, and the thin-line metal layer 601w is separated from the thin-line metal layer 602 by a thin-line dielectric layer 30 .

图案化金属层802x与细线路金属层602x的单位长度电容包括有三个组成要素:(1)板极电容(platecapacitance),Cxw(pF/mm),其是为金属线路或平面宽度除以介电质厚度的比值的一函数;(2)耦合电容(couplingcapacitance),Ccx(=Cxy+Cxz),其是为金属线路或平面厚度除以相邻金属线路或平面之间之间距(linespacing)的比值的一函数;以及(3)边缘电容(fringingcapacitance),Cfx(=Cfl+Cfr),其是为金属线路或平面的厚度、相邻金属线路或平面之间之间距与介电质厚度的一函数。一图案化金属层的每毫米电容是介于每毫米长0.1pF(picoFarads)至每毫米长2pF,并以介于每毫米长0.3pF至每毫米长1.5pF之间为较佳者,而一细线路金属层的每毫米电容则是介于每毫米长0.2pF至每毫米长4pF,并以介于每毫米长0.4pF至每毫米长2pF之间为较佳者。The capacitance per unit length of the patterned metal layer 802x and the thin line metal layer 602x includes three components: (1) plate capacitance (plate capacitance), Cxw (pF/mm), which is the metal line or plane width divided by the dielectric A function of the ratio of the material thickness; (2) coupling capacitance (couplingcapacitance), Ccx (=Cxy+Cxz), which is the ratio of the metal line or plane thickness divided by the distance (linespacing) between adjacent metal lines or planes and (3) fringing capacitance (fringingcapacitance), Cfx (=Cfl+Cfr), which is a function of the thickness of the metal line or plane, the distance between adjacent metal lines or planes, and the thickness of the dielectric . The capacitance per millimeter of a patterned metal layer is between 0.1pF (picoFarads) per millimeter long to 2pF per millimeter long, and preferably between 0.3pF per millimeter long to 1.5pF per millimeter long, and a The capacitance per millimeter of the fine line metal layer is between 0.2 pF per millimeter and 4 pF per millimeter, and preferably between 0.4 pF per millimeter and 2 pF per millimeter.

对于依照本发明的实施例所设计的晶圆,一图案化金属层的单位长度电容是小于任一细线路金属层的单位长度电容,且两者的单位长度电容比(细线路金属层比图案化金属层)是介于1.5至20之间的范围,而以介于2至10之间的范围为较佳者。For the wafer designed according to the embodiments of the present invention, the capacitance per unit length of a patterned metal layer is smaller than the capacitance per unit length of any thin line metal layer, and the ratio of the unit length capacitance of the two (thin line metal layer to pattern metallization layer) ranges from 1.5 to 20, and preferably ranges from 2 to 10.

金属线路的电阻电容常数(RCconstant)The resistance and capacitance constant of the metal line (RCconstant)

一金属线路上的讯号传递时间是利用阻容延迟(RCdelay)来计算。基于上述(3)与(4)之内容,一图案化金属层的阻容延迟是介于每毫米长0.003至10ps(picosecond)的范围之间,并以介于每毫米长0.25至2ps(picosecond)的范围之间为较佳者,而一细线路金属层的阻容延迟则是介于每毫米长10至2000ps(picosecond)的范围之间,并以介于每毫米长40至500ps(picosecond)的范围之间为较佳者。The signal transmission time on a metal line is calculated by using the resistance-capacitance delay (RCdelay). Based on the contents of (3) and (4) above, the RC delay of a patterned metal layer is between 0.003 to 10 ps (picosecond) per millimeter, and 0.25 to 2 ps (picosecond) per millimeter. ) range is better, and the RC delay of a thin line metal layer is between 10 to 2000 ps (picosecond) per millimeter, and between 40 to 500 ps (picosecond) per millimeter. ) is preferred.

对于依照本发明的实施例所设计的晶圆,一图案化金属层的单位长度阻容传递时间(RCpaopagationtime)是小于任一细线路金属层的单位长度阻容传递时间,且两者的单位长度阻容传递延迟时间(RCpaopagationdelaytime)比(细线路金属层比图案化金属层)是介于5至500之间的范围,并以介于10至30之间为较佳者。For the wafer designed according to the embodiment of the present invention, the RC transfer time per unit length (RCpaopagationtime) of a patterned metal layer is less than the RC transfer time per unit length of any fine line metal layer, and the unit length of both The RCpaopagationdelaytime ratio (thin line metal layer to patterned metal layer) ranges from 5 to 500, preferably 10 to 30.

再来,请参阅回图15C至图15L所示,其是公开出在已完成的晶圆10(如图15A或图15B所示)上,形成保护层上方结构8的制作步骤。每一图案化金属层80是利用浮凸制程(与保护层5下的镶嵌铜制程作为对比)来形成。请参阅图15C所示,一聚合物层95沉积在保护层5上,并通过聚合物层开口950暴露出保护层开口50所暴露的金属接垫600。假若此聚合物是为液体形式(liquidform),其是可以利用旋转涂布或者是印刷的方式来沉积形成,而假若此聚合物为一干膜(dryfilm),则此干膜可以利用一贴合方式来形成。对于感旋旋光性聚合物,聚合物层95是利用对准机或一倍(1X)步进曝光机通过光罩的光线来进行曝光,并通过显影而在聚合物层95中形成聚合物层开口950;当聚合物为非感旋旋光性时,则必须使用光阻,并通过传统的微影制程来图案化出聚合物层开口950。图案化聚合物层的方式,可以是下列的方式:在涂布光阻的前,可选择性沉积一硬屏蔽(hardmask,例如一氧化硅层,图中未示)在聚合物层95上,而在蚀刻聚合物层开口期间,此硬屏蔽具有一缓慢的蚀刻速率(etchrate)。另,图案化聚合物层95的方式(即聚合物层95具有聚合物层开口950)也可利用网板印刷的方式(screenprintingmethod),凭借使用具有图案化孔洞(hole)的一金属网板(metalscreen)来形成,而且网板印刷的方式不需要进行曝光以及显影。此外,假如聚合物层为一干膜,在贴合至晶圆上的前,可以先在一张干膜中形成孔洞,所以在这种方式并不需要进行曝光与显影。另,由于可以形成聚合物层95在保护层5上,因此位于保护层5上的最下方的图案化金属层80可以形成在由聚合物层95的上表面所提供的较为平坦的平面上,所以可以防止图案化金属层80的相邻线路间产生漏电流的现象,以及防止图案化金属层80与保护层下的细线路金属结构之间产生耦合的情形,因此可以提供较好的电性(electricalperformance)。然而在某些应用上,也可省略聚合物层95而节省费用。聚合物层开口950是对准在保护层开口50,且聚合物层开口950可以是大于或小于保护层开口50。此外,保护层开口50与聚合物层开口950的形成方式也可以是先沉积聚合物层95在保护层5上,接着形成聚合物层开口950,最后再形成保护层开口50,而在此方式中,聚合物层开口950的尺寸约与保护层开口50的尺寸相同。Next, please refer back to FIG. 15C to FIG. 15L , which disclose the manufacturing steps of forming the structure 8 above the protective layer on the completed wafer 10 (as shown in FIG. 15A or FIG. 15B ). Each patterned metal layer 80 is formed using a relief process (as opposed to a damascene copper process under passivation layer 5). Referring to FIG. 15C , a polymer layer 95 is deposited on the passivation layer 5 and exposes the metal pads 600 exposed by the passivation layer opening 50 through the polymer layer opening 950 . If the polymer is in liquid form, it can be deposited by spin coating or printing, and if the polymer is a dry film, the dry film can be deposited by lamination to form. For the photosensitive polymer, the polymer layer 95 is exposed through the light of an alignment machine or a one-time (1X) stepper exposure machine through the photomask, and forms a polymer layer in the polymer layer 95 by developing. The opening 950; when the polymer is not optically sensitive, a photoresist must be used, and the opening 950 in the polymer layer must be patterned by a conventional lithography process. The way of patterning the polymer layer can be the following way: before coating the photoresist, a hard mask (hardmask, such as a silicon monoxide layer, not shown in the figure) can be selectively deposited on the polymer layer 95, The hard mask has a slow etch rate during etching of the polymer layer opening. In addition, the way of patterning the polymer layer 95 (that is, the polymer layer 95 has the polymer layer opening 950) can also use the screen printing method, by using a metal screen with patterned holes (hole) ( metalscreen) to form, and the method of screen printing does not require exposure and development. In addition, if the polymer layer is a dry film, holes can be formed in a dry film before lamination to the wafer, so exposure and development are not required in this way. In addition, since the polymer layer 95 can be formed on the protective layer 5, the lowermost patterned metal layer 80 on the protective layer 5 can be formed on a relatively flat plane provided by the upper surface of the polymer layer 95, Therefore, it is possible to prevent leakage current between adjacent lines of the patterned metal layer 80, and to prevent coupling between the patterned metal layer 80 and the thin line metal structure under the protective layer, thereby providing better electrical properties. (electrical performance). In some applications, however, polymer layer 95 may be omitted to save cost. The polymer layer opening 950 is aligned with the protective layer opening 50 , and the polymer layer opening 950 may be larger or smaller than the protective layer opening 50 . In addition, the protective layer opening 50 and the polymer layer opening 950 may also be formed by first depositing the polymer layer 95 on the protective layer 5, then forming the polymer layer opening 950, and finally forming the protective layer opening 50. In this way In the polymer layer opening 950, the size of the opening 950 is about the same as the size of the protective layer opening 50.

请同时参阅图15D至图15H所示,其是公开出形成图案化金属层801的一浮凸制程。在图15D中,沉积一黏着/阻障/种子层8011在聚合物层95上、在聚合物层开口950中以及在保护层开口50中,其中以溅镀为沉积形成黏着/阻障/种子层8011的较佳方式。对于形成厚金属层的材质为金时,黏着/阻障/种子层8011的形成是先利用溅镀方式形成厚度3,000埃(

Figure A20071000367700681
)的一钛钨合金或钛的黏着/阻障层,接着再溅镀形成厚度1,000埃的一金种子层。对于形成厚金属层的材质为铜时,黏着/阻障/种子层8011的形成是先利用溅镀方式形成厚度500埃的一铬金属的黏着/阻障层、形成厚度1,000埃的一钛金属的黏着/阻障层或者是形成厚度3,000埃的一钛钨合金的黏着/阻障层,接着再溅镀形成厚度5,000埃的一铜种子层。图15E是公开出一光阻层71沉积且图案化在黏着/阻障/种子层8011的种子层上。光阻层71是以旋转涂布的方式涂布形成,接着利用一对准机或一倍(1X)步进曝光机进行曝光,并再进行显影后,在光阻层71中形成光阻层开口710。光阻层开口710是用来定义后续制程中与聚合物层开口950与保护层开口50接触的金属线路或平面的形成,而且此接触是在暴露出的金属接垫600上,并连接此暴露出的金属接垫600。图15F中,以电镀的方式形成一厚金属层8012在光阻层开口710所暴露出的种子层上。此厚金属层8012可以是厚度介于1.5微米至50微米之间的一金层,或者是厚度介于2微米至200微米之间的一铜层。一防护/阻障层(cap/barrierlayer,图中未示)可利用电镀或无电电镀的方式选择性形成在厚金属层8012上。一组装/接触层(assembly/contactlayer,图中未示)也可利用电镀或无电电镀的方式进一步地选择性形成在厚金属层8012以及防护/阻障层上。此组装/接触层可以是厚度介于0.01微米至5微米之间的一金层、一钯层或一钌层。接着,如图15G所示,去除光阻层71。继续,在图15H中,利用自我对准(self-aligned)湿蚀刻或干蚀刻的方式,去除未被厚金属层8012覆盖的黏着/阻障/种子层8011。当利用湿蚀刻方式进行去除时,在图案化金属层801侧壁的底部会形成凹陷部(undercut)8011’,其中此凹陷部8011’是位于厚金属层8012下方,而当使用异向性干蚀刻(anisotropiesdryetch)时,则不会有上述的凹陷部8011’的产生。Please also refer to FIG. 15D to FIG. 15H , which disclose an embossing process for forming the patterned metal layer 801 . In FIG. 15D, an adhesion/barrier/seed layer 8011 is deposited on the polymer layer 95, in the polymer layer opening 950 and in the protective layer opening 50, wherein the adhesion/barrier/seed is formed by sputtering. Layer 8011 is preferred. When the material for forming the thick metal layer is gold, the adhesion/barrier/seed layer 8011 is first formed by sputtering to a thickness of 3,000 angstroms (
Figure A20071000367700681
) of a titanium-tungsten alloy or titanium adhesion/barrier layer, followed by sputtering to form a gold seed layer with a thickness of 1,000 angstroms. When the material for forming the thick metal layer is copper, the formation of the adhesion/barrier/seed layer 8011 is to first form a chromium metal adhesion/barrier layer with a thickness of 500 angstroms by sputtering, and form a titanium metal with a thickness of 1,000 angstroms. The adhesion/barrier layer or a titanium-tungsten alloy adhesion/barrier layer with a thickness of 3,000 angstroms is formed, followed by a copper seed layer with a thickness of 5,000 angstroms by sputtering. FIG. 15E discloses that a photoresist layer 71 is deposited and patterned on the seed layer of the adhesion/barrier/seed layer 8011 . The photoresist layer 71 is coated and formed by spin coating, and then exposed by an alignment machine or a double (1X) stepper exposure machine, and then developed to form a photoresist layer in the photoresist layer 71 Opening 710 . The photoresist layer opening 710 is used to define the formation of metal lines or planes in contact with the polymer layer opening 950 and the protective layer opening 50 in subsequent processes, and this contact is on the exposed metal pad 600, and connects the exposed metal pad 600. out of the metal pad 600 . In FIG. 15F , a thick metal layer 8012 is formed on the seed layer exposed by the photoresist layer opening 710 by electroplating. The thick metal layer 8012 can be a gold layer with a thickness between 1.5 microns and 50 microns, or a copper layer with a thickness between 2 microns and 200 microns. A cap/barrier layer (not shown in the figure) can be selectively formed on the thick metal layer 8012 by means of electroplating or electroless plating. An assembly/contact layer (assembly/contact layer, not shown in the figure) can also be further selectively formed on the thick metal layer 8012 and the protection/barrier layer by means of electroplating or electroless plating. The assembly/contact layer can be a gold layer, a palladium layer or a ruthenium layer with a thickness between 0.01 microns and 5 microns. Next, as shown in FIG. 15G, the photoresist layer 71 is removed. Continuing, in FIG. 15H , the adhesion/barrier/seed layer 8011 not covered by the thick metal layer 8012 is removed by self-aligned wet etching or dry etching. When wet etching is used for removal, an undercut 8011' will be formed at the bottom of the sidewall of the patterned metal layer 801, wherein the undercut 8011' is located under the thick metal layer 8012, and when using an anisotropic dry During etching (anisotropiesdryetch), the above-mentioned depressions 8011' will not be generated.

请同时参阅图15I与图15J所示,其是公开出以图15C至图15H所述的制程而形成一聚合物层98以及图案化金属层802的步骤。另,图15I与图15J所示的制程可以重复用在形成第三金属层、第四金属层或者是更多的金属层上。如果保护层上方结构8仅包括两金属层(图案化金属层801与图案化金属层802),一防护聚合物层(cappolymerlayer)99沉积在图案化金属层802(现在的最顶端)以及未被图案化金属层802所覆盖的聚合物层98上,如图15K所示。聚合物层开口990是形成在顶端聚合物层99中,并暴露出作为连接外部电路的接触接垫8000。在某些应用上,例如当厚金属层8012为金时,可选择性省略顶端聚合物层99。图15K是公开出同时具有细线路结构6与保护层上方结构8的晶圆,其是以顶端聚合物层99的聚合物层开口990暴露出接触接垫8000。Please refer to FIG. 15I and FIG. 15J at the same time, which disclose the steps of forming a polymer layer 98 and patterning the metal layer 802 by using the process described in FIG. 15C to FIG. 15H . In addition, the process shown in FIG. 15I and FIG. 15J can be repeatedly used to form the third metal layer, the fourth metal layer or more metal layers. If the structure 8 above the protective layer only includes two metal layers (patterned metal layer 801 and patterned metal layer 802), a protective polymer layer (cappolymer layer) 99 is deposited on the patterned metal layer 802 (now the topmost) and is not covered. The polymer layer 98 covered by the patterned metal layer 802 is shown in FIG. 15K . Polymer layer openings 990 are formed in the top polymer layer 99 and expose contact pads 8000 for connecting external circuits. In some applications, such as when the thick metal layer 8012 is gold, the top polymer layer 99 may be optionally omitted. FIG. 15K discloses a wafer having both fine line structures 6 and overpass structures 8 , which expose contact pads 8000 through polymer layer openings 990 in the top polymer layer 99 .

将晶圆锯切(切割)成复数个单独芯片,此单独芯片的接触接垫8000可利用下列所述的方式连接外部电路,其是为:(1)一打线制程的打线导线(金线、铝线或铜线);(2)其它基底上的凸块(金凸块、铜凸块、焊料凸块或其它金属凸块),此基底可以是硅芯片、硅基底、陶瓷基底、有机基底、球型栅状数组(BGA)基底、可挠性(flexible)基底、可挠性卷带(flexibletape)或玻璃基底,且位于此基底上的凸块高度是介于1微米至30微米之间,而以介于5微米至20微米之间为较佳者;(3)其它基底上的柱体(金柱、铜柱、焊料柱或其它金属柱),此基底可以是硅芯片、硅基底、陶瓷基底、有机基底、球型栅状数组(BGA)基底、可挠性(flexible)基底、可挠性卷带(flexibletape)或玻璃基底,且位于此基底上的柱体高度是介于10微米至200微米之间,而以介于30微米至120微米之间为较佳者;(4)一导线架(leadframe)或一可挠性卷带(flexibletape)的金属导线端上的凸块(金凸块、铜凸块、焊料凸块或其它金属凸块),此基底上的凸块高度是介于1微米至30微米之间,而以介于5微米至20微米之间为较佳者。The wafer is sawed (cut) into a plurality of individual chips, and the contact pad 8000 of this individual chip can be connected to an external circuit in the following manner, which is: (1) a bonding wire (gold) of a bonding process wire, aluminum wire or copper wire); (2) bumps on other substrates (gold bumps, copper bumps, solder bumps or other metal bumps), which can be silicon chips, silicon substrates, ceramic substrates, Organic substrate, ball grid array (BGA) substrate, flexible substrate, flexible tape (flexibletape) or glass substrate, and the bump height on this substrate is between 1 micron and 30 microns between, and preferably between 5 microns and 20 microns; (3) pillars (gold pillars, copper pillars, solder pillars or other metal pillars) on other substrates, which can be silicon chips, Silicon substrate, ceramic substrate, organic substrate, ball grid array (BGA) substrate, flexible (flexible) substrate, flexible tape (flexibletape) or glass substrate, and the height of the post on this substrate is between Between 10 microns and 200 microns, preferably between 30 microns and 120 microns; (4) on the metal wire end of a leadframe or a flexible tape Bumps (gold bumps, copper bumps, solder bumps or other metal bumps), the bump height on the substrate is between 1 micron and 30 microns, and between 5 microns and 20 microns is the better one.

在某些应用中,形成在接触接垫8000上的接触结构89可用在连接外部电路,如图15L所示。一凸块底层金属层(UBM)891形成在接触结构89下,用以作为黏着和扩散阻障的用。此接触结构89可以是:(1)利用电镀或网板印刷方式形成的焊料接垫(厚度介于0.1微米至30微米之间,而以介于1微米至10微米之间为较佳者),或者是焊料凸块(高度介于10微米至200微米之间,而以介于30微米至120微米之间为较佳者)。接着,再利用一回焊(solderreflow)制程将其形成一球形的焊料球(ball-shapedsolderball)。焊料接垫或焊料凸块可以是:1.含铅量高的焊料(highleadsolfer),例如含有重量百分比超过85%的铅成份的锡铅合金(PbSn);2.共晶焊料(eutectic),例如含有重量百分比约37%的铅成份与重量百分比约63%的焊料成份的锡铅合金;3.无铅焊料(lead-freesolder),例如锡银合金(SnAg)或锡铜银合金(SnCuAg)。另,凸块底层金属层891可以是下列所述的复合层(由下到上的排列),包括:钛/镍、钛/铜/镍、钛钨合金/镍、钛钨合金/铜/镍、钛/镍/金、钛/铜/镍/金、钛钨合金/镍/金、钛钨合金/铜/镍/金、钛/铜/镍/钯、钛钨合金/铜/镍/钯、铬/铬铜合金、镍钒合金/铜、镍/铜、镍钒合金/金、镍/金或镍/钯;(2)利用电镀方式形成的金接垫(厚度介于0.1微米至10微米之间,而以介于1微米至5微米之间为较佳者),或者是金凸块(高度介于5微米至40微米之间,而以介于10微米至20微米之间为较佳者)。此外,凸块底层金属层891可以是:钛、钛钨合金、钽、氮化钽、钛/铜/镍的复合层(由下到上的排列)或钛钨合金/铜/镍的复合层(由下到上的排列);(3)利用植球制程(ballmounting)形成的金属球(metalball)。此金属球可以是一焊料球、表面涂布一镍层的一铜球(copperball)、表面涂布一镍层与一焊料层的一铜球或者是表面涂布一镍层与一金层的一铜球。另,金属球的直径是介于10微米至500微米之间,并以介于50微米至300微米之间为较佳者。此外,金属球可以直接焊接在由聚合物层开口990所暴露出的接触接垫8000的表面上或者是凸块底层金属层891上,而形成来焊接金属球的凸块底层金属层891可以是下列所述的复合层(由下到上的排列),其是包括:钛/镍、钛/铜/镍、钛钨合金/镍、钛钨合金/铜/镍、钛/镍/金、钛/铜/镍/金、钛钨合金/镍/金、钛钨合金/铜/镍/金、钛/铜/镍/钯、钛钨合金/铜/镍/钯、铬/铬铜合金、镍钒合金/铜、镍/铜、镍钒合金/金、镍/金或镍/钯。另外,在黏着金属球的后,通常会需要进行一回焊(solderreflow)制程。In some applications, the contact structures 89 formed on the contact pads 8000 can be used to connect external circuits, as shown in FIG. 15L. An under bump metallurgy (UBM) 891 is formed under the contact structure 89 to serve as an adhesion and diffusion barrier. The contact structure 89 can be: (1) solder pads formed by electroplating or screen printing (the thickness is between 0.1 micron and 30 microns, and preferably between 1 micron and 10 microns) , or solder bumps (with a height between 10 microns and 200 microns, preferably between 30 microns and 120 microns). Then, a solder reflow process is used to form a spherical solder ball (ball-shaped solder ball). Solder pads or solder bumps may be: 1. High lead solder, such as tin-lead alloy (PbSn) containing more than 85% lead by weight; 2. Eutectic solder, such as A tin-lead alloy containing about 37% by weight of lead and about 63% by weight of solder; 3. lead-free solder, such as tin-silver alloy (SnAg) or tin-copper-silver alloy (SnCuAg). In addition, the UBM layer 891 may be the following composite layers (arranged from bottom to top), including: titanium/nickel, titanium/copper/nickel, titanium-tungsten alloy/nickel, titanium-tungsten alloy/copper/nickel , titanium/nickel/gold, titanium/copper/nickel/gold, titanium-tungsten alloy/nickel/gold, titanium-tungsten alloy/copper/nickel/gold, titanium/copper/nickel/palladium, titanium-tungsten alloy/copper/nickel/palladium , chrome/chrome-copper alloy, nickel-vanadium alloy/copper, nickel/copper, nickel-vanadium alloy/gold, nickel/gold or nickel/palladium; microns, preferably between 1 micron and 5 microns), or gold bumps (height between 5 microns and 40 microns, preferably between 10 microns and 20 microns) whichever is better). In addition, the UBM layer 891 can be: titanium, titanium-tungsten alloy, tantalum, tantalum nitride, titanium/copper/nickel composite layer (arranged from bottom to top) or titanium-tungsten alloy/copper/nickel composite layer (Arrangement from bottom to top); (3) Metal balls formed by ballmounting. The metal ball can be a solder ball, a copper ball coated with a nickel layer, a copper ball coated with a nickel layer and a solder layer, or a nickel layer and a gold layer coated on the surface. A copper ball. In addition, the diameter of the metal ball is between 10 microns and 500 microns, preferably between 50 microns and 300 microns. In addition, the metal balls can be directly soldered on the surface of the contact pad 8000 exposed by the polymer layer opening 990 or on the UBM layer 891, and the UBM layer 891 formed to solder the metal balls can be The following composite layers (arranged from bottom to top) include: titanium/nickel, titanium/copper/nickel, titanium-tungsten alloy/nickel, titanium-tungsten alloy/copper/nickel, titanium/nickel/gold, titanium /copper/nickel/gold, titanium-tungsten alloy/nickel/gold, titanium-tungsten alloy/copper/nickel/gold, titanium/copper/nickel/palladium, titanium-tungsten alloy/copper/nickel/palladium, chromium/chrome-copper alloy, nickel Vanadium alloy/copper, nickel/copper, nickel vanadium alloy/gold, nickel/gold or nickel/palladium. In addition, after attaching the metal balls, a solder reflow process is usually required.

在形成接触结构89的后,利用锯切或切割的方式分割晶圆上的芯片,以进行封装或组装来连接到外部电路,其中组装的方法可以是打线(连接至外部有机、陶瓷、玻璃或硅基底上的接垫,或者是连接至一导线架或一可挠性卷带的导线)、卷带自动接合(TAB)、卷带式芯片载体(tape-chip-carrier,TCP)封装、玻璃覆晶封装(COG)、芯片直接封装(COB)、球门阵列基板覆晶封装(flipchiponBGAsubstrate)、薄膜覆晶接合(COF)、薄膜覆晶封装(chiponflex)、堆栈型多芯片封装结构(chip-on-chipstackinterconnection)、硅基底上堆栈型芯片封装结构(chip-on-Si-substratestackinterconnection)等等。After forming the contact structure 89, the chip on the wafer is divided by sawing or dicing to be packaged or assembled to be connected to an external circuit, wherein the method of assembly can be wire bonding (connected to an external organic, ceramic, glass or pads on a silicon substrate, or wires connected to a lead frame or a flexible tape), tape automated bonding (TAB), tape-chip-carrier (TCP) packaging, Chip-on-Glass (COG), Chip-on-Chip (COB), Chip-on-Gallery Substrate (flipchiponBGAsubstrate), Chip-on-Film (COF), Chip-on-Film (chiponflex), Stacked Multi-Chip Packaging (chip- on-chipstackinterconnection), stacked chip packaging structure on a silicon substrate (chip-on-Si-substratestackinterconnection) and so on.

在图15C至图15K中所示的浮凸制程中,其是公开出形成一图案化金属层的步骤是为:形成黏着/阻障/种子层一次,随后形成一光阻层以及电镀此图案化金属层也是只有一次,最后再去除光阻层,并将未被图案化金属层覆盖的黏着/阻障/种子层去除。此种型式的制程称为单次浮凸制程(single-embossprocess),也即此制程在去除未被图案化金属层覆盖的黏着/阻障/种子层的前,仅包括一次的微影制程以及一次的电镀制程。In the embossing process shown in FIG. 15C to FIG. 15K, it is disclosed that the steps of forming a patterned metal layer are: forming an adhesion/barrier/seed layer once, followed by forming a photoresist layer and electroplating the pattern The metallization layer is also only once, and finally the photoresist layer is removed, and the adhesion/barrier/seed layer not covered by the patterned metal layer is removed. This type of process is called a single-emboss process (single-emboss process), that is, the process includes only one lithography process and One-time electroplating process.

一双浮凸制程(double-embossingprocess)可以通过同一黏着/阻障/种子层来形成一图案化金属层与一金属栓塞(viaplug),而在去除未被图案化金属层覆盖的黏着/阻障/种子层的前,完成两次的微影制程以及电镀制程,其中第一次的微影制程与电镀制程是用来形成图案化金属层,而第二次的微影制程与电镀制程则是用来形成金属栓塞。A double-embossing process can form a patterned metal layer and a metal plug (viaplug) through the same adhesion/barrier/seed layer, while removing the adhesion/barrier/viaplug not covered by the patterned metal layer Before the seed layer, two lithography processes and electroplating processes are completed. The first lithography process and electroplating process are used to form a patterned metal layer, while the second lithography process and electroplating process are used. to form a metal plug.

请同时参阅图16A至图16D所示,其是公开出在如图15A或图15B所示的晶圆10上形成保护层上方结构8的双浮凸制程。双浮凸制程有和图15C至图15G所示的单次制程相同的制作步骤。在图15G中,其是将光阻去除,并留下未在厚金属层8012下的黏着/阻障/种子层8011。至此双浮凸制程的步骤开始与单次浮凸制程有所不同,请同时参阅图16A至第16L图所示,其是公开出凭借使用一双浮凸制程形成图案化金属层801与金属栓塞898,以及使用一单次浮凸制程形成最顶端的金属层802的方式,形成本发明所有实施例中保护层上方的图案化金属层结构的一范例。利用第一次的微影制程与电镀制程形成图案化金属层801,如图15D至图15G所示。接着,请同时参阅图16A与图16B所示,在黏着/阻障/种子层8011的种子层以及利用电镀形成的厚金属层8012上,沉积一光阻层72,并对此光阻层72进行图案化,使光阻层72:(1)在厚金属层8012上形成光阻层开口720,并利用光阻层开口720暴露出厚金属层8012;以及/或是(2)在黏着/阻障/种子层8011的种子层上形成光阻层开口720’,并利用此光阻层开口720’暴露出黏着/阻障/种子层8011的种子层。继续,在光阻层72移除的前,实施第二次电镀制程以在光阻层开口720内形成金属栓塞898。另外,在黏着/阻障/种子层8011的种子层上也可形成水平准位低在金属栓塞898的一金属层898’,此金属层898’可用在封装用途上。此金属层898’可以是比厚金属层8012薄,也可以是比厚金属层8012厚,当金属层898’的厚度小于厚金属层8012的厚度时,例如小于5微米(在较佳的情况是介于1微米至3微米之间),金属层898’可以用来制作比厚金属层8012绕线密度高的连接线路(interconnection),然而当金属层898’的厚度大于厚金属层8012的厚度时,例如大于5微米(在较佳的情况是介于5微米至10微米之间),金属层898’可以用来制作比厚金属层8012电阻更低的连接线路。再来,请参阅图16C所示,去除光阻层72,以暴露出厚金属层8012、金属栓塞898、金属层898’以及未在厚金属层8012与金属层898’下的黏着/阻障/种子8011。请参阅图16D所示,利用湿蚀刻(wetetch)以及/或是干蚀刻(dryetch)去除未在厚金属层8012与金属层898’下的黏着/阻障/种子层8011。因此,图案化金属层801、金属栓塞898与金属层898’形成在图16D所示的这个阶段中。继续请参阅图16E所示,一聚合物层98形成在金属栓塞898、金属层898’、图案化金属层801以及暴露出的第一聚合物层95上。请参阅图16F所示,利用研磨、机械研磨或化学机械研磨制程,平坦化聚合物层98的表面,直至暴露出金属栓塞898为止。再来,请同时参阅图16G至第16K图所示,其是公开出利用如图15C至图15K所述的相同单次浮凸制程形成一图案化金属层802的制作步骤。继续,请参阅第16L图所示,最后沉积且图案化一顶端聚合物层99以完成一具有两图案化金属层801、802的保护层上方结构8。此外,在组装(assembly)以及/或是封装上,也可如图15L所示,形成一接触结构89在聚合物层开口990暴露出的接触接垫8000上。另,图15D至图15G和图16A至图16D所述的用来形成图案化金属层801以及金属栓塞898的双浮凸制程的制作步骤,也可重复使用在形成第二图案化金属层(最顶端的金属层)与第二金属栓塞(图中未示)上,且此第二金属栓塞可以用来作为连接至外部电路的接触结构。最后,有关图16A至第16L图的叙述与解说是适用在本发明的所有实施例中。Please also refer to FIG. 16A to FIG. 16D , which disclose a double embossing process for forming the structure 8 above the protective layer on the wafer 10 as shown in FIG. 15A or FIG. 15B . The double embossing process has the same fabrication steps as the single process shown in FIGS. 15C to 15G . In FIG. 15G , the photoresist is removed, leaving the adhesion/barrier/seed layer 8011 not under the thick metal layer 8012 . So far, the steps of the double embossing process are different from those of the single embossing process. Please also refer to FIG. 16A to FIG. , and using a single embossing process to form the topmost metal layer 802, forming an example of the patterned metal layer structure above the passivation layer in all embodiments of the present invention. A patterned metal layer 801 is formed by the first lithography process and electroplating process, as shown in FIGS. 15D to 15G . Next, please refer to FIG. 16A and FIG. 16B at the same time, on the seed layer of the adhesion/barrier/seed layer 8011 and the thick metal layer 8012 formed by electroplating, a photoresist layer 72 is deposited, and the photoresist layer 72 Perform patterning to make the photoresist layer 72: (1) form a photoresist layer opening 720 on the thick metal layer 8012, and use the photoresist layer opening 720 to expose the thick metal layer 8012; and/or (2) in the adhesion/ A photoresist layer opening 720 ′ is formed on the seed layer of the barrier/seed layer 8011 , and the seed layer of the adhesion/barrier/seed layer 8011 is exposed through the photoresist layer opening 720 ′. Next, before the photoresist layer 72 is removed, a second electroplating process is performed to form a metal plug 898 in the photoresist layer opening 720 . In addition, a metal layer 898' whose level is lower than the metal plug 898 can also be formed on the seed layer of the adhesion/barrier/seed layer 8011, and the metal layer 898' can be used for packaging purposes. This metal layer 898' can be thinner than the thick metal layer 8012, also can be thicker than the thick metal layer 8012, when the thickness of the metal layer 898' is less than the thickness of the thick metal layer 8012, such as less than 5 microns (in a preferred situation is between 1 micron to 3 microns), the metal layer 898' can be used to make a connection line (interconnection) with a higher winding density than the thick metal layer 8012, but when the thickness of the metal layer 898' is greater than that of the thick metal layer 8012 With a thickness, eg, greater than 5 microns (and preferably between 5 microns and 10 microns), the metal layer 898 ′ can be used to make connection lines with lower resistance than the thick metal layer 8012 . Next, as shown in FIG. 16C, the photoresist layer 72 is removed to expose the thick metal layer 8012, the metal plug 898, the metal layer 898' and the adhesion/barrier/ Seed 8011. Referring to FIG. 16D , the adhesion/barrier/seed layer 8011 not under the thick metal layer 8012 and the metal layer 898' is removed by wet etching and/or dry etching. Thus, patterned metal layer 801, metal plug 898 and metal layer 898' are formed at this stage shown in FIG. 16D. Referring to FIG. 16E , a polymer layer 98 is formed on the metal plug 898 , the metal layer 898 ′, the patterned metal layer 801 and the exposed first polymer layer 95 . Referring to FIG. 16F , the surface of the polymer layer 98 is planarized by grinding, mechanical grinding or chemical mechanical grinding until the metal plug 898 is exposed. Next, please refer to FIG. 16G to FIG. 16K , which disclose the manufacturing steps of forming a patterned metal layer 802 using the same single embossing process as described in FIG. 15C to FIG. 15K . Continuing, as shown in FIG. 16L , finally a top polymer layer 99 is deposited and patterned to complete an overpass structure 8 with two patterned metal layers 801 , 802 . In addition, during assembly and/or packaging, as shown in FIG. 15L , a contact structure 89 may be formed on the contact pad 8000 exposed by the polymer layer opening 990 . 15D to 15G and 16A to 16D for forming the patterned metal layer 801 and the metal plug 898 of the double embossing process manufacturing steps can also be used repeatedly to form the second patterned metal layer ( The topmost metal layer) and a second metal plug (not shown in the figure), and the second metal plug can be used as a contact structure connected to an external circuit. Finally, the descriptions and illustrations related to Figures 16A to 16L are applicable to all embodiments of the present invention.

请参阅图17A至图17J所示,其是公开出一保护层上方结构8形成图案化金属层801、图案化金属层802以及图案化金属层803的制程步骤,其中图案化金属层801与图案化金属层802是利用一双浮凸制程来形成,而图案化金属层803则是利用一单次浮凸制程来形成。首先,如图15D至图15G和图16A至图16D所述,利用第一次的双浮凸制程来形成图案化金属层801以及金属栓塞898。接着,如图16E至图16F所示的制程步骤,在形成一聚合物层98的后,平坦化此聚合物层98,直至暴露出金属栓塞898为止。继续请参阅图17A所示,在形成图案化金属层802前的制程步骤是与图16F以双浮凸制程形成图案化金属层801、金属栓塞898与聚合物层98的制程步骤相同。然而,为了能容纳一额外的金属层,图17A的图案化金属层801与金属栓塞898的设计是略微地与图16F的图案化金属层801与金属栓塞898的设计有所不同。再来,请同时参阅图17A至图17G所示,重复图15D至图15G和图16A至图16D所述的制程步骤以形成一图案化金属层802、一金属栓塞897和一聚合物层97,并暴露出金属栓塞897。在图17A中,其是以下列方式形成:(1)沉积一黏着/阻障/种子层8021;(2)沉积并图案化一光阻层;(3)在此光阻层内的开口电镀一厚金属层8022;以及(4)去除此光阻层,以形成如图17A所示的结构。再来,请参阅图17B所示,沉积并图案化一光阻层74,以形成光阻层开口740在厚金属层8022上,或者是直接形成光阻层开口740’在黏着/阻障/种子层8021的种子层上。请参阅图17C,利用电镀的方式,在光阻层开口740与光阻层开口740’内形成金属栓塞897与金属层897’,且此金属层897’可以用来作为与金属层898’相同的用途。请同时参阅图17D至图17E所示,去除光阻层74,并将未在厚金属层8022与金属层897’下的黏着/阻障/种子层8021去除。请同时参阅图17F至图17G所示,再来沉积一聚合物层97,并平坦化此聚合物层97,直至暴露金属栓塞897为止。接着,请同时参阅图17H至图17I所示,其是公开出使用一单次浮凸制程来形成一图案化金属层803的步骤,叙述如下:(1)沉积黏着/阻障/种子层8031;(2)沉积并图案化一光阻层;(3)电镀形成一厚金属层8032;以及(4)去除光阻层,并以自我对准蚀刻(self-alignedetch)的方式去除未在厚金属层8032下的黏着/阻障/种子层8031。最后,请参阅图17J所示,其是公开出凭借沉积一顶端聚合物层99,以及图案化顶端聚合物层99形成聚合物层开口990暴露出作为连接线路(interconnection)连接至外部电路的一接触接垫8000的一完整结构。Please refer to FIG. 17A to FIG. 17J , which disclose the process steps of forming a patterned metal layer 801, a patterned metal layer 802, and a patterned metal layer 803 on a protective layer structure 8, wherein the patterned metal layer 801 and the pattern The metallization layer 802 is formed using a double embossing process, while the patterned metal layer 803 is formed using a single embossing process. First, as described in FIGS. 15D to 15G and FIGS. 16A to 16D , the first double embossing process is used to form the patterned metal layer 801 and the metal plug 898 . Next, in the process steps shown in FIG. 16E to FIG. 16F , after forming a polymer layer 98 , the polymer layer 98 is planarized until the metal plug 898 is exposed. Please continue referring to FIG. 17A , the process steps before forming the patterned metal layer 802 are the same as the process steps of forming the patterned metal layer 801 , the metal plug 898 and the polymer layer 98 by the double embossing process in FIG. 16F . However, in order to accommodate an additional metal layer, the design of the patterned metal layer 801 and metal plug 898 of FIG. 17A is slightly different from the design of the patterned metal layer 801 and metal plug 898 of FIG. 16F . Next, please refer to FIG. 17A to FIG. 17G at the same time, repeat the process steps described in FIG. 15D to FIG. 15G and FIG. 16A to FIG. 16D to form a patterned metal layer 802, a metal plug 897 and a polymer layer 97, And exposed the metal plug 897. In FIG. 17A, it is formed by: (1) depositing an adhesion/barrier/seed layer 8021; (2) depositing and patterning a photoresist layer; (3) plating openings in the photoresist layer a thick metal layer 8022; and (4) removing the photoresist layer to form the structure shown in FIG. 17A. Next, as shown in FIG. 17B, a photoresist layer 74 is deposited and patterned to form a photoresist layer opening 740 on the thick metal layer 8022, or directly form a photoresist layer opening 740' in the adhesion/barrier/seed layer 8021 on the seed layer. Please refer to FIG. 17C, metal plug 897 and metal layer 897' are formed in photoresist layer opening 740 and photoresist layer opening 740' by electroplating, and this metal layer 897' can be used as the same metal layer 898' the use of. Please also refer to FIG. 17D to FIG. 17E , the photoresist layer 74 is removed, and the adhesion/barrier/seed layer 8021 not under the thick metal layer 8022 and the metal layer 897' is removed. Please also refer to FIG. 17F to FIG. 17G , then deposit a polymer layer 97 and planarize the polymer layer 97 until the metal plug 897 is exposed. Next, please refer to FIG. 17H to FIG. 17I at the same time, which disclose the steps of forming a patterned metal layer 803 using a single embossing process, described as follows: (1) depositing adhesion/barrier/seed layer 8031 ; (2) depositing and patterning a photoresist layer; (3) forming a thick metal layer 8032 by electroplating; Adhesion/barrier/seed layer 8031 under metal layer 8032. Finally, please refer to FIG. 17J , which discloses a polymer layer opening 990 formed by depositing a top polymer layer 99 and patterning the top polymer layer 99 to expose a connection to an external circuit as an interconnection. A complete structure of the contact pad 8000.

请参阅图18A至图18I所示,其是公开出一保护层上方结构形成图案化金属层801、图案化金属层802以及图案化金属层803的另一种制程步骤,其中图案化金属层801与图案化金属层803是利用一单次浮凸制程来形成,而第二层金属层则是利用一双浮凸制程来形成。首先请参阅图18A所示,其是利用如图15D至图15H所述的单次浮凸制程来形成图案化金属层801。接着,以图15I所述的制程步骤,沉积形成一聚合物层98,并对聚合物层98进行图案化,以形成聚合物层开口980暴露出图案化金属层801。然而,为了能容纳一额外的金属层,图18A的图案化金属层801与聚合物层开口980的设计是略微地与图15I的图案化金属层801与聚合物层开口980的设计有所不同。再来,请参阅图18B至图18G所示,其是公开出使用一双浮凸制程来形成一图案化金属层802以及一金属栓塞897的制程步骤,并叙述如下:(1)请参阅图18B所示,沉积形成一黏着/阻障/种子层8021;(2)请参阅图18C所示,沉积一光阻层72,并对光阻层72进行图案化以形成光阻层开口720,接着在光阻层72的光阻层开口720内电镀一厚金属层8022;以及(3)去除光阻层72,以形成如图18D所示的结构。再来,请参阅图18E所示,沉积形成一光阻层73,并图案化此光阻层73以形成光阻层开口730在厚金属层8022上,以及/或是形成光阻层开口730’在黏着/阻障/种子层8021的种子层上。继续,利用电镀的方式,在光阻层开口730、730’内形成金属栓塞897与金属层(metal piece)897’,而此金属层897’可以用来作为如图16D所述的金属层898’的相同用途。请参阅图18F至图18G所示,去除光阻层73,以及将未在厚金属层8022与金属层897’下的黏着/阻障/种子层8021去除。请参阅图18H所示,再来沉积一聚合物层97,并平坦化此聚合物层97直至暴露金属栓塞897为止。最后,请参阅图18I所示,其是公开出利用图17H至图17I所述的单次浮凸制程形成图案化金属层803,并凭借沉积一顶端聚合物层99以及图案化此顶端聚合物层99形成聚合物开口990暴露出作为连接线路(interconnection)连接至外部电路的一接触接垫8000的一完整结构。Please refer to FIG. 18A to FIG. 18I , which disclose another process step for forming a patterned metal layer 801, a patterned metal layer 802, and a patterned metal layer 803 on a structure above a protective layer, wherein the patterned metal layer 801 The patterned metal layer 803 is formed by a single embossing process, and the second metal layer is formed by a double embossing process. First, please refer to FIG. 18A , which uses a single embossing process as described in FIGS. 15D to 15H to form a patterned metal layer 801 . Next, a polymer layer 98 is deposited and patterned by the process steps described in FIG. 15I , and the polymer layer 98 is patterned to form a polymer layer opening 980 exposing the patterned metal layer 801 . However, in order to accommodate an additional metal layer, the design of the patterned metal layer 801 and polymer layer opening 980 of FIG. 18A is slightly different from the design of the patterned metal layer 801 and polymer layer opening 980 of FIG. 15I. . Next, please refer to FIG. 18B to FIG. 18G , which disclose the process steps of using a double embossing process to form a patterned metal layer 802 and a metal plug 897, and are described as follows: (1) Please refer to FIG. 18B (2) Referring to FIG. 18C, a photoresist layer 72 is deposited, and the photoresist layer 72 is patterned to form a photoresist layer opening 720, and then Electroplating a thick metal layer 8022 in the photoresist opening 720 of the photoresist layer 72; and (3) removing the photoresist layer 72 to form the structure shown in FIG. 18D . Next, as shown in FIG. 18E, a photoresist layer 73 is formed by deposition, and the photoresist layer 73 is patterned to form a photoresist layer opening 730 on the thick metal layer 8022, and/or form a photoresist layer opening 730' On the seed layer of the adhesion/barrier/seed layer 8021. Continue to use electroplating to form a metal plug 897 and a metal piece 897' in the photoresist layer openings 730, 730', and this metal piece 897' can be used as the metal layer 898 as shown in FIG. 16D ' for the same purpose. Referring to FIG. 18F to FIG. 18G , the photoresist layer 73 is removed, and the adhesion/barrier/seed layer 8021 not under the thick metal layer 8022 and the metal layer 897' is removed. Referring to FIG. 18H , a polymer layer 97 is then deposited, and the polymer layer 97 is planarized until the metal plug 897 is exposed. Finally, please refer to FIG. 18I, which discloses the formation of patterned metal layer 803 by using the single embossing process described in FIG. 17H to FIG. 17I, and by depositing a top polymer layer 99 and patterning the top polymer Layer 99 forms a polymeric opening 990 exposing a complete structure of a contact pad 8000 as an interconnection to external circuitry.

请同时参阅图19A至图19G所示,其是公开出在如图15A或图15B所示的晶圆10上形成一保护层上方结构8的制程,其中图案化金属层801是利用一双浮凸制程来形成,而图案化金属层802则是利用一单次浮凸制程来形成。首先,在图19A中,利用图15D至图15G和图16A至图16F所述的双浮凸制程步骤形成图案化金属层801、金属栓塞898、金属层898’和聚合物层98。接着,请同时参阅图19A至第19G图所示,其是利用如图15C至图15K所述的相同单次浮凸制程步骤形成一图案化金属层802、一聚合物层97、一顶部顶端聚合物层99与一聚合物层开口990暴露出接触接垫8000,在此不再详加叙述。Please also refer to FIG. 19A to FIG. 19G , which disclose a process for forming a structure 8 above a protective layer on the wafer 10 as shown in FIG. 15A or FIG. 15B , wherein the patterned metal layer 801 uses a double relief process, while the patterned metal layer 802 is formed using a single embossing process. First, in FIG. 19A , a patterned metal layer 801, a metal plug 898, a metal layer 898' and a polymer layer 98 are formed using the double embossing process steps described in FIGS. 15D-15G and 16A-16F. Next, please refer to FIG. 19A to FIG. 19G at the same time, which uses the same single embossing process steps as described in FIG. 15C to FIG. 15K to form a patterned metal layer 802, a polymer layer 97, and a top top The polymer layer 99 and a polymer layer opening 990 expose the contact pads 8000 , which will not be described in detail here.

最后,请参阅图19H所示,将晶圆锯切(切割)成复数个单独芯片,并通过单独芯片上的接触接垫8000连接外部电路,例如利用一打线制程的打线导线89’(如金线、铝线或铜线)连接外部电路。Finally, as shown in FIG. 19H , the wafer is sawed (cut) into a plurality of individual chips, and the external circuits are connected through the contact pads 8000 on the individual chips, for example, the bonding wires 89'( Such as gold wire, aluminum wire or copper wire) to connect external circuits.

以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are only illustrative rather than restrictive to the present invention. Those skilled in the art understand that many changes, modifications, and even equivalents can be made within the spirit and scope defined by the claims of the present invention, but all will fall within the protection scope of the present invention.

Claims (30)

1. circuit pack, it is characterized in that: it comprises:
One first electrostatic storage deflection (ESD) protection circuit, it comprises a power supply node and a ground connection node;
One internal circuit, it comprises a power supply node and a ground connection node;
One first metallic circuit connects the described power supply node of described first electrostatic storage deflection (ESD) protection circuit;
One second metallic circuit connects the described ground connection node of described first electrostatic storage deflection (ESD) protection circuit;
One the 3rd metallic circuit connects the described power supply node of described internal circuit;
One the 4th metallic circuit connects the described ground connection node of described internal circuit;
One protective layer is positioned on described first electrostatic storage deflection (ESD) protection circuit, described first metallic circuit, described second metallic circuit, described the 3rd metallic circuit and described the 4th metallic circuit;
One five metals belongs to circuit, is positioned on the described protective layer, and described first metallic circuit belongs to circuit by described five metals and is connected to described the 3rd metallic circuit; And
One the 6th metallic circuit is positioned on the described protective layer, and described second metallic circuit is connected to described the 4th metallic circuit by described the 6th metallic circuit.
2. circuit pack according to claim 1 is characterized in that: it is a aluminium lamination or a bronze medal layer between 0.05 micron to 2 microns that described first metallic circuit, described second metallic circuit, described the 3rd metallic circuit and described the 4th metallic circuit layer are respectively thickness.
3. circuit pack according to claim 1 is characterized in that: the material that described five metals belongs to circuit and described the 6th metallic circuit be respectively gold, copper, silver, platinum, palladium or nickel one of them or and form.
4. circuit pack according to claim 1, wherein, the material of described protective layer comprises a nitrogen silicon compound or an oxygen silicon compound.
5. circuit assembly structure according to claim 1 is characterized in that: comprise that also one first polymeric layer of thickness between 2 microns to 100 microns belongs between the circuit at described protective layer and described five metals.
6. circuit assembly structure according to claim 1 is characterized in that: also comprise thickness between the second polymer layer between 2 microns to 100 microns between described protective layer and described the 6th metallic circuit.
7. circuit assembly structure according to claim 6 is characterized in that: described the 6th metallic circuit is positioned at described five metals and belongs to the circuit top, and described the second polymer layer also belongs between circuit and described the 6th metallic circuit at described five metals.
8. circuit pack according to claim 1 is characterized in that: comprise that also a terpolymer layer is positioned at described five metals and belongs on circuit and described the 6th metallic circuit.
9. circuit pack according to claim 1; it is characterized in that: comprise that also one second electrostatic storage deflection (ESD) protection circuit, one the 7th metallic circuit and one the 8th metallic circuit are positioned under the described protective layer; described the 7th metallic circuit and described the 8th metallic circuit are connected the power supply node and the ground connection node of described second electrostatic storage deflection (ESD) protection circuit respectively; described five metals belongs to circuit and connects described the 7th metallic circuit, and described the 6th metallic circuit connects described the 8th metallic circuit.
10. circuit pack according to claim 9 is characterized in that: it is a aluminium lamination or a bronze medal layer between 0.05 micron to 2 microns that described the 7th metallic circuit and described the 8th metallic circuit are respectively thickness.
11. circuit pack according to claim 1 is characterized in that: described first electrostatic storage deflection (ESD) protection circuit and described second electrostatic storage deflection (ESD) protection circuit comprise a reverse blas diode respectively.
12. circuit pack according to claim 1 is characterized in that: also comprise siliceous described first electrostatic storage deflection (ESD) protection circuit of substrate-loading.
13. a circuit pack, it is characterized in that: it comprises:
One first electrostatic storage deflection (ESD) protection circuit comprises a power supply node and a ground connection node and a signal contact;
One internal circuit;
One chip connects external circuit, comprises one first signal contact and one second signal contact;
One first metallic circuit connects the described power supply node of described first electrostatic storage deflection (ESD) protection circuit;
One second metallic circuit connects the described ground connection node of described first electrostatic storage deflection (ESD) protection circuit;
One the 3rd metallic circuit connects the described signal contact of described first electrostatic storage deflection (ESD) protection circuit and the described first signal contact that described chip connects external circuit;
One the 4th metallic circuit connects described internal circuit;
One protective layer is positioned on described first electrostatic storage deflection (ESD) protection circuit, described first metallic circuit, described second metallic circuit, described the 3rd metallic circuit and described the 4th metallic circuit; And
One five metals belongs to circuit, is positioned on the described protective layer, and described chip connects external circuit and belongs to circuit by described five metals and be connected to described the 4th metallic circuit.
14. circuit pack according to claim 13 is characterized in that: it is a aluminium lamination or a bronze medal layer between 0.05 micron to 2 microns that described first metallic circuit, described second metallic circuit, described the 3rd metallic circuit and described the 4th metallic circuit are respectively thickness.
15. circuit pack according to claim 13 is characterized in that: the material that described five metals belongs to circuit is gold, copper, silver, platinum, palladium or nickel one of them or and composition.
16. circuit pack according to claim 13 is characterized in that: the material of described protective layer is one of them or and combination of a nitrogen silicon compound and an oxygen silicon compound.
17. circuit assembly structure according to claim 13 is characterized in that: comprise that also one first polymeric layer of thickness between 2 microns to 100 microns belongs between the circuit at described protective layer and described five metals.
18. circuit pack according to claim 13 is characterized in that: comprise that also a second polymer layer is positioned at described five metals and belongs on the circuit.
19. circuit pack according to claim 13 is characterized in that: comprise that also siliceous described first electrostatic storage deflection (ESD) protection circuit of substrate-loading, described internal circuit and a described chip connects external circuit.
20. a circuit pack, it is characterized in that: it comprises:
One static discharge assembly comprises a power supply node and a ground connection node;
One internal circuit comprises a power supply node and a ground connection node;
One first metallic circuit connects the power supply node of described internal circuit;
One second metallic circuit connects the ground connection node of described internal circuit;
One protective layer is positioned on described static discharge assembly, described internal circuit, described first metallic circuit and described second metallic circuit;
One the 3rd metallic circuit be positioned at the power supply node that connects described static discharge assembly under the described protective layer, and described the 3rd metallic circuit comprises that at least one first metallic pad is exposed in one first opening of described protective layer;
One the 4th metallic circuit be positioned at the ground connection node that connects described static discharge assembly under the described protective layer, and described the 4th metallic circuit comprises that at least one second metallic pad is exposed in one second opening of described protective layer;
One five metals belongs to circuit, be positioned at described protective layer top, and described five metals belongs to circuit and comprises one the 3rd metallic pad, described the 3rd metallic pad is electrically connected described first metallic pad, the described first metallic pad position that do not coexist, described the 3rd metallic pad position, described the 3rd metallic pad comprise that thickness is greater than a first metal layer of 1.5 microns;
One the 6th metallic circuit, be positioned at described protective layer top, and described the 6th metallic circuit comprises one the 4th metallic pad, described the 4th metallic pad is electrically connected described first metallic pad, the described second metallic pad position that do not coexist, described the 4th metallic pad position, described the 4th metallic pad comprise that thickness is greater than 1.5 microns one second metal level;
One first lead is positioned on described the 3rd metallic pad; And
One second lead is positioned on described the 4th metallic pad.
21. circuit pack according to claim 20 is characterized in that: it is a aluminium lamination or a bronze medal layer between 0.05 micron to 2 microns that described first metallic circuit, described second metallic circuit, described the 3rd metallic circuit and described the 4th metal wire are respectively thickness.
22. circuit pack according to claim 20 is characterized in that: the material that described five metals belongs to circuit and described the 6th metallic circuit be respectively gold, copper, silver, platinum, palladium or nickel one of them or and form.
23. circuit assembly structure according to claim 20 is characterized in that: described the first metal layer and described second metal level be respectively thickness between 1.5 microns to 15 microns a gold medal layer, a bronze medal layer, a silver layer, a platinum layer, a palladium layer or a nickel dam one of them or and form.
24. circuit pack according to claim 20 is characterized in that: described five metals belongs to circuit and described the 6th metallic circuit and is respectively thickness and is positioned at described the first metal layer bottom between 0.02 micron to 0.8 micron a titanium-tungsten layer, a titanium coating, titanium nitride layer, a tantalum metal layer, tantalum nitride layer, a chromium metal level, a chrome copper layer.
25. circuit pack according to claim 20 is characterized in that: the material of described protective layer is one of them or and combination of a nitrogen silicon compound and an oxygen silicon compound.
26. circuit assembly structure according to claim 20 is characterized in that: comprise that also thickness belongs between circuit and described the 6th metallic circuit at described protective layer and described five metals between one first polymeric layer between 2 microns to 100 microns.
27. circuit pack according to claim 20 is characterized in that: described internal circuit comprises a NOR gate, one or the door, one and lock, NAND gate, sram cell, one DRAM (Dynamic Random Access Memory) unit, one non-volatile memory cell, one flash cell, one Erasable ﹠Programmable ROM unit, one ROM unit, one magnetic RAM unit, one sensing amplifier, one operational amplifier, one operational amplifier, one adder, one multiplexer, one duplexer, one multiplier, one analog/digital converter, one digital/analog converter, one complementary metal oxide semiconductor, one photodiode, a pair of BiCMOS thing semiconductor, an one inner tristate buffer and a two-carrier circuit, one inverter, one inner drive, one inner acceptor unit one of them or and the combination.
28. circuit pack according to claim 20 is characterized in that: comprise that also a second polymer layer is positioned at described five metals and belongs on circuit and described the 6th metallic circuit.
29. circuit pack according to claim 20 is characterized in that: described static discharge assembly is a reverse blas diode.
30. circuit pack according to claim 20 is characterized in that: also comprise a siliceous described static discharge assembly of substrate-loading and a described internal circuit.
CN2007100036770A 2007-01-23 2007-01-23 a circuit assembly Expired - Fee Related CN101231995B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100036770A CN101231995B (en) 2007-01-23 2007-01-23 a circuit assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100036770A CN101231995B (en) 2007-01-23 2007-01-23 a circuit assembly

Publications (2)

Publication Number Publication Date
CN101231995A true CN101231995A (en) 2008-07-30
CN101231995B CN101231995B (en) 2011-02-09

Family

ID=39898328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100036770A Expired - Fee Related CN101231995B (en) 2007-01-23 2007-01-23 a circuit assembly

Country Status (1)

Country Link
CN (1) CN101231995B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390086A (en) * 2013-07-26 2013-11-13 上海宏力半导体制造有限公司 Modeling method of resistance model

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509354A (en) * 1997-12-16 2002-03-26 インフィネオン テクノロジース アクチエンゲゼルシャフト Electric integrated circuit and method of manufacturing the electric integrated circuit
CN100547781C (en) * 2004-11-30 2009-10-07 联华电子股份有限公司 Integrated circuit structure with switching welding pad arranged right above active circuit
KR100739925B1 (en) * 2005-04-18 2007-07-16 주식회사 하이닉스반도체 Nonvolatile Memory Devices Prevent Damage from Plasma Charges
CN101231998B (en) * 2007-01-23 2011-01-26 米辑电子股份有限公司 a circuit assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390086A (en) * 2013-07-26 2013-11-13 上海宏力半导体制造有限公司 Modeling method of resistance model
CN103390086B (en) * 2013-07-26 2018-01-26 上海华虹宏力半导体制造有限公司 The modeling method of Resistance model for prediction

Also Published As

Publication number Publication date
CN101231995B (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US8618580B2 (en) Integrated circuit chips with fine-line metal and over-passivation metal
TWI478313B (en) Integrated circuit chip using top post-passivation technology and bottom structure technology
CN101231993B (en) a circuit assembly
US8013449B2 (en) Post passivation interconnection schemes on top of the IC chips
CN101231998B (en) a circuit assembly
US7521805B2 (en) Post passivation interconnection schemes on top of the IC chips
CN101231994A (en) Circuit assembly
CN101231997B (en) a circuit assembly
CN101231996B (en) a circuit assembly
CN101231995A (en) Circuit assembly
TWI344686B (en) Circuit component and process for forming the same
US20090032939A1 (en) Method of forming a stud bump over passivation, and related device
CN101312170A (en) Circuit assembly
CN101312174A (en) Circuit assembly

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MEIGETE ACQUIRING CORPORATION

Free format text: FORMER OWNER: MEGICA CORP.

Effective date: 20131202

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20131202

Address after: American California

Patentee after: Megat acquires the Co.

Address before: Taiwan, China

Patentee before: Miji Electronics Co.,Ltd.

ASS Succession or assignment of patent right

Owner name: QUALCOMM INC.

Free format text: FORMER OWNER: MEIGETE ACQUIRING CORPORATION

Effective date: 20140820

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140820

Address after: American California

Patentee after: QUALCOMM Inc.

Address before: American California

Patentee before: Megat acquires the Co.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110209

Termination date: 20220123

CF01 Termination of patent right due to non-payment of annual fee