CN101208794B - Si:C-OI和SGOI上的硅器件及其制造方法 - Google Patents
Si:C-OI和SGOI上的硅器件及其制造方法 Download PDFInfo
- Publication number
- CN101208794B CN101208794B CN200480034036.6A CN200480034036A CN101208794B CN 101208794 B CN101208794 B CN 101208794B CN 200480034036 A CN200480034036 A CN 200480034036A CN 101208794 B CN101208794 B CN 101208794B
- Authority
- CN
- China
- Prior art keywords
- island
- layer
- substrate
- sige
- pfet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/80—Heterojunction BJTs
- H10D10/821—Vertical heterojunction BJTs
- H10D10/891—Vertical heterojunction BJTs comprising lattice-mismatched active layers, e.g. SiGe strained-layer transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
- H10D30/0278—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs forming single crystalline channels on wafers after forming insulating device isolations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/751—Insulated-gate field-effect transistors [IGFET] having composition variations in the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/792—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions comprising applied insulating layers, e.g. stress liners
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/795—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in lateral device isolation regions, e.g. STI
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/798—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being provided in or under the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/83—FETs having PN junction gate electrodes
- H10D30/832—Thin-film junction FETs [JFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0128—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/035—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon carbide [SiC] technology
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/201—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
- Element Separation (AREA)
- Recrystallisation Techniques (AREA)
- Electroluminescent Light Sources (AREA)
- Illuminated Signs And Luminous Advertising (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
提供了一种半导体结构和制造方法。此制造方法包括在衬底中形成浅沟槽隔离(STI)(25)以及在衬底上提供第一材料(30)和第二材料(40)。用热退火工艺,将第一材料(30)和第二材料(40)混合到衬底中,以便分别在nFET区和pFET区处形成第一岛(50)和第二岛(55)。不同的材料层被形成在第一岛(50)和第二岛(55)上。STI弛豫并有利于第一岛(50)和第二岛(55)的弛豫。第一材料(30)可以是淀积的或生长的Ge材料,而第二材料(40)可以是淀积的或生长的Si:C或C。应变Si层被形成在第一岛(50)和第二岛(55)至少之一上。
Description
技术领域
本发明一般涉及到半导体器件及其制造方法,更确切地说是涉及到半导体器件及其在器件制作过程中将张应力和压应力施加在器件中的制造方法。
背景技术
半导体器件衬底内的机械应力能够调制器件性能。亦即,已知半导体器件内的应力可增强半导体器件的特性。于是,为了改善半导体器件的特性而在n型器件(例如nFET)和/或p型器件(例如pFET)的沟道中产生张应力和/或压应力。但相同的应力分量,张应力或压应力,对n型器件和p型器件的影响是有差别的。
为了尽可能提高集成电路(IC)芯片内的nFET和pFET二者的性能,对于nFET和pFET应该不同地施加应力分量。亦即,因为对nFET性能有利的应力类型通常对于pFET的性能不利。更确切地说,当器件处于伸张时(例如沿平面器件中电流流动的方向),nFET的性能特性被增强,而pFET的性能特性被削弱。为了选择性地在nFET中产生张应力而在pFET中产生压应力,采用了不同的工艺和不同的材料组合。
例如,已经提出了一种沟槽隔离结构来分别在nFET和pFET中形成适当的应力。当采用此方法时,nFET的隔离区包含第一隔离材料,将第一类型的机械应力沿纵向(例如平行于电流电流的方向)和沿横向(例如垂直于电流流动方向)施加在nFET上。而且,为pFET提供了第一隔离区和第二隔离区,且pFET的各个隔离区将特有的机械应力沿横向和纵向施加在pFET上。
作为变通,已经提出了栅侧壁上的衬里来在FET器件沟道中选择性地诱发适当的应力(见例如Ootsuka et al.,IEDM 2000,p.575)。与由于沟槽隔离填充技术而施加的应力相比,借助于提供衬里,适当的应力被施加得更靠近器件。
而且,已经提出了许多建议分别用张应力和压应力来改善nFET和pFET二者的器件性能,这些建议包括用掩模分别对二种MOSFET调制隔板本征应力和改变STI(浅沟槽隔离)材料。弛豫SiGe上的张应变Si也已经被提出作为施加这种应力的一种方法。不幸的是,弛豫SiGe上的张应变Si仅仅能够将双轴张应力施加在用于叠层形式中的Si帽层上。由于pFET对应力的灵敏度,这就限制了可使用的Ge百分比范围。NFET的性能随双轴伸张而单调地改善;但pFET随双轴伸张而退化,直至大约3GPa才开始改善。
为了同时改善pFET和nFET,Ge百分比必须高,大约要高于25-30%(或等效于应力大约高于3-4GPa)。这种水平的Ge百分比难以在工艺中实现,且不太可能制造,其主要问题包括表面粗糙度、工艺复杂性、缺陷、以及成品率控制等等。已知高的Ge百分比难以用于pFET(由于可能因为伸张程度比较低而不利),故必须提出其它的方法来改善器件的性能。
此外,已知Si:C外延生长在Si上而固有地伸张。Si:C/Si材料叠层中1%的C含量能够在Si:C中引起约为500Mpa的张应力水平。相比之下,为了引起500Mpa的压力,在SiGe/Si系统中需要大约6%。如论文Ernst et al.,VLSI Symp.,2002,p.92中所示,此1%水平的C能够在外延生长过程中被组合到硅中。在Ernst的论文中,Si/Si:C/Si位于nFET的层状沟道中。但结构的Si:C部分不被弛豫。而是在Ernst的论文中,未被弛豫的Si:C被用作具有非常薄的Si帽层的沟道本身部分。此方法的问题在于,依赖于C含量,迁移率由于散射而不被提高反而被降低。
虽然这些方法确实提供了具有施加到nFET器件的张应力和沿pFET纵向施加的压应力的结构,但可能要求额外的材料和/或更复杂的工艺,从而导致更高的成本。而且,这些情况下所能够施加的应力的水平典型地是中等的(亦即约为一百MPa量级)。于是希望提供成本-效率更好且简化的方法来分别在nFET和pFET沟道中产生大的张应力和压应力。
发明内容
在本发明的第一情况下,制造结构的方法包括在衬底中形成浅沟槽隔离(STI)以及在衬底上提供第一材料和第二材料。用热退火工艺,第一材料和第二材料被混合到衬底中,以便分别在nFET区和pFET区处形成第一岛和第二岛。不同材料层被形成在第一岛和第二岛上。此STI弛豫并便于第一岛和第二岛的弛豫。在一个实施方案中,第一材料是淀积或生长的Ge材料,而第二材料是淀积或生长的Si:C或C。
在另一情况下,制造结构的方法包括用第一材料形成衬底和衬底中的浅沟槽隔离。在pFET区和nFET区上形成第二材料,然后被热退火到衬底中,以便形成混合材料的第一岛和第二岛。Si层被生长在第一区中的第一岛上。此Si层被应变。
在另一情况下,制造方法包括形成衬底和衬底中的由高温稳定的非晶材料优选为氧化物组成的浅沟槽隔离。此方法还包括将至少一种材料热退火到衬底中,以便形成混合材料的第一岛和第二岛,并在至少第一岛上生长Si层。此Si层被应变。在这些实施方案中:
(i)至少一种材料是Ge,且第一岛和第二岛基本上由弛豫SiGe的混合材料组成,
(ii)至少一种材料是C或Si:C,且第一岛和第二岛基本上由弛豫Si:C的混合材料组成,且
(iii)至少一种材料是Ge和Si:C或C,且第一岛基本上由SiGe组成,而第二岛基本上由Si:C组成。
在本发明的另一情况下,半导体结构包括衬底和形成在衬底中的由高温稳定的非晶材料优选为氧化物组成的弛豫的浅沟槽隔离。热退火混合材料的第一岛被形成在pFET区处的衬底中,而热退火混合材料的第二岛被形成在nFET区处的衬底中。应变Si层被形成在至少第一岛和第二岛之一上。
附图说明
图1-6表示形成根据本发明的中间结构的制造工艺;
图7-11表示形成根据本发明另一情况的中间结构的制造工艺;而
图12a和12b是本发明的代表性结构。
具体实施方式
本发明的目的是一种在CMOS器件的nFET沟道和pFET沟道中提供所希望的应力来改善器件性能的半导体器件及其制造方法。在一种方法中,通过将淀积的Ge材料热混合到SOI薄膜中而得到了SiGe岛。同样,通过将淀积的Si:C或C热混合到Si或SOI薄膜中而得到了Si:C岛。利用本发明的方法,所要求的Ge百分比不大,因而不引起缺陷问题。而且,利用本发明能够分别得到pFET和nFET沟道中的SiGe和/或Si:C岛的弛豫,从而与满铺(SiGe或Si:C)衬底相比,提供了改进的性能。这是因为在本发明的执行过程中,提供了例如高温热混合步骤,使浅沟槽隔离(STI)能够弛豫并便于SiGe和Si:C岛的弛豫。
在本发明之前,来实现具有不同的弛豫晶格(不同的原子间尺度)的至少二个晶体岛的安置只能用其中各岛具有比较大的尺寸的晶片键合技术;但在本发明中,此方法产生了具有小的晶体岛的独特衬底,这些小的晶体岛具有弛豫的但不同的晶体结构。在一种执行过程中,这种结构的非凡要点是采用岛之间的高温稳定的非晶材料例如二氧化硅和采用绝缘体上晶体结构。这种具有不同(晶体)岛的独特结构使得能够安置可选地不同的晶体的不同应变的层。在第一情况下,不同应变的层是伸张的和压缩的Si层。在本发明的另一情况下,不同的层是伸张的Si层和SiGe层或压缩的Si层和Si:C层。
本发明对于在绝缘体上制作具有多个晶格常数的各岛的衬底,具有创新的重要的贡献。例如,在本发明中,第一岛(晶体1)的晶格常数为a≥aSi,而第二岛(晶体2)的晶格常数为a≤aSi。在本发明的一种情况下,如下面更详细地讨论的那样,本发明的Si外延层能够分别张应变地和压应变地被选择性生长在SiGe和Si:C上。这一特定应用例如可适合于应变的平面nFET和pFET。
此外,应该理解的是,已知空穴在SiGe中具有优异的迁移率,但在这种材料上难以形成可靠的热基氧化物。然而,在本发明的一种执行过程中,淀积了一种高K材料介质,致使有可能让仅仅用于pFET的弛豫的SiGe(晶体1)与一起用于nFET的晶体1(还是弛豫的SiGe)和张应变Si彼此串列。。本发明还试图将Si:C与具有压应力的Si用于pFET。于是,本发明能够归纳出多晶格常数岛衬底的概念。
现在参照图1,示出了一种硅晶片。这种晶片是用于各种分立半导体器件和集成电路(IC)半导体器件应用的市售初始衬底。在一种执行过程中,可以用SIMOX(用注入的氧来分离)工艺来制作玻璃上硅(SOI),此工艺采用氧的高剂量离子注入和高温退火,以便在本体晶片中形成BOX层。作为另一例子,可以借助于将器件质量的硅晶片键合到其表面上具有氧化物层的另一硅晶片(衬底层),来制作晶片。然后,利用在衬底层上的氧化物层(现在已经成为BOX)顶部上留下一个薄的(相对于初始晶片的厚度)器件质量的单晶硅层的工艺,来分离此成对的晶片。也可以用其它的工艺来形成SOI晶片。
仍然参照图1,Si层20被形成且图形化,以便周标准的衬垫氧化;衬垫氮化物淀积;基于光刻的图形化;由氮化物、氧化物、以及硅所组成的叠层向下达及埋置氧化物的反应离子刻蚀;边沿氧化;衬里淀积;填充淀积;以及化学机械抛光技术,来形成浅沟槽隔离(STI)25。此STI形成工艺在本技术领域中是众所周知的。在一种执行过程中,高温稳定的非晶材料例如二氧化硅被用于STI。
参照图2,利用诸如化学气相淀积方法之类的常规技术,外延Ge材料(层)30被淀积在结构的表面上。例如,超高真空化学气相淀积(UHVCVD)可以以常规的方式被用来淀积Ge层30。其它的常规技术包括快速热化学气相淀积(RTCVD)、有限反应加工CVD(LRPCVD)、以及分子束外延(MBE)。在一个实施方案中,依赖于例如可以为30-100nm的下方Si层的厚度,Ge材料的厚度可以是5-50nm或其它的尺度。
nFET硬掩模35被提供在部分Ge层30上(例如要形成nFET器件处)。nFET硬掩模35可以是用诸如甩涂、CVD、等离子体辅助CVD、超高真空化学气相淀积(UHVCVD)、快速热化学气相淀积(RTCVD)、有限反应加工CVD(LRPCVD)、以及其它相似淀积工艺之类的常规淀积工艺所形成的氮化物硬掩模。
在图3中,暴露的Ge层30被腐蚀,并用本技术领域所知的技术剥离nFET掩模35。例如,可以用RIE、湿法腐蚀、或干法腐蚀方法来选择性地腐蚀Ge层30。
如图4所示,Si:C材料40(或可选地为C)被淀积在衬底上,包括淀积在外延淀积的Ge材料35上。例如,可以以常规的方式用超高真空化学气相淀积(UHVCVD)来淀积Si:C(或可选地为C)材料40,其它的常规技术包括快速热化学气相淀积(RTCVD)、有限反应加工CVD(LRPCVD)、以及其它类似的工艺。在一个实施方案中,依赖于例如可以为30-100nm的下方Si层的厚度,此Si:C或C材料的厚度可以是5-50nm或其它的尺度。在另一情况下,当采用C时,厚度可以是1-30nm。
pFET硬掩模45被提供在部分Si:C材料40上要形成pFET器件处。pFET硬掩模45可以是用诸如甩涂、CVD、等离子体辅助CVD、超高真空化学气相淀积(UHVCVD)、快速热化学气相淀积(RTCVD)、有限反应加工CVD(LRPCVD)、以及其它相似淀积工艺之类的常规淀积工艺所形成的氮化物硬掩模。
如图5所示,暴露的Si:C层40然后被腐蚀,并用本技术领域所知的技术剥离pFET掩模45。例如,可以用诸如RIE、湿法腐蚀、或干法腐蚀之类的标准腐蚀技术来腐蚀Si:C和pFET。
然后在图6中,此结构经历热退火工艺。在此工艺过程中,对于nFET,淀积的Ge材料30被混合到下方SOI膜中,以便形成基本上是SiGe材料的岛50。同样,在此工艺过程中,对于pFET,淀积的Si:C或可选的C材料被混合到下方SOI膜中,形成基本上是Si:C材料的岛55。例如在大约1200-1350℃下进行1-10小时的热退火工艺,在一种执行过程中是在1200℃进行大约5小时。
利用本发明的方法,对于nFET,所要求的Ge百分比不大(例如小于25%,而在一种执行过程中为10-20%),因而不引起缺陷问题。而且,由于高温热混合步骤,故例如STI 25能够弛豫,从而便于SiGe岛50和Si:C岛55的弛豫。这部分地是由于STI包含氧化物材料,此氧化物材料在高温下是一种粘滞材料,例如在高温下成为一种低粘滞性材料。
而且,现在应该理解的是,SiGe岛50和Si:C岛55具有不同的弛豫晶格(不同的原子间距),这就产生了具有小的晶体岛的独特的衬底。与满铺(SiGe或Si:C)衬底相比,SiGe岛50和Si:C岛55的弛豫提供了改进的性能。在一种执行过程中,根据本发明因而采用了SiGe岛50与Si:C岛55之间例如为SiO2的高温稳定的非晶材料以及绝缘体上晶体结构。
如图6进一步所示,用已知的工艺,Si外延层60被选择性生长在SiGe岛50和Si:C岛55上。在本发明的一种情况下,此选择性生长的Si外延层60将在SiGe岛和Si:C岛上分别张应变和压应变。Si层60的厚度可以是例如5-20nm。正如所有的尺度之类那样,例如依赖于下方衬底的厚度而设想了本发明可以采用的其它尺度和温度等。
现在在执行过程中,SiGe岛50的晶格常数为a≥aSi,而Si:C岛55的晶格常数为a≤aSi。亦即,单独存在时,Si的晶格常数通常小于SiGe的晶格常数,亦即,Si材料的晶格常数与SiGe层的晶格常数不匹配。但在本发明的结构中,Si层的晶格结构将倾向于与SiGe岛的晶格结构匹配。于是,由于Si(通常较小)对SiGe层的晶格匹配,Si层就被置于张应力下。此区域将起nFET的应变沟道的作用。在一个实施方案中,SiGe层的Ge含量对Si含量的比率可以小于25%。
而且,单独存在时,Si的晶格常数通常大于Si:C岛的晶格常数。亦即,Si材料的晶格常数与Si:C的晶格常数不匹配。但在本发明的结构中,Si层的晶格结构将倾向于与Si:C的晶格结构匹配。由于Si(通常较大)对Si:C岛的晶格拟合,Si层就被置于压应力下。亦即,相似于SiGe的情况,Si:C岛的周围区域将试图达到平衡状态,从而导致形成在Si:C岛上的外延Si层的压应力。此区域将起pFET的应变沟道的作用。在一个实施方案中,淀积的C含量对Si含量的比率可以直至大约4%。
图7-11示出了本发明的另一情况。在图7中,示出了诸如SOI的硅晶片。如在先前所述的结构中那样,可以用SIMOX工艺或其它熟知的工艺来制作此SOI。Si层20被图形化,以便用标准的衬垫氧化;衬垫氮化物淀积;基于光刻的图形化;由氮化物、氧化物、以及硅所组成的叠层向下达及埋置氧化物的反应离子刻蚀(RIE);边沿氧化;衬里淀积;填充淀积;以及化学机械抛光技术,来形成浅沟槽隔离(STI)25。此STI形成工艺在本技术领域中是众所周知的。
参照图8,pFET掩模40被提供在部分结构上要形成pFET器件处。此pFET硬掩模可以用诸如化学气相淀积方法之类的常规技术来淀积。例如,这些技术可以包括甩涂、CVD、等离子体辅助CVD、蒸发、超高真空化学气相淀积(UHVCVD)、快速热化学气相淀积(RTCVD)、有限反应加工CVD(LRPCVD)、以及其它相似淀积工艺。
利用常规技术,外延Ge层30被选择性地生长在要形成nFET的暴露表面上。在一个实施方案中,依赖于例如可以为30-100nm的下方Si层的厚度,Ge材料的厚度可以是5-50nm或其它的尺度。如前面所述,用众所周知的工艺来剥离硬掩模45。
在图9中,nFET掩模35被提供在部分结构上要形成nFET器件处。如通篇所讨论的和一般熟练人员应该知道的那样,此nFET硬掩模可以用诸如化学气相淀积方法之类的常规技术来淀积。
如上面所讨论的那样,用诸如化学气相淀积方法之类的常规技术,Si:C层40被选择性地生长在结构要形成pFET的暴露表面上。在一个实施方案中,依赖于例如可以为30-100nm的下方Si层的厚度,此Si:C材料的厚度可以是5-50nm或其它的尺度。此C甚至可以更薄为1-50nm。
如图10所示,然后用众所周知的工艺来清除nFET硬掩模35。此结构然后经历热退火工艺。在此退火工艺过程中,对于nFET,Ge材料30被混合到SOI膜中,形成基本上是SiGe材料的岛50。同样,对于pFET,Si:C或可选的C材料被混合到SOI膜中,形成基本上是Si:C材料的岛55。此工艺还形成了一个BOX层作为衬底。例如在大约1200-1350℃下进行1-10小时的热退火工艺,在一种执行过程中是在1200℃进行大约5小时。
如上所述,相似于先前各执行过程,利用本发明的方法,所要求的Ge百分比不大(例如小于25%,而在一种执行过程中为10-20%),因而不引起缺陷问题。而且,由于高温热混合步骤,故例如STI 25能够弛豫,从而便于SiGe岛50和Si:C岛55的弛豫。如先前所述,与满铺(SiGe或Si:C)衬底相比,SiGe和Si:C的弛豫提供了改进的性能。在本发明的一种执行过程中,这种结构的要点是岛之间例如为SiO2的高温稳定的非晶材料以及绝缘体上晶体结构。
如图11进一步所示,Si外延层60被选择性地生长在SiGe岛50和Si:C岛55上。Si层60的厚度可以是例如5-20nm。在本发明的这一情况下,不同的层成为伸张的Si层或压缩的Si层。伸张的Si层将用作nFET的应变沟道,而压缩的Si层将用作pFET的应变沟道。
在本发明的另一情况下,可以在高剂量下将C注入到pFET区中,在热退火时,这能够在Si:C中产生大大高于1-4%的浓度。此剂量可以约为每平方厘米1×1016或以上,例如每平方厘米5×1016。
在图12a的所示例子中,在一种执行过程中,排除了Si:C或C,SiGe可以被用于nFET和pFET二者。在此执行过程中,应变Si将位于nFET区上而不在pFET区上。在制作时,nFET则将处于张应力中。但为了开始器件的制作工艺,高K介质100被选择性地生长在结构上;亦即,高K介质100可以被生长在应变Si层和暴露的SiGe层上。此高K介质100可以是例如氧化锆或氧化铝。
作为变通,排除了SiGe,Si:C可以被用于nFET和pFET二者。在此执行过程中,应变Si将位于pFET区上而不在nFET区上。在制作时,pFET则将处于压应力中。但为了开始器件的制作,高K介质100被选择性地生长在结构上;亦即,高K介质100可以被生长在应变Si层和暴露的Si:C层上。此高K介质100可以是例如氧化锆或氧化铝。图12b也表示了这一点。如上所述,采用Si:C和SiGe的工艺仍然相同。
如图6、图11、图12a和12b所示,所形成的结构是一些根据本发明的原理适应诸如pFET和nFET的半导体器件的制作的中间结构。如本技术众所周知的那样,为了形成最终的器件,可以执行标准的CMOS工艺,以便在结构上形成诸如场效应晶体管之类的器件。例如,这些器件可以包括被应变Si(或Si和SiGe以及Si和Si:C)的半导电沟道分隔开的源区和漏区的离子注入。亦即,nFET将被形成在张应变的Si沟道上,而pFET将被形成在压应变的Si沟道上。栅氧化物被提供在应变Si沟道的顶部,而栅导体被提供在栅氧化物的顶部上。还提供了隔板。这些组成部分在典型的场效应晶体管中都有,为了容易理解FET器件的制作工艺,对于本技术领域的一般熟练人员无须进一步解释。
虽然就实施方案而言已经描述了本发明,但本技术领域的熟练人员可以理解的是,可以在所附权利要求的构思与范围内加以修正来实施本发明。例如,本发明能够被容易地应用于体衬底。
工业应用可能性
本发明可用于半导体器件领域,更确切地说,可应用于在制作过程中将张应力和压应力施加到半导体器件中的半导体器件及其制造方法。
Claims (21)
1.一种制造半导体结构的方法,包括下列步骤:
在衬底中形成浅沟槽隔离(25);
在衬底上提供第一材料(30);
在衬底上提供第二材料(40);
通过热退火工艺,将第一材料(30)和第二材料(40)混合到衬底中,以便分别在nFET区和pFET区处形成第一岛(50)和第二岛(55);以及
在第一岛(50)和第二岛(55)上形成晶格常数不同于第一岛(50)和第二岛(55)的材料层,
其中,浅沟槽隔离(25)弛豫并有利于第一岛(50)和第二岛(55)的弛豫。
2.根据权利要求1的方法,其中,所述第一材料(30)是淀积的Ge材料,而所述第二材料(40)是淀积的Si:C或C。
3.根据权利要求1的方法,其中,所述热退火工艺在1200-1350℃下进行。
4.根据权利要求1的方法,其中,所述形成材料层的步骤是在第一岛(50)和第二岛(55)上生长Si材料层。
5.根据权利要求4的方法,其中,所述第一岛(50)包含SiGe,第二岛(55)包含Si:C,且Si材料层是应变层。
6.根据权利要求1的方法,其中,所述浅沟槽隔离(25)由粘滞性随温度上升而下降的材料组成。
7.根据权利要求4的方法,其中,所述Si材料层在第一岛(50)上被置于张应力中,而在第二岛(55)上被置于压应力中。
8.根据权利要求1的方法,其中,所述第一岛(50)和所述第二岛(55)具有不同的弛豫晶格。
9.根据权利要求1的方法,其中,所述浅沟槽隔离(25)是高温稳定的非晶材料。
10.根据权利要求1的方法,其中,在所述混合步骤之前,第一材料(30)和第二材料(40)被淀积在衬底上。
11.根据权利要求1的方法,其中,在所述混合步骤之前,第一材料(30)和第二材料(40)被生长在衬底上。
12.根据权利要求1的方法,其中,所述第二材料(40)是按照在热退火工艺时产生大于1%但不大于2%的Si:C的浓度的剂量注入的C。
13.根据权利要求1的方法,其中,所述第二材料(40)是按照在热退火工艺时产生大于2%的Si:C的浓度的剂量注入的C。
14.根据权利要求1的方法,其中,所述材料层包括在第一岛(50)和第二岛(55)上选择性生长的Si外延层,此Si外延层具有不同于第一岛(50)和第二岛(55)的晶格常数,使得此选择性生长的Si外延层将分别在第一岛(50)和第二岛(55)上张应变和压应变。
15.根据权利要求1的方法,其中,所述第一岛(50)的晶格常数为a≥aSi,而所述第二岛(55)的晶格常数为a≤aSi。
16.根据权利要求15的方法,其中,所述第一岛(50)由SiGe组成,而所述第二岛(55)由Si:C组成,,SiGe岛和Si:C岛上有选择性生长的Si外延层,Si外延层由于分别与SiGe和Si:C的晶格匹配,而分别处于张应力和压应力下。
17.根据权利要求1的方法,其中,第二岛(55)由Si:C组成,并在热退火工艺时,C的范围为1-4%。
18.一种制造半导体结构的方法,包括下列步骤:
形成衬底;
在衬底中形成高温稳定的非晶材料的浅沟槽隔离;
将至少一种材料热退火到衬底中,以便形成混合材料的第一岛(50)和第二岛(55);以及
至少在第一岛(50)上生长Si层,
使Si层按照压应力和张应力之一应变。
19.根据权利要求18的方法,其中,存在下列情况之一:
所述至少一种材料是Ge,且第一岛(50)和第二岛(55)由弛豫SiGe的混合材料组成,
所述至少一种材料是C或Si:C,且第一岛(50)和第二岛(55)由弛豫Si:C的混合材料组成,以及
所述至少一种材料是Ge和Si:C,或者是Ge和C,且第一岛(50)由SiGe组成,第二岛(55)由Si:C组成。
20.根据权利要求19的方法,其中,所述Si层的晶格常数不同于所述SiGe材料和所述Si:C材料的晶格常数,且衬底也由高温稳定的非晶材料组成。
21.一种通过权利要求18的方法形成的半导体结构。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/715,400 | 2003-11-19 | ||
US10/715,400 US7247534B2 (en) | 2003-11-19 | 2003-11-19 | Silicon device on Si:C-OI and SGOI and method of manufacture |
PCT/US2004/020904 WO2005057612A2 (en) | 2003-11-19 | 2004-06-30 | SILICON DEVICE ON Si:C-OI and SGOI AND METHOD OF MANUFACTURE |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101208794A CN101208794A (zh) | 2008-06-25 |
CN101208794B true CN101208794B (zh) | 2010-04-28 |
Family
ID=34574211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200480034036.6A Expired - Lifetime CN101208794B (zh) | 2003-11-19 | 2004-06-30 | Si:C-OI和SGOI上的硅器件及其制造方法 |
Country Status (8)
Country | Link |
---|---|
US (5) | US7247534B2 (zh) |
EP (1) | EP1685584B1 (zh) |
JP (1) | JP4678877B2 (zh) |
KR (1) | KR100818899B1 (zh) |
CN (1) | CN101208794B (zh) |
AT (1) | ATE455370T1 (zh) |
DE (1) | DE602004025135D1 (zh) |
WO (1) | WO2005057612A2 (zh) |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7482252B1 (en) * | 2003-12-22 | 2009-01-27 | Advanced Micro Devices, Inc. | Method for reducing floating body effects in SOI semiconductor device without degrading mobility |
US7662689B2 (en) | 2003-12-23 | 2010-02-16 | Intel Corporation | Strained transistor integration for CMOS |
JP2005197405A (ja) | 2004-01-06 | 2005-07-21 | Toshiba Corp | 半導体装置とその製造方法 |
JP4177775B2 (ja) * | 2004-03-16 | 2008-11-05 | 株式会社東芝 | 半導体基板及びその製造方法並びに半導体装置 |
US7842537B2 (en) * | 2005-02-14 | 2010-11-30 | Intel Corporation | Stressed semiconductor using carbon and method for producing the same |
US9153645B2 (en) | 2005-05-17 | 2015-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US8324660B2 (en) | 2005-05-17 | 2012-12-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
JP4239203B2 (ja) * | 2005-05-31 | 2009-03-18 | 株式会社東芝 | 半導体装置とその製造方法 |
US7528028B2 (en) * | 2005-06-17 | 2009-05-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Super anneal for process induced strain modulation |
CN101268547B (zh) | 2005-07-26 | 2014-07-09 | 琥珀波系统公司 | 包含交替有源区材料的结构及其形成方法 |
US7638842B2 (en) | 2005-09-07 | 2009-12-29 | Amberwave Systems Corporation | Lattice-mismatched semiconductor structures on insulators |
US20070063277A1 (en) * | 2005-09-22 | 2007-03-22 | International Business Machines Corporation | Multiple low and high k gate oxides on single gate for lower miller capacitance and improved drive current |
FR2892733B1 (fr) * | 2005-10-28 | 2008-02-01 | Soitec Silicon On Insulator | Relaxation de couches |
FR2893181B1 (fr) * | 2005-11-09 | 2008-01-11 | Commissariat Energie Atomique | Procede de realisation de premieres et secondes zones actives semi-conductrices distinctes et utilisation pour la fabrication de structures de type c-mos |
US7560318B2 (en) * | 2006-03-13 | 2009-07-14 | Freescale Semiconductor, Inc. | Process for forming an electronic device including semiconductor layers having different stresses |
WO2007112066A2 (en) | 2006-03-24 | 2007-10-04 | Amberwave Systems Corporation | Lattice-mismatched semiconductor structures and related methods for device fabrication |
US20070238267A1 (en) * | 2006-03-28 | 2007-10-11 | International Business Machines Corporation | Epitaxy of Silicon-Carbon Substitutional Solid Solutions by Ultra-Fast Annealing of Amorphous Material |
US7462522B2 (en) * | 2006-08-30 | 2008-12-09 | International Business Machines Corporation | Method and structure for improving device performance variation in dual stress liner technology |
US8173551B2 (en) | 2006-09-07 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Defect reduction using aspect ratio trapping |
US7875958B2 (en) | 2006-09-27 | 2011-01-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US7799592B2 (en) | 2006-09-27 | 2010-09-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tri-gate field-effect transistors formed by aspect ratio trapping |
WO2008051503A2 (en) | 2006-10-19 | 2008-05-02 | Amberwave Systems Corporation | Light-emitter-based devices with lattice-mismatched semiconductor structures |
US8053327B2 (en) * | 2006-12-21 | 2011-11-08 | Globalfoundries Singapore Pte. Ltd. | Method of manufacture of an integrated circuit system with self-aligned isolation structures |
US8217423B2 (en) | 2007-01-04 | 2012-07-10 | International Business Machines Corporation | Structure and method for mobility enhanced MOSFETs with unalloyed silicide |
US7888197B2 (en) * | 2007-01-11 | 2011-02-15 | International Business Machines Corporation | Method of forming stressed SOI FET having doped glass box layer using sacrificial stressed layer |
US7598142B2 (en) * | 2007-03-15 | 2009-10-06 | Pushkar Ranade | CMOS device with dual-epi channels and self-aligned contacts |
US7485519B2 (en) * | 2007-03-30 | 2009-02-03 | International Business Machines Corporation | After gate fabrication of field effect transistor having tensile and compressive regions |
US8237151B2 (en) | 2009-01-09 | 2012-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
WO2008124154A2 (en) | 2007-04-09 | 2008-10-16 | Amberwave Systems Corporation | Photovoltaics on silicon |
US8304805B2 (en) | 2009-01-09 | 2012-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor diodes fabricated by aspect ratio trapping with coalesced films |
US7825328B2 (en) | 2007-04-09 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
US8329541B2 (en) | 2007-06-15 | 2012-12-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | InP-based transistor fabrication |
WO2009020433A1 (en) * | 2007-08-08 | 2009-02-12 | Agency For Science, Technology And Research | A semiconductor arrangement and a method for manufacturing the same |
JP2010538495A (ja) | 2007-09-07 | 2010-12-09 | アンバーウェーブ・システムズ・コーポレーション | 多接合太陽電池 |
US7622341B2 (en) * | 2008-01-16 | 2009-11-24 | International Business Machines Corporation | Sige channel epitaxial development for high-k PFET manufacturability |
US7993998B2 (en) | 2008-03-06 | 2011-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS devices having dual high-mobility channels |
US7968910B2 (en) * | 2008-04-15 | 2011-06-28 | International Business Machines Corporation | Complementary field effect transistors having embedded silicon source and drain regions |
US8183667B2 (en) | 2008-06-03 | 2012-05-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Epitaxial growth of crystalline material |
US8274097B2 (en) | 2008-07-01 | 2012-09-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US8981427B2 (en) | 2008-07-15 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
EP2151852B1 (en) * | 2008-08-06 | 2020-01-15 | Soitec | Relaxation and transfer of strained layers |
US20100072515A1 (en) | 2008-09-19 | 2010-03-25 | Amberwave Systems Corporation | Fabrication and structures of crystalline material |
US8034697B2 (en) | 2008-09-19 | 2011-10-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of devices by epitaxial layer overgrowth |
US8253211B2 (en) | 2008-09-24 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor sensor structures with reduced dislocation defect densities |
JP5705207B2 (ja) | 2009-04-02 | 2015-04-22 | 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. | 結晶物質の非極性面から形成される装置とその製作方法 |
US20110010761A1 (en) * | 2009-07-09 | 2011-01-13 | Qualcomm Incorporated | Connectivity dependent application security for remote devices |
US20110031503A1 (en) * | 2009-08-10 | 2011-02-10 | International Business Machines Corporation | Device with stressed channel |
JP2011108692A (ja) * | 2009-11-12 | 2011-06-02 | Ulvac Japan Ltd | Cmosデバイス用シリコンウェハの製造方法 |
US8361867B2 (en) * | 2010-03-19 | 2013-01-29 | Acorn Technologies, Inc. | Biaxial strained field effect transistor devices |
US8592292B2 (en) | 2010-09-02 | 2013-11-26 | National Semiconductor Corporation | Growth of multi-layer group III-nitride buffers on large-area silicon substrates and other substrates |
JP5852863B2 (ja) * | 2011-11-28 | 2016-02-03 | 株式会社日立製作所 | 4h−SiC半導体素子及び半導体装置 |
CN102437126A (zh) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | 基于源体异质结的单晶体管dram单元及其制备方法 |
CN102437127A (zh) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | 基于硅-锗硅异质结的单晶体管dram单元及其制备方法 |
US8471342B1 (en) * | 2011-12-09 | 2013-06-25 | GlobalFoundries, Inc. | Integrated circuits formed on strained substrates and including relaxed buffer layers and methods for the manufacture thereof |
US8610172B2 (en) * | 2011-12-15 | 2013-12-17 | International Business Machines Corporation | FETs with hybrid channel materials |
US8828851B2 (en) * | 2012-02-01 | 2014-09-09 | Stmicroeletronics, Inc. | Method to enable the formation of silicon germanium channel of FDSOI devices for PFET threshold voltage engineering |
CN103367154B (zh) * | 2012-03-31 | 2016-03-16 | 中芯国际集成电路制造(上海)有限公司 | 晶体管及其形成方法 |
CN102610530B (zh) * | 2012-04-13 | 2014-08-27 | 电子科技大学 | 一种具有高锗组分的锗硅沟道pmos的制备方法 |
US8680576B2 (en) | 2012-05-16 | 2014-03-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS device and method of forming the same |
US9142400B1 (en) | 2012-07-17 | 2015-09-22 | Stc.Unm | Method of making a heteroepitaxial layer on a seed area |
CN102916039B (zh) * | 2012-10-19 | 2016-01-20 | 清华大学 | 具有氧化铍的半导体结构 |
US8836041B2 (en) | 2012-11-16 | 2014-09-16 | Stmicroelectronics, Inc. | Dual EPI CMOS integration for planar substrates |
US8865561B2 (en) | 2013-03-14 | 2014-10-21 | International Business Machines Corporation | Back-gated substrate and semiconductor device, and related method of fabrication |
US8927363B2 (en) | 2013-05-17 | 2015-01-06 | International Business Machines Corporation | Integrating channel SiGe into pFET structures |
US9536746B2 (en) * | 2014-03-13 | 2017-01-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Recess and epitaxial layer to improve transistor performance |
US9406751B2 (en) * | 2014-06-05 | 2016-08-02 | Stmicroelectronics, Inc. | Method for making strained semiconductor device and related methods |
US9219150B1 (en) * | 2014-09-18 | 2015-12-22 | Soitec | Method for fabricating semiconductor structures including fin structures with different strain states, and related semiconductor structures |
US9818761B2 (en) | 2015-06-25 | 2017-11-14 | International Business Machines Corporation | Selective oxidation for making relaxed silicon germanium on insulator structures |
US10361219B2 (en) | 2015-06-30 | 2019-07-23 | International Business Machines Corporation | Implementing a hybrid finFET device and nanowire device utilizing selective SGOI |
CN106356303B (zh) * | 2015-07-24 | 2019-12-13 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制作方法、电子装置 |
US9472671B1 (en) * | 2015-10-31 | 2016-10-18 | International Business Machines Corporation | Method and structure for forming dually strained silicon |
US9530669B1 (en) * | 2015-11-30 | 2016-12-27 | International Business Machines Corporation | Method of making a semiconductor device having a semiconductor material on a relaxed semiconductor including replacing a strained, selective etchable material, with a low density dielectric in a cavity |
US9704958B1 (en) | 2015-12-18 | 2017-07-11 | International Business Machines Corporation | III-V field effect transistor on a dielectric layer |
US9905672B2 (en) * | 2016-05-23 | 2018-02-27 | Samsung Electronics Co., Ltd. | Method of forming internal dielectric spacers for horizontal nanosheet FET architectures |
US9735062B1 (en) | 2016-06-03 | 2017-08-15 | International Business Machines Corporation | Defect reduction in channel silicon germanium on patterned silicon |
US9842929B1 (en) | 2016-06-09 | 2017-12-12 | International Business Machines Corporation | Strained silicon complementary metal oxide semiconductor including a silicon containing tensile N-type fin field effect transistor and silicon containing compressive P-type fin field effect transistor formed using a dual relaxed substrate |
CN107507806B (zh) * | 2016-06-14 | 2020-06-05 | 西安电子科技大学 | 基于沟道晶向选择的压应变Si CMOS器件及其制备方法 |
CN110024089B (zh) * | 2016-11-30 | 2023-06-27 | 株式会社理光 | 氧化物或氧氮化物绝缘体膜及其形成用涂布液,场效应晶体管及其制造方法 |
US10937876B2 (en) | 2018-10-26 | 2021-03-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Source/drain feature to contact interfaces |
US10847508B2 (en) * | 2018-12-27 | 2020-11-24 | Micron Technology, Inc. | Apparatus with a current-gain layout |
CN110676158B (zh) * | 2019-09-30 | 2022-06-14 | 闽南师范大学 | 一种实现晶格阻断的零气泡Ge/Si异质混合集成方法 |
CN118610268B (zh) * | 2024-08-09 | 2024-11-22 | 杭州积海半导体有限公司 | 一种半导体结构及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399970B2 (en) * | 1996-09-17 | 2002-06-04 | Matsushita Electric Industrial Co., Ltd. | FET having a Si/SiGeC heterojunction channel |
Family Cites Families (157)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3095564B2 (ja) * | 1992-05-29 | 2000-10-03 | 株式会社東芝 | 半導体装置及び半導体装置の製造方法 |
US3602841A (en) | 1970-06-18 | 1971-08-31 | Ibm | High frequency bulk semiconductor amplifiers and oscillators |
JPS58100441A (ja) * | 1981-12-10 | 1983-06-15 | Toshiba Corp | 半導体装置の製造方法 |
US4853076A (en) | 1983-12-29 | 1989-08-01 | Massachusetts Institute Of Technology | Semiconductor thin films |
US4665415A (en) | 1985-04-24 | 1987-05-12 | International Business Machines Corporation | Semiconductor device with hole conduction via strained lattice |
DE3676781D1 (de) | 1985-09-13 | 1991-02-14 | Siemens Ag | Integrierte bipolar- und komplementaere mos-transistoren auf einem gemeinsamen substrat enthaltende schaltung und verfahren zu ihrer herstellung. |
JPS6476755A (en) | 1987-09-18 | 1989-03-22 | Hitachi Ltd | Semiconductor device |
US4958213A (en) | 1987-12-07 | 1990-09-18 | Texas Instruments Incorporated | Method for forming a transistor base region under thick oxide |
US5354695A (en) | 1992-04-08 | 1994-10-11 | Leedy Glenn J | Membrane dielectric isolation IC fabrication |
US5459346A (en) | 1988-06-28 | 1995-10-17 | Ricoh Co., Ltd. | Semiconductor substrate with electrical contact in groove |
US5006913A (en) | 1988-11-05 | 1991-04-09 | Mitsubishi Denki Kabushiki Kaisha | Stacked type semiconductor device |
US5108843A (en) | 1988-11-30 | 1992-04-28 | Ricoh Company, Ltd. | Thin film semiconductor and process for producing the same |
US4952524A (en) | 1989-05-05 | 1990-08-28 | At&T Bell Laboratories | Semiconductor device manufacture including trench formation |
US5310446A (en) | 1990-01-10 | 1994-05-10 | Ricoh Company, Ltd. | Method for producing semiconductor film |
US5060030A (en) | 1990-07-18 | 1991-10-22 | Raytheon Company | Pseudomorphic HEMT having strained compensation layer |
US5081513A (en) | 1991-02-28 | 1992-01-14 | Xerox Corporation | Electronic device with recovery layer proximate to active layer |
US5371399A (en) | 1991-06-14 | 1994-12-06 | International Business Machines Corporation | Compound semiconductor having metallic inclusions and devices fabricated therefrom |
US5134085A (en) | 1991-11-21 | 1992-07-28 | Micron Technology, Inc. | Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories |
US5391510A (en) | 1992-02-28 | 1995-02-21 | International Business Machines Corporation | Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps |
US6008126A (en) | 1992-04-08 | 1999-12-28 | Elm Technology Corporation | Membrane dielectric isolation IC fabrication |
US5461243A (en) * | 1993-10-29 | 1995-10-24 | International Business Machines Corporation | Substrate for tensilely strained semiconductor |
JPH07183237A (ja) * | 1993-11-10 | 1995-07-21 | Hitachi Ltd | 半導体への不純物導入方法及び装置 |
JPH0897163A (ja) * | 1994-07-28 | 1996-04-12 | Hitachi Ltd | 半導体ウエハの製造方法、半導体ウエハ、半導体集積回路装置の製造方法および半導体集積回路装置 |
JP3361922B2 (ja) | 1994-09-13 | 2003-01-07 | 株式会社東芝 | 半導体装置 |
US5561302A (en) | 1994-09-26 | 1996-10-01 | Motorola, Inc. | Enhanced mobility MOSFET device and method |
US5670798A (en) | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
US5679965A (en) | 1995-03-29 | 1997-10-21 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same |
US5557122A (en) | 1995-05-12 | 1996-09-17 | Alliance Semiconductors Corporation | Semiconductor electrode having improved grain structure and oxide growth properties |
TW389999B (en) * | 1995-11-21 | 2000-05-11 | Toshiba Corp | Substrate having shallow trench isolation and method of manufacturing the same |
KR100213196B1 (ko) | 1996-03-15 | 1999-08-02 | 윤종용 | 트렌치 소자분리 |
US6403975B1 (en) | 1996-04-09 | 2002-06-11 | Max-Planck Gesellschaft Zur Forderung Der Wissenschafteneev | Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates |
US5880040A (en) | 1996-04-15 | 1999-03-09 | Macronix International Co., Ltd. | Gate dielectric based on oxynitride grown in N2 O and annealed in NO |
US5763905A (en) * | 1996-07-09 | 1998-06-09 | Abb Research Ltd. | Semiconductor device having a passivation layer |
TW335558B (en) * | 1996-09-03 | 1998-07-01 | Ibm | High temperature superconductivity in strained SiSiGe |
JP3300339B1 (ja) * | 1996-09-17 | 2002-07-08 | 松下電器産業株式会社 | 半導体装置 |
US5879996A (en) * | 1996-09-18 | 1999-03-09 | Micron Technology, Inc. | Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth |
US5861651A (en) | 1997-02-28 | 1999-01-19 | Lucent Technologies Inc. | Field effect devices and capacitors with improved thin film dielectrics and method for making same |
TWI227531B (en) * | 1997-03-05 | 2005-02-01 | Hitachi Ltd | Manufacturing method of semiconductor integrated circuit device |
US5940736A (en) | 1997-03-11 | 1999-08-17 | Lucent Technologies Inc. | Method for forming a high quality ultrathin gate oxide layer |
US6309975B1 (en) | 1997-03-14 | 2001-10-30 | Micron Technology, Inc. | Methods of making implanted structures |
US5891769A (en) * | 1997-04-07 | 1999-04-06 | Motorola, Inc. | Method for forming a semiconductor device having a heteroepitaxial layer |
US6025280A (en) | 1997-04-28 | 2000-02-15 | Lucent Technologies Inc. | Use of SiD4 for deposition of ultra thin and controllable oxides |
US5960297A (en) | 1997-07-02 | 1999-09-28 | Kabushiki Kaisha Toshiba | Shallow trench isolation structure and method of forming the same |
US5981356A (en) | 1997-07-28 | 1999-11-09 | Integrated Device Technology, Inc. | Isolation trenches with protected corners |
JP3139426B2 (ja) | 1997-10-15 | 2001-02-26 | 日本電気株式会社 | 半導体装置 |
US6066545A (en) | 1997-12-09 | 2000-05-23 | Texas Instruments Incorporated | Birdsbeak encroachment using combination of wet and dry etch for isolation nitride |
US6274421B1 (en) | 1998-01-09 | 2001-08-14 | Sharp Laboratories Of America, Inc. | Method of making metal gate sub-micron MOS transistor |
US6191451B1 (en) | 1998-01-30 | 2001-02-20 | International Business Machines Corporation | Semiconductor device with decoupling capacitance |
KR100275908B1 (ko) | 1998-03-02 | 2000-12-15 | 윤종용 | 집적 회로에 트렌치 아이솔레이션을 형성하는방법 |
US6165383A (en) | 1998-04-10 | 2000-12-26 | Organic Display Technology | Useful precursors for organic electroluminescent materials and devices made from such materials |
US6361885B1 (en) | 1998-04-10 | 2002-03-26 | Organic Display Technology | Organic electroluminescent materials and device made from such materials |
JP4258034B2 (ja) * | 1998-05-27 | 2009-04-30 | ソニー株式会社 | 半導体装置及び半導体装置の製造方法 |
US5989978A (en) | 1998-07-16 | 1999-11-23 | Chartered Semiconductor Manufacturing, Ltd. | Shallow trench isolation of MOSFETS with reduced corner parasitic currents |
JP4592837B2 (ja) | 1998-07-31 | 2010-12-08 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US6319794B1 (en) | 1998-10-14 | 2001-11-20 | International Business Machines Corporation | Structure and method for producing low leakage isolation devices |
AU769759B2 (en) * | 1998-10-26 | 2004-02-05 | Yale University | Allele frequency differences method for phenotype cloning |
US6235598B1 (en) | 1998-11-13 | 2001-05-22 | Intel Corporation | Method of using thick first spacers to improve salicide resistance on polysilicon gates |
US6080637A (en) | 1998-12-07 | 2000-06-27 | Taiwan Semiconductor Manufacturing Company | Shallow trench isolation technology to eliminate a kink effect |
US6117722A (en) | 1999-02-18 | 2000-09-12 | Taiwan Semiconductor Manufacturing Company | SRAM layout for relaxing mechanical stress in shallow trench isolation technology and method of manufacture thereof |
US6255169B1 (en) | 1999-02-22 | 2001-07-03 | Advanced Micro Devices, Inc. | Process for fabricating a high-endurance non-volatile memory device |
US6255214B1 (en) * | 1999-02-24 | 2001-07-03 | Advanced Micro Devices, Inc. | Method of forming junction-leakage free metal silicide in a semiconductor wafer by amorphization of source and drain regions |
US6093621A (en) | 1999-04-05 | 2000-07-25 | Vanguard International Semiconductor Corp. | Method of forming shallow trench isolation |
US6284626B1 (en) | 1999-04-06 | 2001-09-04 | Vantis Corporation | Angled nitrogen ion implantation for minimizing mechanical stress on side walls of an isolation trench |
US6228694B1 (en) | 1999-06-28 | 2001-05-08 | Intel Corporation | Method of increasing the mobility of MOS transistors by use of localized stress regions |
US6656822B2 (en) | 1999-06-28 | 2003-12-02 | Intel Corporation | Method for reduced capacitance interconnect system using gaseous implants into the ILD |
US6362082B1 (en) | 1999-06-28 | 2002-03-26 | Intel Corporation | Methodology for control of short channel effects in MOS transistors |
US6281532B1 (en) | 1999-06-28 | 2001-08-28 | Intel Corporation | Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering |
KR100332108B1 (ko) | 1999-06-29 | 2002-04-10 | 박종섭 | 반도체 소자의 트랜지스터 및 그 제조 방법 |
TW426940B (en) | 1999-07-30 | 2001-03-21 | United Microelectronics Corp | Manufacturing method of MOS field effect transistor |
US6483171B1 (en) | 1999-08-13 | 2002-11-19 | Micron Technology, Inc. | Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same |
DE19945855A1 (de) * | 1999-09-24 | 2001-03-29 | Bosch Gmbh Robert | Mikrospule |
US6284623B1 (en) | 1999-10-25 | 2001-09-04 | Peng-Fei Zhang | Method of fabricating semiconductor devices using shallow trench isolation with reduced narrow channel effect |
US6476462B2 (en) | 1999-12-28 | 2002-11-05 | Texas Instruments Incorporated | MOS-type semiconductor device and method for making same |
US6221735B1 (en) | 2000-02-15 | 2001-04-24 | Philips Semiconductors, Inc. | Method for eliminating stress induced dislocations in CMOS devices |
US6271100B1 (en) * | 2000-02-24 | 2001-08-07 | International Business Machines Corporation | Chemically enhanced anneal for removing trench stress resulting in improved bipolar yield |
US6531369B1 (en) | 2000-03-01 | 2003-03-11 | Applied Micro Circuits Corporation | Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe) |
US6368931B1 (en) | 2000-03-27 | 2002-04-09 | Intel Corporation | Thin tensile layers in shallow trench isolation and method of making same |
JP2001332630A (ja) * | 2000-05-19 | 2001-11-30 | Sharp Corp | 半導体装置の製造方法 |
US6743680B1 (en) * | 2000-06-22 | 2004-06-01 | Advanced Micro Devices, Inc. | Process for manufacturing transistors having silicon/germanium channel regions |
US6493497B1 (en) | 2000-09-26 | 2002-12-10 | Motorola, Inc. | Electro-optic structure and process for fabricating same |
US6501121B1 (en) | 2000-11-15 | 2002-12-31 | Motorola, Inc. | Semiconductor structure |
AU2001267880A1 (en) * | 2000-11-22 | 2002-06-03 | Hitachi Ltd. | Semiconductor device and method for fabricating the same |
US7312485B2 (en) | 2000-11-29 | 2007-12-25 | Intel Corporation | CMOS fabrication process utilizing special transistor orientation |
JP2002198525A (ja) * | 2000-12-27 | 2002-07-12 | Toshiba Corp | 半導体装置及びその製造方法 |
US6563152B2 (en) | 2000-12-29 | 2003-05-13 | Intel Corporation | Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel |
US20020086497A1 (en) | 2000-12-30 | 2002-07-04 | Kwok Siang Ping | Beaker shape trench with nitride pull-back for STI |
US6265317B1 (en) | 2001-01-09 | 2001-07-24 | Taiwan Semiconductor Manufacturing Company | Top corner rounding for shallow trench isolation |
JP3488914B2 (ja) * | 2001-01-19 | 2004-01-19 | 名古屋大学長 | 半導体装置製造方法 |
US6410371B1 (en) * | 2001-02-26 | 2002-06-25 | Advanced Micro Devices, Inc. | Method of fabrication of semiconductor-on-insulator (SOI) wafer having a Si/SiGe/Si active layer |
US6445016B1 (en) * | 2001-02-28 | 2002-09-03 | Advanced Micro Devices, Inc. | Silicon-on-insulator (SOI) transistor having partial hetero source/drain junctions fabricated with high energy germanium implantation |
US6900103B2 (en) * | 2001-03-02 | 2005-05-31 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
JP3678661B2 (ja) * | 2001-03-08 | 2005-08-03 | シャープ株式会社 | 半導体装置 |
US6403486B1 (en) | 2001-04-30 | 2002-06-11 | Taiwan Semiconductor Manufacturing Company | Method for forming a shallow trench isolation |
US6498383B2 (en) * | 2001-05-23 | 2002-12-24 | International Business Machines Corporation | Oxynitride shallow trench isolation and method of formation |
US6358806B1 (en) * | 2001-06-29 | 2002-03-19 | Lsi Logic Corporation | Silicon carbide CMOS channel |
US6583060B2 (en) | 2001-07-13 | 2003-06-24 | Micron Technology, Inc. | Dual depth trench isolation |
US6531740B2 (en) | 2001-07-17 | 2003-03-11 | Motorola, Inc. | Integrated impedance matching and stability network |
US6498358B1 (en) | 2001-07-20 | 2002-12-24 | Motorola, Inc. | Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating |
US6908810B2 (en) | 2001-08-08 | 2005-06-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of preventing threshold voltage of MOS transistor from being decreased by shallow trench isolation formation |
JP2003060076A (ja) | 2001-08-21 | 2003-02-28 | Nec Corp | 半導体装置及びその製造方法 |
EP1428262A2 (en) | 2001-09-21 | 2004-06-16 | Amberwave Systems Corporation | Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same |
US20030057184A1 (en) | 2001-09-22 | 2003-03-27 | Shiuh-Sheng Yu | Method for pull back SiN to increase rounding effect in a shallow trench isolation process |
US6656798B2 (en) | 2001-09-28 | 2003-12-02 | Infineon Technologies, Ag | Gate processing method with reduced gate oxide corner and edge thinning |
US6703271B2 (en) * | 2001-11-30 | 2004-03-09 | Taiwan Semiconductor Manufacturing Company | Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer |
US6743705B2 (en) * | 2001-12-06 | 2004-06-01 | Texas Instruments Incorporated | Transistor with improved source/drain extension dopant concentration |
KR20030058571A (ko) * | 2001-12-31 | 2003-07-07 | 주식회사 하이닉스반도체 | 반도체소자의 제조방법 |
US6461936B1 (en) | 2002-01-04 | 2002-10-08 | Infineon Technologies Ag | Double pullback method of filling an isolation trench |
US6620664B2 (en) * | 2002-02-07 | 2003-09-16 | Sharp Laboratories Of America, Inc. | Silicon-germanium MOSFET with deposited gate dielectric and metal gate electrode and method for making the same |
US6492216B1 (en) * | 2002-02-07 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method of forming a transistor with a strained channel |
US6610571B1 (en) * | 2002-02-07 | 2003-08-26 | Taiwan Semiconductor Manufacturing Company | Approach to prevent spacer undercut by low temperature nitridation |
US7138310B2 (en) * | 2002-06-07 | 2006-11-21 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
US6764908B1 (en) * | 2002-06-19 | 2004-07-20 | Advanced Micro Devices, Inc. | Narrow width CMOS devices fabricated on strained lattice semiconductor substrates with maximized NMOS and PMOS drive currents |
US6982230B2 (en) * | 2002-11-08 | 2006-01-03 | International Business Machines Corporation | Deposition of hafnium oxide and/or zirconium oxide and fabrication of passivated electronic structures |
JP3874716B2 (ja) * | 2002-11-14 | 2007-01-31 | 株式会社東芝 | 半導体装置の製造方法 |
US7388259B2 (en) | 2002-11-25 | 2008-06-17 | International Business Machines Corporation | Strained finFET CMOS device structures |
US6696348B1 (en) * | 2002-12-09 | 2004-02-24 | Advanced Micro Devices, Inc. | Wide neck shallow trench isolation region to prevent strain relaxation at shallow trench isolation region edges |
US6825529B2 (en) | 2002-12-12 | 2004-11-30 | International Business Machines Corporation | Stress inducing spacers |
US6974981B2 (en) | 2002-12-12 | 2005-12-13 | International Business Machines Corporation | Isolation structures for imposing stress patterns |
US6717216B1 (en) | 2002-12-12 | 2004-04-06 | International Business Machines Corporation | SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device |
US6878611B2 (en) * | 2003-01-02 | 2005-04-12 | International Business Machines Corporation | Patterned strained silicon for high performance circuits |
US6903384B2 (en) * | 2003-01-15 | 2005-06-07 | Sharp Laboratories Of America, Inc. | System and method for isolating silicon germanium dislocation regions in strained-silicon CMOS applications |
US6825086B2 (en) * | 2003-01-17 | 2004-11-30 | Sharp Laboratories Of America, Inc. | Strained-silicon channel CMOS with sacrificial shallow trench isolation oxide liner |
US7157774B2 (en) * | 2003-01-31 | 2007-01-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained silicon-on-insulator transistors with mesa isolation |
US6900502B2 (en) * | 2003-04-03 | 2005-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel on insulator device |
US6982229B2 (en) * | 2003-04-18 | 2006-01-03 | Lsi Logic Corporation | Ion recoil implantation and enhanced carrier mobility in CMOS device |
US6882025B2 (en) * | 2003-04-25 | 2005-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained-channel transistor and methods of manufacture |
US6891229B2 (en) * | 2003-04-30 | 2005-05-10 | Freescale Semiconductor, Inc. | Inverted isolation formed with spacers |
US6867433B2 (en) * | 2003-04-30 | 2005-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors |
US7049660B2 (en) | 2003-05-30 | 2006-05-23 | International Business Machines Corporation | High-quality SGOI by oxidation near the alloy melting temperature |
US6887798B2 (en) | 2003-05-30 | 2005-05-03 | International Business Machines Corporation | STI stress modification by nitrogen plasma treatment for improving performance in small width devices |
US6982433B2 (en) * | 2003-06-12 | 2006-01-03 | Intel Corporation | Gate-induced strain for MOS performance improvement |
US6927414B2 (en) * | 2003-06-17 | 2005-08-09 | International Business Machines Corporation | High speed lateral heterojunction MISFETs realized by 2-dimensional bandgap engineering and methods thereof |
US20040262683A1 (en) * | 2003-06-27 | 2004-12-30 | Bohr Mark T. | PMOS transistor strain optimization with raised junction regions |
US7279746B2 (en) | 2003-06-30 | 2007-10-09 | International Business Machines Corporation | High performance CMOS device structures and method of manufacture |
JP3927165B2 (ja) * | 2003-07-03 | 2007-06-06 | 株式会社東芝 | 半導体装置 |
US6905923B1 (en) * | 2003-07-15 | 2005-06-14 | Advanced Micro Devices, Inc. | Offset spacer process for forming N-type transistors |
US6891192B2 (en) * | 2003-08-04 | 2005-05-10 | International Business Machines Corporation | Structure and method of making strained semiconductor CMOS transistors having lattice-mismatched semiconductor regions underlying source and drain regions |
JP4322255B2 (ja) * | 2003-08-05 | 2009-08-26 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置及びその製造方法 |
US7342289B2 (en) * | 2003-08-08 | 2008-03-11 | Taiwan Semiconductor Manufacturing Co., Ltd | Strained silicon MOS devices |
US7101742B2 (en) * | 2003-08-12 | 2006-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel complementary field-effect transistors and methods of manufacture |
CN100446272C (zh) * | 2003-09-04 | 2008-12-24 | 台湾积体电路制造股份有限公司 | 应变沟道半导体结构 |
US7119403B2 (en) | 2003-10-16 | 2006-10-10 | International Business Machines Corporation | High performance strained CMOS devices |
US7034362B2 (en) * | 2003-10-17 | 2006-04-25 | International Business Machines Corporation | Double silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) structures |
US7037770B2 (en) * | 2003-10-20 | 2006-05-02 | International Business Machines Corporation | Method of manufacturing strained dislocation-free channels for CMOS |
US7303949B2 (en) * | 2003-10-20 | 2007-12-04 | International Business Machines Corporation | High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture |
US7023055B2 (en) * | 2003-10-29 | 2006-04-04 | International Business Machines Corporation | CMOS on hybrid substrate with different crystal orientations using silicon-to-silicon direct wafer bonding |
US6977194B2 (en) | 2003-10-30 | 2005-12-20 | International Business Machines Corporation | Structure and method to improve channel mobility by gate electrode stress modification |
US6939814B2 (en) * | 2003-10-30 | 2005-09-06 | International Business Machines Corporation | Increasing carrier mobility in NFET and PFET transistors on a common wafer |
US8008724B2 (en) | 2003-10-30 | 2011-08-30 | International Business Machines Corporation | Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers |
US7015082B2 (en) | 2003-11-06 | 2006-03-21 | International Business Machines Corporation | High mobility CMOS circuits |
US7122849B2 (en) | 2003-11-14 | 2006-10-17 | International Business Machines Corporation | Stressed semiconductor device structures having granular semiconductor material |
US7198995B2 (en) * | 2003-12-12 | 2007-04-03 | International Business Machines Corporation | Strained finFETs and method of manufacture |
US7247912B2 (en) | 2004-01-05 | 2007-07-24 | International Business Machines Corporation | Structures and methods for making strained MOSFETs |
US7205206B2 (en) | 2004-03-03 | 2007-04-17 | International Business Machines Corporation | Method of fabricating mobility enhanced CMOS devices |
US7504693B2 (en) | 2004-04-23 | 2009-03-17 | International Business Machines Corporation | Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering |
US7354806B2 (en) | 2004-09-17 | 2008-04-08 | International Business Machines Corporation | Semiconductor device structure with active regions having different surface directions and methods |
US8035168B2 (en) * | 2006-02-27 | 2011-10-11 | Synopsys, Inc. | Elevation of transistor channels to reduce impact of shallow trench isolation on transistor performance |
-
2003
- 2003-11-19 US US10/715,400 patent/US7247534B2/en not_active Expired - Lifetime
-
2004
- 2004-06-30 WO PCT/US2004/020904 patent/WO2005057612A2/en not_active Application Discontinuation
- 2004-06-30 EP EP04756373A patent/EP1685584B1/en not_active Expired - Lifetime
- 2004-06-30 JP JP2006541116A patent/JP4678877B2/ja not_active Expired - Lifetime
- 2004-06-30 KR KR1020067009835A patent/KR100818899B1/ko not_active Expired - Fee Related
- 2004-06-30 AT AT04756373T patent/ATE455370T1/de not_active IP Right Cessation
- 2004-06-30 DE DE602004025135T patent/DE602004025135D1/de not_active Expired - Lifetime
- 2004-06-30 CN CN200480034036.6A patent/CN101208794B/zh not_active Expired - Lifetime
-
2007
- 2007-06-04 US US11/757,883 patent/US8119472B2/en active Active
- 2007-06-04 US US11/757,874 patent/US8232153B2/en active Active
-
2011
- 2011-10-21 US US13/278,667 patent/US8633071B2/en not_active Expired - Lifetime
-
2013
- 2013-12-13 US US14/105,899 patent/US9040373B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399970B2 (en) * | 1996-09-17 | 2002-06-04 | Matsushita Electric Industrial Co., Ltd. | FET having a Si/SiGeC heterojunction channel |
Also Published As
Publication number | Publication date |
---|---|
US8232153B2 (en) | 2012-07-31 |
EP1685584A4 (en) | 2008-12-31 |
US20050104131A1 (en) | 2005-05-19 |
US8119472B2 (en) | 2012-02-21 |
EP1685584B1 (en) | 2010-01-13 |
DE602004025135D1 (de) | 2010-03-04 |
JP2007533119A (ja) | 2007-11-15 |
US20070231979A1 (en) | 2007-10-04 |
US9040373B2 (en) | 2015-05-26 |
EP1685584A2 (en) | 2006-08-02 |
WO2005057612A3 (en) | 2008-01-03 |
US20140103366A1 (en) | 2014-04-17 |
ATE455370T1 (de) | 2010-01-15 |
US7247534B2 (en) | 2007-07-24 |
KR100818899B1 (ko) | 2008-04-04 |
US20120052653A1 (en) | 2012-03-01 |
US20070228472A1 (en) | 2007-10-04 |
CN101208794A (zh) | 2008-06-25 |
US8633071B2 (en) | 2014-01-21 |
WO2005057612A2 (en) | 2005-06-23 |
KR20060100433A (ko) | 2006-09-20 |
JP4678877B2 (ja) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101208794B (zh) | Si:C-OI和SGOI上的硅器件及其制造方法 | |
US11978800B2 (en) | Strained semiconductor using elastic edge relaxation of a stressor combined with buried insulating layer | |
US7947566B2 (en) | Method and apparatus for making coplanar isolated regions of different semiconductor materials on a substrate | |
CN100356525C (zh) | 应变finFET及其制造方法 | |
KR100532338B1 (ko) | SiGe 층 마련 방법 | |
US7897480B2 (en) | Preparation of high quality strained-semiconductor directly-on-insulator substrates | |
JP4919316B2 (ja) | 層の移転を介してシリコン・オン・グラスを製造する方法 | |
JP5259954B2 (ja) | 基板上に歪層を製造する方法と層構造 | |
US20120049280A1 (en) | Strained Semiconductor Using Elastic Edge Relaxation Of A Stressor Combined With Buried Insulating Layer | |
TWI711118B (zh) | 用於製作應變式絕緣體上半導體底材之方法 | |
JP2005203756A (ja) | 水素注入による膜移動および緩和による絶縁体上の歪みシリコン | |
TWI746555B (zh) | 用於製作應變式絕緣體上半導體底材之方法 | |
Nguyen et al. | On the mechanism of the smart Cut< TM> layer transfer in relaxed SiGe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20100428 |
|
CX01 | Expiry of patent term |