CN101031236A - 用于具有改进反馈的手术程序的导向系统和方法 - Google Patents
用于具有改进反馈的手术程序的导向系统和方法 Download PDFInfo
- Publication number
- CN101031236A CN101031236A CNA2004800233805A CN200480023380A CN101031236A CN 101031236 A CN101031236 A CN 101031236A CN A2004800233805 A CNA2004800233805 A CN A2004800233805A CN 200480023380 A CN200480023380 A CN 200480023380A CN 101031236 A CN101031236 A CN 101031236A
- Authority
- CN
- China
- Prior art keywords
- indication
- haptic
- scalar distance
- user
- haptic device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 173
- 238000001356 surgical procedure Methods 0.000 title claims description 70
- 230000001976 improved effect Effects 0.000 title description 3
- 230000000007 visual effect Effects 0.000 claims abstract description 21
- 238000002224 dissection Methods 0.000 claims description 89
- 230000008569 process Effects 0.000 claims description 42
- 238000005452 bending Methods 0.000 claims description 10
- 239000000700 radioactive tracer Substances 0.000 claims description 7
- 230000003993 interaction Effects 0.000 abstract description 21
- 210000003484 anatomy Anatomy 0.000 abstract description 7
- 238000002675 image-guided surgery Methods 0.000 abstract 2
- 230000003190 augmentative effect Effects 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 239000007943 implant Substances 0.000 description 26
- 230000004888 barrier function Effects 0.000 description 24
- 210000000988 bone and bone Anatomy 0.000 description 20
- 238000005520 cutting process Methods 0.000 description 16
- 230000008901 benefit Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 15
- 238000000465 moulding Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 238000002372 labelling Methods 0.000 description 12
- 230000033001 locomotion Effects 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- 230000009471 action Effects 0.000 description 11
- 238000002591 computed tomography Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 10
- 230000005291 magnetic effect Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000002452 interceptive effect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000006854 communication Effects 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 210000000629 knee joint Anatomy 0.000 description 5
- 238000012797 qualification Methods 0.000 description 5
- 238000012876 topography Methods 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000002357 laparoscopic surgery Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000009608 myelography Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 241001074085 Scophthalmus aquosus Species 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000002594 fluoroscopy Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000013182 magnetic resonance venography Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000000554 physical therapy Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- VRDIULHPQTYCLN-UHFFFAOYSA-N Prothionamide Chemical compound CCCC1=CC(C(N)=S)=CC=N1 VRDIULHPQTYCLN-UHFFFAOYSA-N 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008571 general function Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 239000011551 heat transfer agent Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- PLXMOAALOJOTIY-FPTXNFDTSA-N Aesculin Natural products OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)[C@H]1Oc2cc3C=CC(=O)Oc3cc2O PLXMOAALOJOTIY-FPTXNFDTSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 241001227561 Valgus Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011469 building brick Substances 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000007474 system interaction Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/77—Manipulators with motion or force scaling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0346—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
- A61B2017/00119—Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
- A61B2017/3405—Needle locating or guiding means using mechanical guide means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
- A61B2034/252—User interfaces for surgical systems indicating steps of a surgical procedure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
- A61B2090/031—Automatic limiting or abutting means, e.g. for safety torque limiting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/061—Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0818—Redundant systems, e.g. using two independent measuring systems and comparing the signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
- A61B2090/365—Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/372—Details of monitor hardware
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Robotics (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manipulator (AREA)
- Position Input By Displaying (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
通常理想的是限定对象的利用图像导向的手术系统所显示的解剖体图像。对于非细小对象或那些具有复杂的两维或三维形式的对象而言,可能难以以对用户理解的简单方式呈现信息。到目的表面,诸如限定对象的表面,或到所需位置的局部距离,目的表面的局部刺入距离,或触觉排斥力,经常提供用于增加用户与图像导向的手术系统交互作用的最有用的信息。局部距离的标量值可通过视觉,听觉,触觉,或其他工具传送至用户。
Description
技术领域
本发明总的涉及计算机辅助手术系统以及手术导航系统,更具体涉及在医学程序中用于传送深度信息的系统和方法。
发明背景
计算机辅助手术(CAS)系统的功能包括手术前计划程序,以有用格式呈现手术前诊断信息和图像,呈现程序发生时的状态信息,以及提高性能。CAS系统用于传统手术室,介入放射线学套房,移动式手术室或院外诊所的程序中。CAS的许多途径已在商业上进行了尝试。程序可以是任何医学程序,不管是手术还是非手术性的。
导航系统用于显示手术工具位置的手术前(preoperative)或手术进行时(intraoperative)图像数据集。这些图像包括手术进行时图像,诸如两维荧光镜图像,以及采用例如,磁共振成像(MRI),计算机X线断层摄影术(CT)和正电子放射X线断层摄影术(PET)生成的手术前三维图像。最流行的导航系统利用追踪或定位系统。这些系统定位附着或固定至对象,诸如仪器或病人的标记,以及追踪标记的位置。这些追踪系统为光学和磁性系统,但也包括声学系统。光学系统具有固定的立体摄象机对,观察连接到追踪工具的无源的反射标记或有源的红外线LEDs。磁性系统具有固定的场发生器,发射出被整合到追踪工具内的小线圈所感应的磁场。这些系统对邻近的金属对象灵敏。
虽然导航系统相对容易地整合到手术室内,但根本限制在于它们与外科大夫联系的手段有限。大多数系统经由计算机监控器将信息传送至外科大夫。反之,外科大夫经由键盘,鼠标,触摸屏,声音指令,控制悬吊开关或脚踏开关,或通过移动追踪工具将信息传送至系统。导航系统的视觉显示通过三维诊断图像数据集最多可显示多个切片(slices),这些难以解释复杂的3-D几何图形。这些显示还要求外科大夫将其视觉注意力远离手术视野。
当利用追踪工具定义计划时,难以恰当地以多自由度(DOFs)同时定位工具。同样,当把追踪的仪器与计划对准时,难以以多DOFs同时控制工具的位置,尤其在高精度是可期望的地方。也许不一致的是,导航系统在脑颅神经外科中已有最大的接受性,其中大多数应用包括指定目的特征的轨迹,无需命中必不可少的特征。通常,工具的尖端压在解剖体(anatomy)处并转动,有效使轨迹的位置与取向计划分开。
商业上,已应用自动机器人来连接替换程序(procedures)。这些系统使骨切除术精确可靠,相对于依赖手动仪器的技术改进了植入物配合和布置。使机器人接触钉入骨的基准标记或骨表面上的系列点,而进行对齐(registration)。以高速毛口自动进行切割,虽然外科大夫可监控进程,并且如果需要中断该进程。在对齐和切割过程中骨必须夹在位,并监控移动,然后需要重新对齐。这些系统的用户报道的缺陷包括大型机器人,人类工程学差,对对齐和切割需要紧紧夹住骨45-60分钟,以及需要增大切口50-100mm以给机器人提供足够的入口。此外,自动机器人一般在高度组织的环境中运行最好,正如紧紧夹住目的骨和制作较大切口以使软组织远离机器人所证明。
除了一些外科程序的特定步骤,现代外科往往不为自动机器人提供组织良好的环境。机器人一般不能保持追踪对支持程序所需的手术职员和使用仪器。尽管手术环境的严格处理会使这成为可能,人体的复杂性总是提供高度的未组织性(unstructuredness)。
机器人技术还可用于对标准实践进行改进,而无需自动手术。这类著名的商用系统包括用于腹腔镜手术的遥控操纵的机器人系统,所述腹腔镜手术范围从胆囊摘除到闭胸心跳冠状动脉手术。这些系统为外科大夫提供包括高保真显示器和主输入装置的控制台。从动机器人与主输入装置偶联,并在物理上与解剖体交互作用。这些系统的优点主要在于为外科大夫提供人类环境改造学工作环境,同时通过移动定标和颤动减少而改进灵巧性。虽然主控制台通常与患者同处一室,但这些系统的有趣附带结果在于能够实现远程手术。不过,机器人在这些系统中的自主性最小,鉴于操作和变更软组织中所涉及的复杂性这并不令人惊奇。
发明概述
通常理想的是限定对象的利用图像导向的手术系统所显示的解剖体图像。对于非细小对象或那些具有复杂的两维或三维形式的对象而言,可能难以以对用户理解的简单方式呈现信息。到目的表面,诸如限定对象的表面,或到所需位置的局部距离,目的表面的局部刺入距离,或触觉排斥力,经常提供用于增加用户与图像导向的手术系统交互作用的最有用的信息。局部距离的标量值可通过视觉,听觉,触觉,或其他工具传送至用户。
附图简述
为了更完整地理解本发明,目的及其优点,现结合附图参照下列描述,在图中:
图1简要说明示例性手术室,其中触觉装置与计算机辅助手术系统一起使用;
图2说明连同计算机辅助手术系统使用的示例性触觉装置;
图3A和3B说明不同类型的触觉对象;
图3C为手术进行中触觉计划手术程序的示例性方法的流程图;
图4A说明使用动态触觉对象来放置触觉装置;
图4B为交互式触觉安置与触觉装置偶联的医学装置的方法的流程图;
图5说明使用示例性触觉装置连同计算机辅助手术系统;
图6A说明正在用于触觉造型物理对象的示例性触觉装置;
图6B说明用于触觉造型物理对象的示例性触觉对象;
图6C为动态修饰触觉对象的方法的流程图;
图7A和7B说明使用示例性触觉装置和手术工具来限定触觉对象;
图8说明使用示例性触觉装置作为输入装置;
图9为利用触觉装置作为输入装置的代表性方法的流程图;
图10说明在医学程序中传送深度信息的系统;以及
图11为在医学程序中传送深度信息的方法的流程图。
附图详述
在下列说明书中,同样的标号表示同样的元件。“外科大夫”包括计算机辅助的手术系统的任何用户,而外科大夫通常是主要用户。“手术程序”包括任何医学程序,不管是介入还是非介入,介入程序通常是主要程序。
触觉装置为利用感官信息,诸如接触,力量,速度,位置,和/或转矩,与用户,诸如外科大夫交互作用和连通的机械或电子机械装置。一些机器人可用作触觉装置,尽管触觉装置包括不必以常规意义视为机器人的装置。触觉装置通常具有很少自主性。
一般而言,目的组件可任选偶联至触觉装置。目的组件包括医学装置,例如,手术工具,显微镜,激光测距仪,摄像机,手术灯,内窥镜,超声探针,放疗装置,介入医学工具,理疗用康复系统等。术语“医学装置”,“手术装置”和“手术工具”在此可交互使用。
例如,当在手术过程中使用时,这样的装置连同外科大夫协同地持有手术仪器。外科大夫借助于触觉装置或其输入移动手术仪器。此外,在遥控操作系统中,触觉装置可专有地持有手术仪器。在这样的实施中,外科大夫移动偶联至“从动”装置的“主动”触觉装置,旨在交互式操作手术工具。在遥控操作系统中,主动触觉装置可物理上与手术位点分开,从而为外科大夫提供更人类环境改造学的或深入的(immersive)工作位置,和/或使得外科大夫远程进行手术。以阻抗模式,触觉装置测量或传感手术仪器的姿态(位置,取向,速度,和/或加速度),并施加力和/或转矩(“扭曲”)至仪器。以“导纳”模式,触觉装置测量装置(或手术仪器)上某位置处的扭曲,并且担当修正仪器的位置。在传感的姿态与输出扭曲之间有静电,半静电或动态对应。普通对应可包括由与用户限定的“虚拟”对象或与用户输入交互作用的工具产生的扭曲,这包括数学或模拟机械约束。
“触觉对象”在此用于描述这样一种对应。在一些情形下,触觉对象为触觉装置的一定关节角或者只为触觉装置的一定终点位置和/或取向仅产生非零输出。触觉对象可以是平稳的时间变动对应和/或可以仅存在一定次数。触觉对象可具有对应于位置的关联的空间或几何表示,在所述位置中对应是中断的,或具有其他属性,这些属性在与触觉对象交互作用时由用户感觉。例如,当触觉装置的终点位于空间球形区内时,如果触觉对象仅产生非零输出,则可用于给用户呈现对应的球形表示。然而,触觉对象可不必具有这样清晰界定的边界或相似的内部结构。触觉对象在触觉装置的整个终点位置,终点取向,和/或关节位置,或仅具部分上是有源的。可能在空间的重叠部分,存在任何给定时间有源的多触觉对象。
“触觉提示(haptic cue)”用于描述触觉对象的对应的方面。当用户与触觉对象交互作用时,提示可传送信息或产生所需的效果。触觉提示和触觉对象不必在具体实施方式中对应于用户界面或软件编程组件,并且可以简单地是给用户设计,实施,呈现触觉装置的输入和输出之间对应的许多途径中的一种。
自主性减少或消除增加了用户诸如外科大夫的舒适度。机器人无论何时自主运动,外科大夫不再在控制之下,必须完全观察机器人的进程。万一有不寻常的事情发生,机器人移动不得不放慢以给外科大夫提供足够的时间作出反应。然而,如果机器人至少主要以无源方式动作,即使能够有源移动,则外科大夫仍不放弃对机器人的控制。
从用户的角度以只象无源装置一样动作这样的方式,利用能够有源移动的装置具有优点。有源致动器可用来抵消重力作用,使得更多种机构设计。所述装置可以自主模式用于进行自动化测试和服务程序。
图1说明示例性手术室,其中触觉装置113与计算机辅助手术系统11一起使用。计算机辅助手术系统11包括显示装置30,输入装置34,以及基于处理器的系统36,例如计算机。输入装置34可以是现知或将来开发的任何输入装置,例如,键盘,鼠标,跟踪球等。显示装置30可以是为显示两维和/或三维图像的现知或将来开发的任何显示装置,例如,监视器,可佩带式显示器,投影显示器,安装头的显示器,立体视图,能够显示从图像投影装置投影的图像的显示装置,例如投影仪等。如果需要,显示装置30可以是能够显示全息图像的显示装置。如果需要,显示装置30可以是触摸屏,并用作输入装置。
触觉装置113的示例为机器人装置。触觉装置113可以受基于处理器的系统,例如计算机10控制。计算机20还可包括功率放大和输入/输出硬件。触觉装置113可通过现知或将来开发的任何连通机构,无论有线还是无线,与计算机辅助手术系统11连通。
如图1所示,存储介质12偶联至基于处理器的系统36。存储介质12接受存储软件和/或其他数据的数字介质。手术工具或仪器112显示与触觉装置113偶联。手术工具112优选通过机械偶联至触觉装置112,诸如通过连接或固定。然而,如果需要,手术工具112可通过其他任何方法,例如磁力,直接或间接偶联至触觉装置113。如果需要,可采用真空将手术工具112偶联至触觉装置113。手术工具112可由外科大夫远程通过触觉控制,或由手术工具112附近的外科大夫116通过触觉控制。
触觉对象110为用来指导和/或约束手术工具112的移动和手术至患者解剖体114,例如患者腿部内靶区的虚拟对象。在该例子中,触觉对象110用于帮助外科大夫靶向和接近患者预计的解剖位点。触觉反馈力用于减慢和/或终止手术工具的移动,如果检测到部分手术工具112会侵入或跨越触觉对象的预定边界。此外,触觉反馈力还可用来吸引(或排斥)手术工具112至(或远离)触觉对象110和至(或远离)靶。如果需要,外科大夫116可呈现有正在显示器30上手术的解剖体的表示和/或显示器30上手术工具112和/或触觉对象110的虚拟表示。
当手术工具112通过触觉由外科大夫遥控时,例如当进行遥控操纵时,利用主动触觉装置和/或实时或模拟显示手术工具,患者解剖体,和/或为利于手术程序而设计的附加触觉或视觉对象,外科大夫控制手术工具的移动。触觉反馈力可经由主动触觉装置被从动触觉装置113传输至位于遥远地方的外科大夫以指导外科大夫。或者,触觉反馈力在主动装置上生成并直接传输至外科大夫。在一些情形下,从动或主动装置是很少有或没有触觉能力的定位装置。
CAS系统优选包括确定或追踪各种不同可追踪对象,诸如手术仪器,工具,触觉装置,患者等的位置和/或取向的定位或追踪系统。追踪系统连续确定或追踪布置在一部分可追踪对象之上,整合在一部分可追踪对象之内,或一部分可追踪对象固有的一个或多个可追踪标记的位置的三维参照坐标框。标记可采取若干种形式,包括那些利用光学(或视觉),磁力或声学方法定位的形式。此外,至少在光学或视觉系统情形下,对象的定位可基于内在特征,界标,形状,颜色或其他视觉外貌,实际上这些用作可识别标记。
可采用任何类型的追踪系统,包括光学,磁学,和/或声学系统,依赖于或不依赖于标记。当今追踪系统通常为光学系统,主要在红外线范围运行。它们经常包括固定的立体摄像机对,所述摄像机对在目的区域周围聚焦,并敏感于红外线辐射。标记有源或无源地发射红外线辐射。有源标记的例子为发光二级管(LEDs)。无源标记的例子为反射标记,诸如具有反射入射红外线辐射的表面的球形标记。无源系统需要红外线辐射源以照亮焦点区域。磁场系统具有固定场发生器,其发射的磁场被整合到追踪工具中的小线圈传感。
根据追踪系统对可追踪标记的位置的信息,利用预定或公知(例如,来自校准)的工具上可追踪标记与工具的终点和/或轴之间的几何关系,CAS系统11经编程后能够确定工具终点或尖端的三维坐标,以及任选确定其主坐标轴。患者或其解剖体的部分也可通过连接可追踪标记的阵列而被追踪。在说明性例子中,定位器为包含一个或多个优选追踪探针16的摄像机14的光学追踪系统。如图1所示,摄像机14可偶联至基于处理器的系统36。如果需要,摄像机14可偶联至计算机10。探针16是现在公知或将来开发的常规探针。如果需要,探针可牢固连接至触觉装置113或整合入触觉装置113的设计中。
如果需要,在实施中,基于处理器的系统36可包括部分图像导向的手术软件以提供最小的用户功能性,例如检索先前存储的手术信息,手术前外科计划,确定仪器尖端和轴的位置,将患者和手术前和/或手术进行中的诊断图像数据集对齐呈追踪系统的坐标系统等。单独通过计算机,利用该方法的图像导向手术是不可能的。照此,全用户功能性通过为偶联至计算机36的存储介质12提供合适的数字介质而实现。数字介质包括应用特定软件模块。数字介质还可包括有关手术工具和其他附件的描述性信息。应用特定软件模块可用于在特定类型的程序中帮助外科大夫计划和/或导航。例如,软件模块显示对应于特定步骤或阶段的手术程序的预定页面或图像。在模块的特殊阶段或部分,外科大夫被自动促使来执行一定任务,或来限定或进入特定数据,所述数据例如会允许模块确定和显示仪器操作(instrumentation)或植入物恰当的安置和对准,或给外科大夫提供反馈。建立其他页面以显示导航用诊断图像,以及提供由反馈给外科大夫的系统计算的一定数据。代替视觉装置或除了利用视觉装置之外,CAS系统也可连通信息,途径包括听觉(例如,利用声音合成)和触觉,诸如通过利用装置的触觉界面。例如,除了通过视觉指示屏上钻或锯的轨迹,CAS系统给外科大夫反馈他是否正接近某对象或在规定的过程中(on course)与听觉声音一起的信息。为了进一步减轻外科大夫的负担,通过识别被外科大夫捡拾的仪器,模块可自动检测程序阶段,并且立即移动至使用工具的部分程序。
软件模可以是如此以致仅被使用预定的次数。如果需要,软件模块只在与存在于计算机36上的部分图像导向的手术软件协同使用时起作用。存在于计算机36上的软件与数字介质上的软件一同处理电子医学诊断图像,对齐获得的图像至患者的解剖体,和/或对齐获得的图像至其他任何获得的成像形式,例如对齐荧光检查至CT,MRI等。如果需要,图像数据集可以是时间变量,即采用不同时间采集的图像数据集。存储软件模块的介质可与专门用于该程序的的一次性仪器捆绑销售。因此,软件模块不必与CAS系统一起分销。此外,软件模块可被设计与特定工具和植入物一起工作,并且与这些工具和植入物一起分销。而且,CAS系统可用于一些无需诊断图像数据集仅需患者对齐的程序中。因此,CAS系统在有些应用,即无图像应用中不必支持诊断图像的应用。
说明性机器人臂的例子为Barrett Technology生产的机器人臂,称为“全臂操作者”或“WAM”。该机器人臂具有可提供高带宽的光缆传输,反操纵性(backdrivability),以及力保真度。然而,也可使用其他能够阻抗或导纳触觉交互作用模式的机器人装置。例如,直接驱动系统或带有其他类型的低摩擦传输的系统,或者带有组合传输类型的系统也可充分适合于用作外科应用的触觉装置。此外,触觉装置不必采用机器人臂的形式。WAM机器人臂具有四种移动自由度。然而,为基于轨迹的医学应用,其被1-DOF直接驱动腕增加。如果需要,可增减自由度而不影响本发明的范围。
尽管光缆传输具有某些优点,但也有一些缺点。其要求小心安装和维护以防止程序过程中可能的失败。此外,光缆传输不如齿轮传输那样僵硬。类似缺陷还在利用其他传输类型的触觉装置中发现。
这些缺陷可通过增加与其他冗余传感器一起安装在驱动马达上的现有的位置传感器来加以解决。这些传感器为各种不同的类型,包括但不限于旋转译码器或解算仪,倾斜传感器,方位(罗盘)传感器,检测重力方向,光学、磁场或声学追踪系统(诸如追踪手术仪器常用类型的光学摄像机系统)或基于激光位置传感(sensing)的传感器。这些传感器的输出可与原始传感器相比较来检测差异,指示传输或传感器中出现的问题。此外,外加传感器还可用于检测光缆传输中的两种低带宽偏差,利用众所周知的控制技术,系统能容易地对此偏差补偿。利用熟知的包括传输的驱动和负荷两端传感器的系统的控制技术,传感器还可检测光缆传输中的高带宽偏差,从而为伺服环路提供额外的输入,并使得伺服系统的稳定性提高。通过减少或消除臂连接和/或传输的偏差效果,所述传感器还可改进臂姿确定的准确性。这样的传感器也可用于克服采用其他类型传输系统的机器人装置中的类似缺陷。
当进行手术时,能够把持工具,例如手术工具的钻导杆或其他类似约束或连接机构的触觉装置相对于患者安置,以便获得适合于具体程序的多种方法的姿态。还将其对齐至物理解剖体,以便利用熟知的对齐技术,将诊断或计划图像数据集的两维或三维信息与物理空间的位置相关。图像数据集可以是利用,例如磁共振成像(MRI),计算机X线断层摄影术(CT),正电子放射X线断层摄影术(PET),磁共振血管造影术(MRA),单光子放射计算X线断层摄影术(SPECT),磁共振静脉造影术(MRV),对比增强的MR静脉造影术(CEMRV),CT血管造影术,CT脊髓造影术,MR血管造影术,MR脊髓造影术,荧光透视法,光学成像,同位素成像,超声显微镜,腹腔镜超声和MR广谱测定法生成的一种或多种图像。这样的图像可包括例如,X-射线图像,数字X-射线图像,计算机X线断层摄影术图像,MRI图像,MRA图像,MR图像,PET图像,MRV图像,SPECT图像,CEMRV图像,CT血管造影图像,CT脊髓造影图像,MR脊髓造影图像,鉴别图像(flair image),两维荧光镜图像,三维荧光镜图像,两维超声图像,三维超声图像,超声显微镜图像,腹腔镜超声图像,光学图像,同位素图像,激光深度图,艺术线条,简图,“卡通”表示,全息图像等。
待回避特征,诸如血管,腱,神经和脑关键区域,可自动,半自动,或手工限定在图像数据集。由程序靶向的特征,诸如肿瘤,骨刺,深脑刺激的解剖靶,活检位点,植入物放置的解剖位点,或其他解剖区域,也可自动,半自动,或手工限定在图像数据集。
与待回避特征的定义偶联的图像数据集可用于创建触觉“提示(cue)”,给外科大夫显示发生敏感解剖违例。这些类型提示的总功能是施加力和/或转矩,趋于从连接至装置的仪器,例如会影响限定关键特征处的姿态,排斥触觉装置。同样,与待靶向特征的定义偶联的图像数据集也可用于创建触觉提示,给外科大夫显示所需的靶区会通过适当连接至触觉臂的手术仪器而抵达。一旦姿态实现,这些类型提示的总功能是吸引触觉装置至这样的姿态或锁定触觉装置至这些姿态。
在触觉装置展开成计算机辅助手术系统的充分集成的组件时,优点是让触觉装置给这样的系统担当任选的外围设备。然后,为不要求使用触觉装置的程序,方便地利用系统。对该方法还有开发和建造优点。触觉装置很可能会要求实时操作系统或专门移动控制硬件以为触觉控制系统生成高频率更新。计算机辅助手术系统会有不同要求,诸如快速图形处理硬件以及与一系列用户输入和输出装置的兼容性要求,以便有两个计算机系统来满足相异用途的优点。分开计算机手术和触觉臂组件还具有安全性优点。因此,触觉装置优选仅含有对确保高性能,稳定和安全操作所必需的计算软件和硬件。计算机辅助手术系统含有软件和硬件,用于连接医院网络,显示多种不同图形视图,支持多种不同用户输入/输出装置,管理植入物库和仪器数据库,和/或这样系统中有用的其他任何功能性。该结构也使对触觉系统了解最少的开发者来建立使用触觉装置的应用。这两个系统之间的物理界面可以是有线的或无线的,诸如串行USB,或其他光缆连通界面,或无线以太网,无线串行红外或其他无线连通系统。这些系统之间的软件界面将包括一组指令,使得计算机辅助手术系统控制触觉装置的操作。例如,计算机辅助手术系统发送指令至触觉装置,要求其进入具有一定刚度参数的操纵杆样输入模式。触觉臂系统检查参数是否是安全的和可接受的,并进入这样的模式或响应于合适的错误讯息。计算机辅助手术系统和触觉装置还可集成至单一系统单元,或利用单一或多处理器计算装置加以实施。CAS系统,触觉装置和/或计算机10也可集成至另一块设备,诸如成像设备(例如,荧光透视法,CT,MR,超声等),医学程序操作室中的设备车等。
参照图2,典型“触觉对象”20为两维虚拟平面。然而,这只是触觉对象的例子,一般而言其可以是0(例如点),1(例如虚拟线或路径),2(例如虚拟平面或平坦表面),或3维(例如虚拟曲表面,立方体或其他固体对象),并且可具有简单或复杂的几何形状。触觉对象20优选就物理对象的空间,诸如患者解剖体114限定。限定触觉对象20来导向和/或约束触觉装置113的移动。触觉装置113和触觉对象20之间的距离以X示于图2,而患者解剖体114和触觉对象20之间的距离以X1示于图2。触觉对象20可用于连通在触觉装置113上生成力反馈。力反馈的生成还可依赖于多种不同因素,例如,触觉装置113接近患者解剖体114的速度,触觉装置113的位置,触觉对象20等。相对于触觉对象20计算触觉装置113的当前位置的算法可用于给外科大夫提供有关触觉装置113相对于触觉对象20位置的信息。当触觉装置113落入触觉对象20的预定距离范围之内时,可改变刚度参数以使其更难以移动触觉装置113。如果需要,力可以远离解剖体114的方向施加以抵抗触觉装置113向解剖体114的移动或移动触觉装置113远离解剖体114。
在某些情形下,实施刚性触觉对象,诸如虚拟表面和壁有可能是不恰当的。外科大夫将失去以任何被触觉装置刚性限制的方向感觉解剖体的能力。在许多应用中,精确定位解剖特征不能通过简单组合诊断数据集与工具追踪系统或精确机器人装置而实现。诊断数据集取得后解剖体的变化,连接目的解剖特征和追踪系统的摄像机或触觉装置的运动学链中的未传感移动,对齐错误,以及定位装置的不准确性将有助于定位错误。尽管CAS系统可用于定位手术工具非常接近靶区,但更准确的定位通常是困难的或昂贵得令人望而却步。在一些医学程序,诸如椎茎钉安置在脊柱的上胸和颈部分,深度脑神经程序等中,稍不准确就可能负面影响正在进行中的医学程序。因此,期望的是在这些类型的程序中外科大夫保持感觉解剖体的能力。
触觉装置可用于对齐患者至CAS系统和患者解剖体的诊断数据集,例如,通过连接探针,并使其触及一些选择的解剖界标,植入的基准,和目的表面上的多点。它们可用于触觉探查诊断数据集以增加该信息的视觉显示。该探查可以纯虚拟方式发生在手术进行中,对齐至真正患者解剖体的同时,或发生在手术前。该触觉探查对探查复杂的三维结构是尤其有用的,其中外科大夫高度开发的触觉能用于探查数据集的复杂性或细微之处,而这些难以或不可能充分显示在两维抑或甚至三维视觉显示器上。
虽然在进行传统的徒手手术时,外科大夫依赖于局部解剖特征来确保手术工具的合适定位。如果外科大夫感觉患者解剖体的能力被保存,则外科大夫能探查局部解剖体,并基于其对目的结构的行家知识更正这些定位错误。以该方式,最终定位由附近解剖特征而非位于手术室内的追踪系统,或其底部与患者不是刚性连接的机器人确定。
与触觉装置偶联的手术工具112的部分,例如,手术工具112的尖端,可用于传感局部解剖体的性质。局部解剖体的性质可用于定位手术工具112或用于验证手术工具112的合适定位。可被该工具传感或监控的性质包括解剖体的电性质,力,压力,刚度,传导性等。尖端的信息可提供回至CAS系统11。然后,如果需要,该信息可来自患者的诊断图像数据集的信息相关。如果需要,来自工具的信息可用于增加或替换来自图像数据集的信息。在任何情形下,该信息可用于更好地替换手术工具112。
工具的定位或位置信息可被传感,并提供回至CAS系统11,而无需使用单独的传感器。外科大夫可手工移动手术工具112至所需位置。手术工具112尖端在所需位置处的位置信息可由CAS系统11和/或计算机10直接确定而无需使用单独的传感器。解剖体的其他性质可通过在手术工具112尖端处安置传感器而被自动检测(sense)。传感器的输出可提供回至CAS系统11用于处理。
采集的信息可用于各种不同的目的,诸如警告用户对齐错误,完全或部分校正对齐错误,在显示装置30上显示信息的图形表示,限定触觉对象以帮助用户,在显示装置30上显示置于一个或多个解剖体图像上方的信息的图形表示等。如果需要,采集的信息可被记录用于机器学习技术。
触觉装置和CAS系统的组合对组合触觉探查诊断数据集和使用触觉装置作为计划的主要输入装置也是有用的。以此方式,触觉探查自然引导用户至合适的计划用于执行程序。此外,在一些情形下,作为该探查/计划过程的结果,有可能让触觉装置和与其偶联的工具处于执行程序用的正确位置,从而消除了移动触觉装置至位置作为单独步骤的需要。
参照图3A,在某些程序中合乎理想的是将手术仪器限制到小的工作容积中,在此情形下,其可以在整个程序中停留在触觉对象的工作区域内。在某些情形下,必须手工分割或限定某些重要的特征,但对大多数应用而言,自动分割诊断数据集足以提供合适的触觉反馈。
在说明性实施方式中,手术程序中,一个或多个吸引触觉对象与靶区相连,用于执行手术程序,以及一个或多个排斥触觉对象与待回避的解剖特征相连。例如,如图3A所示,触觉对象22限定了工作区域或容积用于约束手术工具112的移动。另一方面,如图3B所示,触觉对象24限定了工作区域或容积用于约束手术工具112的移动,从而防止其接近关键区域,诸如神经25,器官27等。例如,一旦触觉对象得以限定,用户通过来回推动触觉装置113进行手术计划,直至找到姿态,其中来自吸引触觉对象的提示是有源的,表明手术工具112当连接至触觉装置113时会抵达靶区,以及其中来自排斥触觉对象的提示是无源的,表明手术工具112将不刺入任何限定的敏感解剖区域。在大多数情形下,这些要求将不完全约束臂的姿态,而基于用户发现合适的任何次级标准,用户可在可接受的方法范围内移动臂。在一些情形下,臂可达到平衡状态,其中多吸引或排斥触觉提示以相反方向作用。用户可能会将该构型误认为是一种可接受的姿态,即使靶区可能还未达到,或者关键解剖区可能被违例。对该情形可以各种方式警告用户,所述方式包括听觉或视觉指示器,或者通过触觉提示,诸如触觉装置113的振动。接着,通过推动触觉装置远离该姿态,用户可校正该情形。一旦处于对用户满意的姿态,利用硬件闸,控制伺服技术或其他任何为手术程序提供稳定的物理参照的恰当方法,将触觉装置13锁定在该位置。
如果需要细调,利用一模式可操作触觉装置,在该模式中,移动定标(scaling),约束,或其他方法用于进行有可能会超出外科大夫灵巧性的这种校正。例如,可启动控制伺服以一定的刚性锁定该装置在接近所需的姿态处。然后,外科大夫利用各种方法对该姿态进行细调。例如,外科大夫可使用触摸屏,键盘,鼠标,追踪球或声音输入。如果需要,外科大夫以所需的方向推动触觉装置的末端。为响应这些输入,该系统可能以通过直接定位触觉装置难以实现的小增量,将适当调节所需姿态。理想的是仅锁定部分姿态,以便外科大夫一次可集中更有限数目的调节。该细调可在粗触觉定位完成之后,粗触觉定位的同时,或与粗触觉定位交错发生。
例如,选择脑颅神经手术程序,诸如活检,肿瘤切除术,或深度脑刺激的轨迹是错综复杂的3-D计划问题。外科大夫必须找到一条通向靶区的途径,同时避免脑部的血管和敏感区域。如果这些区域能变成排斥触觉对象,计划这样一种程序如施加触觉约束限制并使用户绕此点旋转该装置直到其习惯于合适的姿态一样简单,所述约束保持工具向导的轨迹穿过目的靶,以及在所述姿态中没有排斥触觉对象被违例。
图3C为手术程序中用于手术进行中触觉计划的示例性方法140的流程图。触觉装置113置于手术室内,以便对给定手术程序而言,手术工具112可安置于大部分临床上范围合理的手术方法的上方。利用方法140的手术计划在患者存在下以及优选无需与触觉装置113偶联的手术工具112时进行。手术工具112可以是非接触医学装置,诸如诊断或治疗辐射源。如果需要,利用方法140的外科计划可以与偶联至触觉装置113但仍处于收缩状态的外科工具112一起进行。当外科工具112包括非接触医学装置时,优选处于失效状态。待手术患者的解剖体的表示可与“虚拟工具”一起显示在显示装置30上。虚拟工具可以是外科工具112的高保真性表示,或示意性表示,诸如外科工具112的轴,点,或其他特征。虚拟工具表明相对于患者解剖体,外科工具112或其某部分的位置和/或角度,条件是外科工具以其正常或失效状态已偶联至触觉装置113。
在步骤142中,触觉装置113对齐至患者的解剖体。如果需要,在显示装置30上显示的患者解剖体的表示也可与患者的解剖体一起对齐,以便诊断或计划数据集中的信息可相关于物理空间中的位置。任何对齐用方法,无论是现知的还是将来开发的,都可使用。在步骤144中,靶区加以限定。靶区可以例如为肿瘤,骨刺,深度脑刺激的解剖靶,骨沟等。靶区可以现知或将来开发的任何方式限定。例如,外科大夫等用户可在显示装置30上手工鉴定靶区。如果需要,外科大夫可通过触摸靶区上的个或多个点或采用工具在显示装置30上环绕靶区而限定靶区。或者,外科大夫可通过将触觉装置113的工具安装轴指向靶区,或通过使用触觉装置113作为输入装置而限定靶区。优选地,鉴定的靶区自动突出在显示装置30上。触觉装置113的工具安装轴可以是任何形状,例如,曲线,直线等。不管靶区限定的方式如何,理想的是一旦限定,靶区就清晰地显示在显示装置30上以备确认。诸如图3A的触觉对象22的一个或多个吸引触觉对象可与靶区相连。
在步骤146中,限定了待回避的解剖障碍物。解剖障碍物包括在外科过程中待回避的特征,诸如主血管,腱,神经,脑关键区域,器官,健康骨或其他组织等。解剖障碍物可以现知或将来开发的方式限定。例如,外科大夫可在显示装置30上手工鉴定解剖障碍物。如果需要,外科大夫可通过触摸解剖障碍物上的一个或多个点或通过采用工具在显示装置30上环绕解剖障碍物而限定解剖障碍物。或者,外科大夫可通过将触觉装置113的工具安装轴指向解剖障碍物,或通过使用触觉装置113作为输入装置而限定解剖障碍物。优选地,鉴定的解剖障碍物突出在显示装置30上。不管解剖障碍物限定的方式如何,理想的是一旦限定,解剖障碍物就清晰地显示在显示装置30上以备确认。诸如图3B的触觉对象24的一个或多个排斥触觉对象可与限定的解剖障碍物相连。优选地,各个解剖障碍物具有一个与其相连的排斥触觉对象,尽管如果需要一个以上排斥触觉对象可与解剖障碍物相连。
在步骤148中,触觉装置113优选由外科大夫安置,以便如果外科工具112偶联至触觉装置113,或者如果外科工具112处于操作状态,则外科工具的合适部分将与靶区具有所需的关系。例如,当偶联至触觉装置113时,外科工具112会刺入靶区。当外科工具112偶联至触觉装置113,并且不收缩和/或不失效时,则其处于操作状态。步骤148优选进行,而不考虑工具是否在此位置横切解剖障碍物。在显示装置30上显示的虚拟工具是这样,以致其位置和取向对应于外科工具112的位置和取向,条件是外科工具112已安装在触觉装置113上,或外科工具112处于其正常的操作状态。因此,在观察装置30上显示的同时,外科大夫可定位触觉装置113于所需的姿态,以便虚拟工具具有与靶区恰当的关系。
在步骤152中,对虚拟工具是否横切任何解剖障碍物,进行确定。如果虚拟工具不横切任何解剖障碍物,则执行自步骤162起始的过程。否则,执行自步骤154起始的过程。在步骤154中,触觉提示由触觉装置113提供给用户。基于一个或多个触觉对象,触觉提示可提供给用户,例如与靶区相连的吸引触觉对象和/或与解剖障碍物相连的排斥触觉对象。排斥触觉对象产生的力和/或转矩引导触觉装置113远离其中虚拟工具将横切解剖障碍物的姿态。优选地,当虚拟工具刺入排斥触觉对象或靠近排斥触觉对象时,排斥触觉提示是有源的。吸引触觉对象引起触觉装置生成的力和/或转矩引导触觉装置113至其中虚拟工具具有与靶区所需关系的姿态。
触觉装置113的位置有可能这样,以致来自多触觉对象的提示彼此抵偿,即使虚拟工具可能正违反解剖障碍物。照此,在步骤156中,对来自多障碍物的触觉提示是否彼此抵偿进行确定。如果来自多障碍物的触觉提示不能彼此抵偿,则可执行自步骤158起始的过程。如果来自多障碍物的触觉提示彼此抵偿,则在步骤160中,可提供专用触觉提示,例如振动,来警告用户该情形,并执行自步骤158起始的过程。
在步骤158中,触觉装置113优选由外科大夫移动。至少部分基于由触觉装置113给外科大夫提供的触觉提示,优选移动触觉装置113。原已偶联至触觉装置113的外科工具112的位置被虚拟工具追踪并显示在显示装置30上。优选地,用户移动触觉装置113直到发现平衡姿态。在平衡位置,由吸引触觉对象产生的提示是有源的,以及由排斥触觉对象产生的那些提示是无源的。然后,执行自步骤152起始的过程以确定虚拟工具是否正在横切任何解剖障碍物。
在步骤162中,对用户是否满足靶区的轨迹进行确定。通过观察如显示装置30上所示的相对于靶区的虚拟工具,用户可进行这种确定。如果用户对虚拟工具的位置和/或取向不满意,则可执行自步骤158起始的过程。如果用户对虚拟工具相对靶区和障碍物的位置和取向满意,则可执行自步骤164起始的过程。用户可以一种或多种途径显示其满意。例如,用户可发出声音指令以显示对虚拟工具的位置和取向满意。如果需要,用户可启动与计算机辅助手术系统或触觉装置113相连的脚踏开关或按钮以显示其满意。如果需要,用户可经由与计算机辅助手术系统或触觉装置113相连的触摸屏,键盘,鼠标等,显示其满意。在步骤164中,触觉装置113可锁定在当今姿态。
一旦触觉装置113的姿态被锁定,例如可通过偶联手术工具112至触觉装置113,或通过将手术工具112以其完全功能性或操作构型安置,进行手术程序。由于手术工具112相对于解剖体的姿态已借助于虚拟工具得以确定,因此当手术工具112偶联至触觉装置113或其被配置备用时,手术工具112会实现理想的位置。
手术进行中触觉计划手术程序的说明性方法可在软件,硬件或软件和硬件的组合中得以实施。此处所述的步骤不需要以既定顺序进行。若干步骤彼此同时进行。此外,如果需要,可任选或组合一个或多个上述步骤而无需背离本发明的范围。此外,一个或多个上述步骤可在手术室之外进行以节省花费在手术室中的时间。例如,步骤144和146可在将患者带到手术室之前和在步骤142之前进行。
手术进行中触觉计划手术程序的该示例性实施方式的技术优点在于,它为更紧偶联手术程序的计划和执行相而准备。手术程序的计划优选在患者手术进行中进行。因此,当计划完成时,触觉装置处于执行手术计划的位置。触觉装置的附加移动不要求开始执行相。此外,通过利用虚拟工具确定真实手术工具的轨迹至靶区,对解剖特征的损伤可在计划相过程中加以避免。
触觉对象可以属于任何形状或大小。如图4A所示,触觉对象26可以是漏斗形状,从而引导与触觉装置113偶联的医学装置,例如手术工具至患者解剖体114上的靶区。触觉对象的路径依赖于手术计划。算法可用于产生如图4A所示的漏斗形状触觉对象。对产生漏斗形状触觉对象所需的信息可基于手术计划。如果需要,触觉对象26可与触觉装置113一起移动。这使得手术工具从触觉装置113的当前位置引导至靶区。因此,手术工具可从靠近解剖体114的任何位置导向至靶区。此外,手术工具可从当前姿态导向至所需姿态。
触觉对象26可以属于任何形状,例如,直线,曲线,圆柱体,漏斗等。触觉对象26在说明性例子中限定成虚拟途径以利于偶联至触觉装置113的触觉装置113和/或手术工具112在所需位置的交互性定位。触觉对象26将偶联至触觉装置113的手术工具112相对于患者解剖体114从初始位置和/或姿态引导至靶区和/或所需姿态。如果需要,触觉对象26可沿着路径或轨迹28引导手术工具112至靶区。从初始位置至靶区的路径或轨迹28依赖于手术计划。路径可以属于任何形状,例如,直线,曲线,漏斗,圆柱体等。随着用户移动手术工具或触觉装置以引导用户沿着路径28移动手术工具112至靶区,至少部分基于触觉对象26,触觉力施加至触觉装置113。
触觉对象26优选是可操纵的或可重构的。例如,随着触觉装置(或与其偶联的手术工具或仪器)的移动,触觉对象被限定来移动或改变位置和/或取向。这使得例如用户引导手术工具112从靠近解剖体114的几乎任何位置至靶区。触觉对象26的这种可重构性或可操纵性也使得用户引导手术工具112从其当前位置和/或姿态至所需姿态。
为了回避障碍物,触觉对象26还被允许移动自预定的路径或位置,优选无需偏移靶区。这在触觉装置113的路径中回避障碍物时是尤其有用的,因计算机辅助手术系统11可能不会意识到该点。因此,手术工具112可被用户操纵至靶区,无需与其他手术工具和仪器,患者或手术室职员发生碰撞。
操纵,移动或重构在优选实施方式中是响应于超过阈值的力或转矩施加至触觉装置或触觉对象。例如,如果用户以超过阈值的力对触觉对象推动触觉装置113,则触觉对象基于输入力或转矩将被重新安置,重构或修改至新构型。优选地,触觉对象26以力或转矩的方向移动,由此为重新定位或重新对准触觉对象26而提供直觉方法。
如果需要,随着靶区变化,触觉对象26可移动至新位置。因此,如图4A所示,触觉对象26响应靶区的变化可从初始位置移动至新位置,如触觉对象26’所示。
在替代的实施方式中,触觉对象26可限定成逻辑上施加至触觉装置113的一个或多个关节的虚拟线性或非线性弹簧,阻尼器,离合器等。触觉装置113的一个或多个关节可包括对应于触觉装置113的最终所需姿态的虚拟棘爪。优选地,标准关节一空间控制技术用于实施各个关节处的触觉对象,而常规反运动学技术用于确定对应于触觉装置所需笛卡尔(Cartesian)位置/角度的关节位置。通过规定触觉装置113的关节“锁定”到其棘爪中的顺序,用户可回避障碍物。在定位手术工具112过程中,通过“解开”关节,可允许用户修改选择的顺序,尤其是如果通过试错技术确定顺序。通过用户交互式解开关节可基于该关节处用户施加的力和/或转矩的幅值,持续时间,或动力性质。与触觉装置113连通偶联的图形用户界面,脚踏开关,键盘,按钮等可用于解开关节。如果需要,一旦所需的姿态达到,解开关节的能力有可能失效以阻止触觉装置113无意之中的移动。
在另一替代的实施方式中,触觉对象26可被逻辑上与触觉装置113中的一个或多个冗余自由度相连的虚拟线性或非线性弹簧,阻尼器,离合器等限定。例如,如果包括四个关节的触觉装置用于定位手术工具112的尖端,则触觉装置113可沿着其中一个自由度移动而不影响尖端的位置。触觉对象26可与冗余自由度相连以允许用户交互性修改触觉装置113的位置。
图4B为全部由图4A中所示利用可重构或可操纵的触觉对象26,交互式触觉安置医学装置,例如安装至触觉装置113的手术工具112的方法170的流程图。如果需要,触觉对象的可重构性可以是用户可重构的,以便依赖于应用,或依赖于具体应用步骤,用户打开或关闭该特征。当重构特征生效时,方法170优选周期性执行。
在步骤172中,对医学装置是否处于所需姿态进行确定。该确定是通过利用来自一个或多个可整合在触觉装置中的位置传感器,诸如译码器或解算仪的传感信息进行的。如果需要,该确定是通过利用来自外部装置,诸如激光干涉仪,摄像机和/或其他追踪装置的传感信息进行的。
如果在步骤172中,确定医学装置处于所需的姿态,则在步骤174中,维持医学装置姿态的触觉交互作用力和/或转矩就得以确定。该确定至少部分基于触觉装置和/或医学装置相对于所需姿态的位置和/或速度进行的。任何现知或将来开发的控制算法可用于该确定,例如,强控制(robust control),自适应控制,混合位置/力控制,比例微分(PD)控制,比例积分微分(PID)控制,基于笛卡尔控制,反雅可比(Jacobian)控制,转换雅可比控制等。确定的触觉交互作用力和/或转矩可被变换并提供至触觉装置。如果在步骤172中,确定医学装置不处于所需姿态,则在步骤176中,维持医学装置在触觉对象内的触觉交互作用力和/或转矩就得以确定,以便医学装置可被导向到靶区。在步骤178中,对步骤176中计算的触觉交互作用力和/或转矩的至少一种标量估值函数(scalar valued function)的结果是否超过至少一个重构阀值进行确定。重构阀值可以是用户重构的。标量估值函数基于一个或多个输入值计算数值。在示例性实施方式中,标量估值函数可以是输入值平方和的平方根。标量估值函数可应用于一个或多个触觉交互作用力以提供标量值。所得标量值可与重构阀值加以比较。触觉交互作用力和/或转矩的动力学性质,诸如方向,持续时间等,也可加以考虑。
如果标量估值函数的结果没有一个超过可重构阀值,则过程结束。否则在步骤180中,触觉对象26至少部分基于触觉交互作用力和/或转矩而修改。例如,如果外科大夫引导触觉装置,以便触觉装置实际上推动触觉对象,则为保持触觉装置位于触觉对象内所生成的触觉交互作用力和/或转矩的标量估值函数的值有可能超过重构阀值。在这种情形下,期望的是触觉对象例如以外科大夫施加的力的方向被修改,以便手术工具维持在触觉对象之内。触觉对象的修改包括改变触觉对象的大小,改变触觉对象的形状,沿着患者解剖体的靶区转动触觉对象等。
用于交互式触觉安置医学装置的该示例性实施方式的技术优点在于,通过基于触觉交互作用力和/或转矩修改触觉对象,给外科大夫提供了更多的灵活性。因此,外科大夫可接近靶区而无需与其他手术工具和仪器,患者或手术室职工碰撞,并且提供有触觉提示以使外科大夫能够引导手术工具至靶区。
利用可重构(可重安置,可操纵)的触觉对象,交互式安置触觉装置的说明性方法可用于任何情形,其中需要在混乱或安全性关键的环境内移动触觉装置,所述触觉装置任选偶联目的组件,诸如医学装置,例如手术工具等。如果需要,触觉装置自身可以是目的组件。说明性方法可用于各种不同的应用中,诸如其中虚拟约束和/或触觉提示用于移动目的组件至预定位置和/或取向,而安全性或其他担忧使得自动装置移动令人不快的程序。例如,上述方法可用于植入物放置程序,活检程序,治疗用植入物的脱位(deposition),内部或外部解剖体的诊断触诊,肿瘤去除,放疗,艺术或商用造型,艺术或商用绘画,科学或工程实验,诸如表面数字化,样品采集,电路板探通术,手工组装,机械和/或电子组件或部件的制作或测试,材料处理等。
对康复和/或理疗应用而言,利用矫正装置,触觉装置可偶联至患者,这可能需要患者抓住把手。在这种实施方式中,触觉装置可偶联至具有用户控制台的计算机系统。计算机系统可以是也可以不是CAS系统,但是为康复或理疗应用设计的计算机系统。如果需要,计算机系统可以与计算机10整合。矫正装置可具有带子(strap),钢丝套(brace),外壳或模具特征以视需要提供坚固或松散的连接。矫正装置使触觉装置引导,监控和/或帮助康复运动或其他锻炼。例如,患者或治疗学家可将患者臂或腿偶联至触觉装置,并引导其通过所需运动,与此同时触觉装置记录运动的性质。所述运动可重复多次无需治疗学家的帮助。通过注意患者运动需要多少体力,或使用在患者通过界面接触触觉装置的地方或其附近偶联至触觉装置的力传感装置,触觉装置还可用于监控患者运动的体力。触觉装置也可用于简单约束患者的移动至限定路径,该路径要求患者利用其自身力量沿着限定路径推进。在患者和触觉装置之间有共用力的模式也是有利的。期望的是,当以此方式使用时,触觉装置以安全方式操作,因为其如此靠近患者,该患者的一个或多个四肢可能只有部分功能。对触觉装置而言不期望的是自主或自动地移动至新位置。然而,例如为了初始连接至患者或让患者抓住,理想的是重新定位触觉装置,以便触觉装置可移动至不同锻炼或重复同样锻炼之间,或在进行康复运动或锻炼期间的相异起始位置。理疗学家为重新定位触觉装置而提供交互式输入。如果需要,患者在通过界面接触触觉装置的同时可提供这种输入。
利用可重构或可操纵的触觉对象,交互式触觉定位手术工具的说明性方法可在软件,硬件或软件和硬件的组合中得以实施。此处所述的步骤不需要以既定顺序进行。若干步骤可彼此同时进行。此外,如果需要,可任选或组合一个或多个上述步骤而无需背离本发明的范围。
现参照图5,当用户与触觉对象,诸如触觉对象20交互作用时,有时需要知道施加至触觉对象的力的幅值,或者真实或虚拟工具或植入物刺入触觉对象的量。对于非细小触觉对象或那些具有复杂的两维或三维形式的触觉对象而言,可能难以以用户简单理解的方式呈现该信息。然而,理想的信息部分通常是局部刺入距离或触觉排斥力。当这些信息多达三维向量时,可能在触觉对象的局部单位法线方向的这种向量的幅值(或长度),对增加用户的触觉交互作用是最有用的。这些幅值是简单的一维量,并可以各种不同的方法传送给用户,这些方法包括计量器,标度盘,数字显示器,图表,和其他视觉方法,而且还有声音,触觉或其他方法。
虽然完整的讯息直接通过触觉装置113传送至外科大夫手上,但视觉或听觉显示器可用于支持用户与系统之间的强交互作用(richinteraction)。例如,熟知和可商用的语言识别技术可用于为用户连通信息或指示至计算机辅助手术系统提供口头方法。来自计算机辅助手术系统11的语言输出还可用于连通信息至用户,包括状态信息,警告信息,事件通知,以及对用户质疑反应,不管是口头还是通过其他方法连通。计算机监视器,可佩带式显示器,投影显示器,安装头的显示器,立体视角,全息显示器,和/或其他视觉显示装置可用于提供示意性解剖表示,诊断数据集的图像,手术程序的指示或指南,虚拟对象和触觉对象叙述,系统状态信息,患者信息,和经视觉显示器容易连通的其他信息。其他任何输入或输出装置可类似用于增加用户和计算机手术系统之间的触觉交互作用。
提供以手术装置的深度,力和/或速度的预定刚度刺入至触觉对象的视觉和/或听觉显示。触觉对象基于计算机辅助手术系统的信息。为利于连通手术装置进入触觉对象的局部刺入幅值,显示是一维的。
在手术过程中,触觉装置可用于增强外科大夫在,例如把持工具稳定,进行直线切割,或沿路径或表面移动工具尖端等任务中的性能。触觉装置可替换机械切割夹具(cutting jigs)和对准装置,用于帮助安置和制备植入的医学装置的解剖体。虚拟触觉表面可用于替换物理冲模(cutting blocks)。该情形下的虚拟触觉表面优选是软件实体,可容易和廉价地产生自植入物的模型。虚拟触觉表面的产生可带有弯曲形状,其更可靠地匹配潜在的解剖体,并实现要求较少骨或组织去除的植入物设计。
物理对象,诸如骨的造型通常要求在骨中和/或骨表面上产生多重平面特征。触觉对象可被限定来帮助这种造型。限定的触觉对象的形状基本上对应于造型后物理对象的所需结果形状。物理对象和触觉对象具有急剧转变的部分或表面,和/或具有弯曲半径短的部分。照此,偶联至触觉对象并正用于造型物理对象的手术工具有可能突然掉落一段,引起物理对象或其附近其他对象的无意损伤,或者使用户分心或干扰。部分可以是一维,两维或三维的。
为了解决该问题,触觉对象在造型过程中被动力学修改,旨在防止手术工具或触觉装置效仿(follow)从触觉对象的一个部分突然转变成另一部分。优选地,触觉对象仅保持修改形式,只要理想的是防止手术工具或触觉装置从一个部分突然转变成另一部分。一旦切断或其部分完成,触觉对象就可返回至其原始构型,例如至其原始形状,大小,取向等。触觉对象的修改包括产生另一触觉部分,防止手术工具仿效从触觉对象的一个部分突然转变成触觉对象的另一部分,以及例如通过延伸现有部分超出边界等,修改触觉对象的现有部分。
图6A说明正用于触觉造型曲率高的物理对象的示例性触觉装置。图6B说明触觉造型曲率高的物理对象的示例性触觉对象20。现参照图6A和6B,在某些情形下,借助于触觉对象,待制备的解剖区域的所需形状包括锋利外部边缘。如不剪掉这些边缘,就难以合适地进行切割,导致边缘和其他不需要的矫作物在所得解剖体的轮廓中修整(rounding)。制备这些类型形状的改进方法包括动力学生效和失效部分的触觉表面。具体而言,如果触觉对象含有至少一个锋利外部边缘,其中由图6A和6B所示边缘连接的两部分之间的局部角小于180度,该方法是有帮助的。该方法包括在这些部分中选择一种的方式,这些部分包括任何在此所述的用户输入形式,但优选的方法是基于靠近触觉对象。当选择其中之一部分时,触觉对象的该部分延伸超出连接边缘,以提供连续的引导表面。当不再需要延伸时,通过移动触觉臂远离部分或利用其他任何输入形式,用户可使触觉对象返回至其原始构型。
例如,在总的或单分隔膝替换程序中,通常要求多平面切割,以制备股骨植入物的股骨。触觉对象限定在含有密切相关于所需股骨切割的部分的软件中。在实验中,当用户利用全触觉对象和安装在触觉臂的切割毛口,试图切除骨头时,如果不从一个部分剪取到另一部分,以及经常移动毛口超出所需区域,则难以进行直线切割。该剪取可导致对腱,血管,韧带和其他结构的损伤,并使用户分心。如果替代,当用户使切割毛口落入该部分的附近时,延伸触觉对象的各个切割平面,如果不移动超出局部解剖位点,则更容易产生直线切割。通过简单往回移动远离该部分,其返回至原始程度,此时用户可使切割毛口与其他任何部分接触,从而以相似的方式延伸它们。尽管脚踏开关,声音指令或其他输入形式可用于控制各个平面的延伸,但是以如上所述的优选方式控制它们不需要额外的硬件,因此对用户是极其简单的。然而,视觉显示触觉对象和延伸部分也有助于用户了解更复杂的触觉对象,尤其是在由于障碍物或最小介入技术,切割视野受限的情形下。
图6A显示动力学延伸触觉对象的示例性系统。物理对象,例如待造型患者的解剖体的表示,可显示在显示装置30上。物理对象的表示包括两维或三维图画或图像。图像能是例如,患者的两维医学诊断数据集或三维医学诊断数据集。在图6A中,触觉对象20包括被清楚限定的边缘21划分的两种不同部分(20’和20”)。当触觉装置113,手术工具,或虚拟手术工具位于一个部分,比如部分20’的预定距离之内,比如,R1时,触觉对象20的该部分被触发(activate)。如果需要,触觉对象20的触发部分可如图6A中虚线23所示延伸。当触觉装置113移动落入另一部分,比如部分20”的预定距离内时,触觉对象20的新部分可被触发。如果需要,触觉对象20的新触发部分也可延伸。
理想的是,曲率高的触觉对象20应在逻辑上被划分成多个没有高曲率的部分或部分,或者被多个没有高曲率的部分或部分接合(approximate)。尽管优选的是在逻辑上将触觉对象划分成多个部分,但利用逻辑组合多个部分,触觉对象自身可加以限定。例如,多个部分可被初始限定,而触觉对象被限定成多个部分中一个或多个的逻辑组合。如果需要,触觉对象可包括体积元素或体素(voxel)的规则或不规则排列,其中有些或全部可被标记。理想的是可能仅以此方式标记对象表面上的体素。
图6C为动力学修改触觉对象,诸如图6A和6B的触觉对象20的方法120的流程图。如果需要,动力学修改特征是用户可重构的,以便用户依赖于应用,或依赖于具体应用步骤,打开或关闭该特征。当动力学修改特征生效时,方法120优选周期性执行。
在步骤122中,对于触觉对象,比如触觉对象20的构型是否已被修改,例如通过修改触觉对象的部分或通过添加新部分来进行确定。在优选的实施方式中,构型标记(flag)的值可被检查以确定触觉对象20是否已被修改。如果触觉对象20还未被修改,则在步骤124中,对修改触觉对象20的构型的一个或多个标准是否满足进行确定。标准可以是偶联至触觉装置113的手术工具112接近触觉对象20,通过手术工具112刺入触觉对象20,手术工具112的姿态运动,手术工具112相对于触觉对象20位置的姿态运动或其他运动,固定或变化的时间段,检测边缘21上的不必要滑动等。如果需要,标准可以是手术工具112的表示接近触觉对象20,通过手术工具112的表示刺入触觉对象20的边界,手术工具112表示相对于触觉对象20位置的姿态或其他运动等。当修改触觉对象20的构型包括修改触觉对象20的部分,优选同样的标准用于确定任何部分是否应被修改。然而,如果需要,基于不同标准不同部分可被修改。在这样的实施方式中,多个部分可分别具有一个或多个与其相连的标准。
如果在步骤124中,确定修改触觉对象20的构型的至少一个标准是满足的,则在步骤126中,选择待修改的部分。此外,可在步骤126中选择部分,接近该部分必产生新触觉部分。在替代的实施方式中,如果预定逻辑组合的一组标准是满足的,则执行自步骤126起始的过程。优选地,选择最接近触觉装置113的部分。然而,如果需要,其他标准也可用于选择部分。例如,如果自从执行最后时间方法120,手术工具112已越过两个或多个部分之间的边缘,则可选择其中一个与被越过的边缘相连的部分。此外,可选择正被手术工具112刺入的部分。在步骤128中,优选通过以移动触觉装置113的所需方向延伸选择的部分而修改选择部分的构型。构型标记可设定以表明触觉对象20已被修改。
修改选择部分的构型的方法优选至少部分基于其中触觉对象被表示的方式。该表示可基于表面多角形,体素,非一致有理B-花键(NURBs),推定的立体几何,和/或现知或将来开发的其他表示触觉对象的任何方法。该修改的部分可以任何方式表示,所述方式与那些用于表示原始触觉对象的方式可以或不可以相同。优选地,延伸选择部分以便延伸的部分与该部分一起沿着其中一个高曲率边缘是连续的。延伸可以是平坦或弯曲的。部分可超出原始部分延伸固定或可变的距离,或能被延伸以横切另一部分触觉对象或工作室的边缘。延伸部分所用方法取决于表示延伸所用的方法。例如,如果触觉对象以表面多角形表示,则位于目的部分内和邻近其中一个边界的多角形得以鉴定。位于原始部分之外并与原始多角形具有相同正向的相邻部分可加以实现。对体素表示来说,体素可被标记,以表明它们是否象带有不同延伸部分的触觉对象构型的实体或填充空间区域一样表现,这些延伸部分可被自动,半自动或手工设计。选择的相邻部分可被添加至触觉对象。因此,如图6A所示,如果触觉对象20的部分20’为选择部分,则部分20’可被延伸到其原始边界之外,例如,如虚线23所示。此外,如果需要,新触觉部分可在靠近选择部分处形成。
在步骤130中,计算触觉对象的触觉交互作用力和/或转矩。触觉交互作用力和/或转矩可被转换并提供至触觉装置113。例如,理想的是计算触觉装置的制动器施加恰当的力和转矩,以便产生所需的触觉交互作用力和/或转矩。在有些情形下,期望的是给制动器更改位置或速度指令以产生所需的效果。来自选择部分的触觉交互作用力和/或转矩可用于以所需方向引导触觉装置113远离,朝向或对准待造型的物理对象114。触觉交互作用力和/或转矩可以是排斥,吸引,摩擦,粘性,冲击,棘爪,调节(例如,设计维持切割速度或馈电速率)等。如果需要,利用数学,控制理论,或机器学习算法计算触觉交互作用力和/或转矩。
如果在步骤124中,确定修改触觉对象20的构型的标准不满足,则可执行自步骤130起始的过程。
如果在步骤122中,确定触觉对象20的构型已被修改,则在步骤134中,对维持触觉对象20在修改构型中的一个或多个预定标准是否满足进行确定。这些标准可以或不可以与那些当触觉对象20的构型被初始修改时视为的标准相同。优选地,如果维持触觉对象在修改构型中的至少一个标准是满足的,则可执行自步骤130起始的过程。否则,在步骤136中,修改的触觉对象被返回至其原始构型。构型标记可被重新设定以表明触觉对象20尚未被修改。在执行步骤136之后,可执行自步骤130起始的过程。在替代的实施方式中,如果在步骤134中确定预定逻辑组合的一组标准是满足的,则可执行自步骤130起始的过程。
如图6A所示,当触觉装置113或偶联至触觉装置113的手术工具112落入触觉对象20,比如部分20’的一个部分的预定距离R1时,触觉对象20的该部分可被触发和修改,以便如虚线23所示,延伸超出其原始边界。尽管触觉装置113或手术工具112接近部分20’或维持与部分20’接触,部分20’保持修改。在该时间过程中可使用手术工具112将对应于部分20’的物理对象114的部分造型至所需形状。当对应于部分20’的物理对象114的部分造型完成时,用户可移动触觉装置113远离部分20’。然后,部分20’可返回至其原始构型。当触觉装置113或手术工具112移动至触觉对象20,比如部分20”的另一部分的预定距离内,触觉对象20的部分20”可被触发和修改,以便延伸超出其原始边界。
动力学修改触觉对象的说明性方法可用于多种不同的应用,诸如任何程序,其中虚拟约束和/或触觉提示用于引导用户使用触觉装置来造型具有高曲率的物理对象或形状。例如,该方法可用于制作消费者或工业产品的组件,再现或创建艺术作品,诸如雕塑品,在整形外科程序中成形骨等。
动力学修改触觉对象的说明性方法可在软件,硬件或软件和硬件的组合中得以实施。此处所述的步骤不需要以既定顺序进行。若干步骤可彼此同时进行。此外,如果需要,可任选或组合一个或多个上述步骤而无需背离本发明的范围。
动力学修改触觉对象的该示例性实施方式的技术优点在于造型物理对象可以更受控的方式进行。因此,在手术程序过程中,可避免对部分身体的无意损伤,而且利用该系统,用户能感觉更舒服。另一技术优点在于当从触觉对象的一个部分转换至另一部分时,用户不必移动其注意力远离工作量(working volume)。还有一技术优点在于具有高曲率的形状比仅采用整个触觉对象更容易手术。
图8说明利用示例性触觉装置113作为输入装置。触觉装置113和触觉对象20的实际空间得以说明。触觉装置113也可用作输入装置,使得信息通过用户至CAS系统11,以及提供类似于共用户界面装置,诸如鼠标,触垫(touchpad),键盘,操纵杆,飞行控制器,触觉操纵杆,或其他任何输入装置的功能性。当用作输入装置时,其可用于限定解剖参考几何,处理虚拟植入物的位置和/或取向,处理外科途径轨迹的位置和/或取向,处理骨切除术的位置和/或取向,以及其他任何解剖或手术特征的选择或安置。触觉装置113还可用于更多的通用用户界面功能,包括但不限于,移动光标31(图8),选择按钮或其他类似用户界面对象,选择折叠菜单,处理屏幕上刻度盘,旋纽,和其他控制。以这种用户输入模式,触觉装置可被限制仅以一定方向移动,所述方向的限定相对于触觉装置的预定部分的位置,相对于患者的位置或患者解剖体的部分,或相对于示意性,虚拟,图册,或真实患者解剖特征的图像或3-D模型。触觉装置的预定部分能够移动。
如图8的显示器30所示,触觉装置113可用作输入装置来改变触觉对象20的位置,形状,大小等。该方式中所用触觉装置113的例子是计划膝植入物的放置。在获得目的解剖体的适合解剖图像后,计算机手术系统进入模式,其中光标显示在对用户视觉的显示器。用户抓住臂可能以多视野移动光标的位置。当满足光标的位置时,用户通过使用脚踏开关,按钮,有线或无线控制悬挂按钮,声音指令,或其他输入,或通过施加力或转矩至触觉臂,或以截然不同的姿态,诸如轻拍,扭曲,或在光标定位过程中容易区别于用户交互作用的其他姿态移动触觉臂,将其固定在所需位置。在第一位置设定后,第二光标用于限定连接于第一光标的两维或三维位置的线的终点。如上移动第二光标,以限定股骨的解剖轴,而利用上述其中一种技术固定其位置。然后,植入物的两维或三维位置和取向可由使用触觉装置作为输入装置的用户处理。植入物通过系统约束,以便其表面之一垂直于解剖参考线,但其位置和取向由用户调节。还有可能容许偏离解剖轴,该轴可能偶联有相对于对用户熟悉的解剖参考系的这种偏差的显示。例如,植入物相对于解剖参考系的内翻/外翻角可被调节并显示以允许膝植入物的合适对准。该通用技术可适合计划最小介入臀和膝植入物,外伤固定针,椎茎钉,活检针,放射性珠,放疗光束发射器,或其他任何医学装置的通路和/或放置。
与触觉装置一起,外科大夫可使用与标准实践中所用的那些相同或非常相似的工具。通过利用装置的触觉特征,对难以教导的悬吊开关(awkward teach pendant)或基于GUI的机器人控制的需要可得以减少或消除。程序的徒手和辅助步骤之间快速进行转换的方法是简单推动装置让路,类似于熟悉的手术室对象,诸如显微镜和吊灯。虽然系统在内部是复杂的,但外科大夫必须避开这种复杂性,从而集中其所有注意力在患者身上。
例如,利用基于关节或笛卡尔控制算法,触觉臂保持自身在参考位置。用户施加力和/或转矩至臂,或在交互作用把手或末端受动器(end-effector)上,或臂上的任何点处,这引起臂偏移参考位置。偏移的量和方向连续连通至计算机系统以修改任何所需的虚拟参考几何特征或用户界面对象的位置。
在另一例子中,利用基于关节或笛卡尔控制算法,但留下两个自由度未限制,触觉臂保持自身在参考位置。然后,用户以未限制方向移动臂以提供用户界面对象,诸如光标,植入物,或其他几何或虚拟表面实体的两维控制。类似技术可用于对象的一个自由度处理,诸如用户界面滑块,植入物长度,对象沿参考轨迹的位置,或其他任何一维控制,诸如音量,图像亮度,对象定标,图像变焦等。类似技术可用于三个以上自由度安置植入物或虚拟或触觉对象。触觉对象的位置也可相对于具体应用的任何相关解剖特征加以限制。例如,膝植入物可被限制而相对于腿的解剖轴具有合适的对准,或实现合适的韧带平衡,但具有被用户以上述方式可控的其他自由度。
控制算法的刚度或阻尼可以不同方向变化以表明运动的优先方向,这些方向可与前段上述任何方向对准。一旦偏移参考位置超出某阈值,此刚度变化包括沿一定方向刚度,或锁定用户至优选方向。通过让用户某时集中其注意力至有限数目的自由度,该刚度变化帮助简化计划过程。例如,用户首先可沿着一个或两个方向设定植入物的位置,然后沿着其他方法设定植入物的位置,而无需扰乱设定方向。
刚度和阻尼变异依赖于用户与触觉装置的物理交互作用自动发生,并且不需要使用另一输入装置,诸如声音指令,控制悬吊开关,或脚踏开关。任何这样的简化在降低服务成本,简化的系统利用,和改进的安全性方面具有益处。计划的这种通用方法还使得外科大夫进行计划而不必离开正常的手术位置来与计算机辅助手术系统交互作用,或无需助手控制计算机辅助手术系统,或除已用于执行手术计划的触觉装置以外,无需导入其他输入装置。这种利用触觉装置的另一益处在于,移动受控的对象相对于臂的移动得以定标,以便其可定位至比用户定位真实对象更好的精度,消除用户手震颤的有害效果,以及任何由摩擦引起的力扰动(force disturbance),齿隙,磁性棘爪力,以及其他由触觉臂引起的有力扰乱。应该注意的是,被触觉装置控制的对象的主要功能不同于监控触觉对象的姿态,或监控可或不可与触觉装置偶联的目的组件的姿态。
图7A和7B说明利用触觉装置和手术工具来限定触觉对象。在说明性例子中,触觉装置113正被用作输入装置以限定触觉对象182。为了使用触觉装置113作为输入装置来限定触觉对象182,用户抓住偶联至触觉装置113的手术工具112。如果需要,用户可抓住触觉装置113自身。利用手术工具112,用户追踪所需区域的边界,例如触觉对象必被限定的部分解剖体。例如通过触摸手术工具112的末端至解剖体所需区域的部分,用户可追踪边界。记载手术工具112的移动,并且计算通过用户追踪的终点的位置。触觉对象182的几何和/或位置可至少部分基于终点的位置而加以确定。触觉装置产生模式可用于规定触觉对象的所需形状。例如,为了产生对应于解剖体114的切除部分184的圆柱形触觉对象,用户可追踪切除部分184边界上的多个点。利用现知或将来开发的任何技术,可产生合适的圆柱形触觉对象。
解剖体的材料和其他性质可通过探查解剖体而限定。例如,手术工具112包括与手术工具112的尖端偶联的力测量装置。此外,如果需要,代替手术工具112,包括力测量装置的探针可偶联至触觉装置113。当用户通过界面连接力测量装置针对解剖体114的部分时,力可通过力测量装置加以测量。测量的力作为施加力后解剖体移动的距离(如果有的话)的函数显示。解剖体114的该部分的刚度可计算成力与距离的比率。如果需要,触觉装置113自身可与解剖体114的部分通过界面连接(interface),而力可基于由制动器提供的转矩确定。在这样的实施方式中,触觉装置113针对解剖体114的部分以无需任何用户身体帮助的自动方式做小或大的移动或挤压。利用现知或将来开发的雅可比方法可确定力。图7B的图形表示186说明力作为解剖体114替换的函数,利用此力手术工具112与解剖体114接触。
如果需要,其他类型的传感装置可偶联至触觉装置113或手术工具112以确定解剖体114的其他性质。这些性质可用于确定接近触觉装置113的组织类型。因此,触觉装置113可用于区分硬骨和软骨,健康和患病组织,不同类型的健康组织,解剖结构的边界等。基于接受自触觉装置113的信息,组织类型可通过CAS系统11自动确定并且显示在显示装置30上。
图9为利用触觉装置113作为输入装置的代表性方法190的流程图。在步骤192中,触发输入方式。通过现知或将来开发的任何机构,用户可触发输入方式。例如,用户可利用图形用户界面,脚踏开关,键盘,按钮等,以表明用户希望利用触觉装置113作为输入装置。触觉装置113控制多个对象。然而,理想的是,其一次仅控制单一对象。照此,在步骤194中,接受待控制对象的鉴定。受控的对象可以是光标,按钮,屏幕上刻度盘,旋纽,滑块(slider bar),或其他类似用户界面对象,虚拟植入物,手术接近轨迹,骨切除术等。通过任何现知或将来开发的方法,例如通过利用常规输入装置选择对象,用户选择待控制的对象。
在步骤196中,可存储触觉装置113的参考姿态。参考姿态优选是触觉装置113的当前姿态。例如,在该步骤中,可存储有关触觉装置113的尖端的位置信息。在步骤198中,受控对象与触觉装置113相关。受控对象与触觉装置113的相关性是期望的,从而触觉装置113的移动相对于受控对象可被平移或对应至相应的移动或动作。相关性或对应(mapping)使得响应于触觉装置113的移动确定受控对象的移动量或方向。例如,用户可规定,触觉装置113移动一个单位应引起受控对象,例如,光标31,在显示装置30上移动10个象素。
用户四周移动触觉装置113以控制步骤194中选择的对象。在步骤200中,确定触觉对象113的姿态的变化。触觉装置113的姿态的变化相对于触觉装置113的参考姿态优选得以确定。触觉装置113的姿态的变化包括,例如触觉装置113尖端位置的变化。
在步骤202中,可更新触觉装置113的参考姿态。优选地,至少部分基于触觉装置113的姿态的变化更新参考姿态。如果需要,至少部分基于由用户施加至触觉对象的扭曲(wrench),可更新参考姿态。扭曲由传感器清楚地测量。如果需要,扭曲暗示触觉装置可确定扭曲正被施加。
在步骤204中,计算受控对象的新参数。受控对象的参数可以是,例如其姿态,位置,角度,大小,颜色,形状,取向,视角方向,亮度,反差,表指数,状态,方式,构型等。基于触觉装置113的姿态和/或由用户施加至触觉装置的扭曲的变化,可计算新参数。如果需要,基于触觉装置113的参考姿态的变化,可计算新参数。优选地,步骤198中获得的相关信息用于计算新参数。新参数可用于改变受控对象。因此,例如,当受控对象为光标31,并触觉装置113的姿态发生变化时,则受控对象的新姿态基于新参数而得以确定。在步骤206中,受控对象基于新参数而改变。因此,例如,如果受控对象为光标31,则光标31在显示装置30上的位置至少部分基于步骤204中计算的新参数而变化。
在步骤208中,由触觉装置施加至医学装置和/或用户的触觉扭曲被确定。触觉扭曲的确定方法基于受控对象的新参数,触觉装置113的姿态的变化,和/或触觉装置113的当前姿态。
在步骤210中,确定的触觉扭曲被施加至触觉装置113。期望的是限制触觉装置113的移动,而非允许触觉装置113以任何方向移动。确定的触觉扭曲当施加至触觉装置113时防止其以某种不需要的方向移动。例如,如果受控对象能够仅以一维移动,则期望的是限制触觉装置113的移动以便触觉装置113仅以一个方向移动。作为另一例子,当受控对象为显示装置30上的光标31时,则理想的是限制触觉装置113移动至对应于显示装置30的两维平面。作为进一步例子,如果对触觉装置113而言从参考姿态移动长距离不合乎需要,则触觉扭曲可动作使触觉装置113以一个或多个方向返回至参考姿态。
在输入方式内,可以位置控制方式或速率控制方式利用触觉装置113。在位置控制方式中,受控对象的姿态的变化追踪触觉装置113的姿态的变化。例如,如果触觉装置113以特定方向移动一个单位,则受控对象以相应方向移动相应量。当触觉装置113被释放时,则其停留在新姿态。
另一方面,在速率控制方式中,从参考姿态置换触觉装置113和/或由用户施加至触觉装置的参考姿态,可控制受控对象的速度。例如,如果触觉装置113维持在其参考姿态(或如果没有扭曲被用户施加至触觉装置),则受控对象的移动速率为零。从参考姿态置换触觉装置113(或由用户施加至触觉装置的扭曲的幅值)确定受控对象的移动速度,而移动速度与受控对象的置换(或与施加至触觉装置的扭曲的幅值)成比例。当希望移动受控对象时,触觉装置113以受控对象需移动的方向而简单移动(推动)。当触觉装置113被释放时,其退缩至参考姿态,这归因于步骤210中施加步骤208中确定的触觉扭曲。因此,在速率控制方式中,受控对象可移动相当的距离,而无需基本上移动触觉装置113。
在步骤212中,对触觉装置113是否仍以输入方式操作进行确定。如果触觉装置113不以输入方式操作,则方法终止。否则,在步骤214中,对待控制新对象是否已被规定进行确定。如果待控制的新对象尚未被规定,则可执行自步骤200起始的确定触觉装置113姿态变化的过程。否则,执行自步骤194起始的接受待控制的新对象的鉴定方法。
例如,在一个实施方式中,参考姿态与连接至触觉装置113的钻导杆的所需轨迹相关连。在这样的实施方式中,步骤202中更新参考姿态包括改变钻导杆的所需轨迹。当用户从参考姿态移动触觉装置113延长的时间段时,参考姿态将被更新以用户偏移的方向移动。如果在步骤210中,施加适当的触觉反馈扭曲,则在触觉装置113由用户释放后,触觉装置113会呈现新参考姿态。当用户满足参考姿态,并且输入方式终止在步骤212中时,触觉装置113所处的姿态使得钻导杆对准所需的轨迹。
利用触觉装置作为输入装置的说明性方法可在软件,硬件或软件和硬件的组合中得以实施。此处所述的步骤不需要以既定顺序进行。若干步骤可彼此同时进行。此外,如果需要,可任选或组合一个或多个上述步骤而无需背离本发明的范围。
以上述方式利用触觉装置作为输入装置的技术优点在于,避免利用其他输入装置,由此降低手术室中的混乱。
图10说明在医学,手术或介入程序过程中传送标量信息的系统。触觉装置113可被展开成CAS系统11的全部集成组件,或充当这样系统的任选外围设备。与触觉装置113偶联的工具112的位置信息可被传感并提供回到带有或没有传感器14的CAS系统11。
医学,手术和介入程序统称为“医学程序”。医学程序包括切除部分解剖体,诸如为了关节替换,关节表面重整,肿瘤去除,骨畸形改正等。如果需要,医学程序包括施加合成,生物,或治疗性物质至目的表面或区域,或在所需位置,表面或容积放置传感器,探针,植入物或放射性材料。当用户例如与触觉对象交互作用时,有时需要了解施加至触觉对象的力的幅值,或真实或虚拟工具或植入物刺入触觉对象的量。对非细小触觉对象,或那些具有错综复杂的两维或三维形式的触觉对象而言,可能难以以对可能难以以对用户理解的简单方式呈现信息。所需信息通常是到目的表面,或到所需位置的局部距离,目的表面的局部刺入距离,或触觉排斥力。当这些信息多达三维向量时,可能在触觉对象的局部单位法线方向的这种向量的幅值(或长度),对增加用户的触觉交互作用是最有用的。这些幅值是简单的一维量,并可以各种不同的方法传送给用户,这些方法包括计量器,标度盘,数字显示器,图表,和其他视觉方法,而且还有声音,触觉或其他装置。
在图10的示例性实施方式中,CAS系统11连通性偶联至声源216,例如扬声器,和显示装置30。在示例性医学程序中,解剖体114(其在图10的实施方式中是骨)利用触觉对象20的表面作为导轨面,沿着触觉对象20一定被切割。在医学程序过程中,一维信息,例如有关工具112的尖端至目的对象,例如触觉对象20的表面的标量距离D的信息优选但不必自动地提供给用户。基于程序阶段,在用工具的类型,工具的位置和接近目的对象(包括表面),或其他帮助CAS系统11鉴定幅值信息会被确定和显示的对象的提示,CAS系统11可被编程,例如以自动提供该标量信息。
在示例性实施方式中,在开始切割手术之前,D值为正值。D值为零表明,切割工具112的尖端位于解剖体114内的所需深度。在示例性实施方式中,所需深度在触觉对象20的表面。D值为负表明,骨内切割工具112的尖端超过所需深度。一维信息通过任意方法连通至外科大夫,所述方法诸如视觉,听觉,触觉方法等。例如,视觉指示器218,例如电平计,标度盘,数字显示器,图形等,可用于在显示装置30或接近用户的其他任何装置指示D值。如果需要,声源216,视觉指示器218和/或显示装置30可更近地提供给用户,例如在工具112,触觉臂113,其他手持工具,仪器或附件,或可佩带的视觉,听觉,触觉显示器上。例如,工具112包括简单的显示装置或多色指示器,例如多色LED指示器,多色灯指示器,LED电平计等,以给用户指示切割深度。在这样的实施方式中,用户不需要将其注意力转移出手术工作区。同样,工具112包括声源以给用户指示切割深度。在这样的实施方式中,由于接近其用户,声源216的声音指示可容易地被用户听到。
如果需要,替代或除了视觉指示器218,可提供扬声器216的声音指示器或音调。例如,提供一系列嘟嘟声来显示D值。随着D值降低,嘟嘟声之间的间隔相应减少。如果需要,当D值变为零时,嘟嘟声可转化成嗡嗡声或其他任何声音,以及当D值变为负值时,转化成不同声音,例如,高音调声。在示例性实施方式中,D值为正是可接受的值,而D值为负为不可接受的值。
提供声音指示器的优点在于,外科大夫不必将其眼睛离开患者的解剖体,诸如骨114。然而,如果手术室中的噪声使得外科大夫难以听清声音指示器,则视觉指示器是更合适的。
如果利用触觉系统或装置,诸如说明的示例性实施方式中所示,通过触觉臂113或通过辅助装置提供触觉指示。在实施方式中,触觉臂113振动以给用户提供触觉指示。触觉臂113振动的频率,振幅,波形,和/或其他性质依赖于距离D。在另一实施方式中,振动装置可提供在用户的身体上。振动装置振动的频率,振幅,波形,和/或其他性质取决于距离D。提供触觉指示的优点在于外科大夫不必将其眼睛离开骨114。
由于一维信息容易与用户连通,用户能够将其注意力集中在切割任务上,因为知晓声音指示,触觉指示或快速浏览视觉指示器218会通知其是否正切割至合适的深度。
在用户不利用触觉装置的情形下,深度信息也可给用户显示。例如,利用其姿态被追踪系统追踪的工具,用户正徒手切割骨。在这样的实施方式中,用户没有触觉反馈的益处,所述反馈往往施加力至工具,工具在触觉对象的表面上保持力,或阻止力刺入触觉对象。代替触觉对象,简单的几何对象,例如,弯曲,点,线,表面或容积可用作目的对象。目的对象可被识别至CAS系统,或CAS系统基于目的对象的其他信息而确定目的对象。例如,对患者或对患者的诊断图像,可直接限定目的对象,或目的对象通过CAS系统从其他由用户鉴定的解剖点或特征得以衍生或确定。CAS系统了解工具相对于目的对象的位置,并显示一维深度信息。在这样的系统中,D的计算方法是确定工具112的尖端到目的对象切口所需深度的距离。如果需要,目的对象包括弯曲,点,表面,线,容积或一组所需位置。目的对象是触觉对象,几何对象和/或部分解剖体的所需形状。
如果需要,在替代的实施方式中,利用表面上各个点处切割深度的两维表示,或空间各个点的三维表示,可增加一维深度显示。两维或三维表示是目的表面的示意性或现实性描述。当医学程序过程中工具最靠近各自点时,目的表面上点的性质,例如,颜色,亮度等至少部分基于工具和各自点之间的距离。例如,不同颜色可用于表示工具与点之间的距离。确定医学程序过程中工具最靠近至某点时的位置,并计算工具与该点之间的距离。该点的颜色反映工具最靠近该点时从工具到点的距离。
图11为医学程序过程中传送深度信息的方法220的流程图。方法220优选周期性执行。在步骤222中,确定工具112至所需表面的距离。优选地,确定工具112的尖端至对象,例如触觉对象20的表面的距离D。确定D值的方法取决于对象如何在内表示。该对象的表示基于表面多角形,体素,NURBs,作图立体几何,和/或现知或将来开发的其他任何表示几何对象的方法。计算工具112的当前位置至触觉对象20表面上的合适点的距离。取决于工具112的尖端和骨114对触觉对象20表面的相对位置,计算的距离赋予正值或负值。在图10所示的例子中,如果工具112的尖端和骨114位于触觉对象20表面的对侧,则D赋予正值。反之,D赋予负值。
在步骤224中,确定的距离对应于显示给用户的所需输出形式。例如,所述距离可对应于合适的颜色,声频,时间段,声音,图像,触觉提示等。优选地,至少部分基于D值进行对应。下表A显示系统的示例性对应表,在系统中给用户提供视觉信号。
D(mm) | 输出形式 |
1-2 | 绿光 |
0.1-0.99 | 黄光 |
0.0-0.09 | 红光 |
<0.0 | 黑光 |
表A
在步骤226中,确定的距离以所需输出形式传送至用户。如果所需的输出形式是视觉指示器,则在示例性实施方式中,显示合适颜色的指示器。例如,如示例性表A中所规定,如果D值位于可接受的范围内,比如1-2mm,则显示绿色指示器,如果D值介于0.1-0.99mm,则显示黄色指示器,如果D值位于0.0-0.09mm,则显示红色指示器,以及如果D值在不可接受的范围内,比如小于0,则显示黑色指示器。在图10的实施方式中,有关距离D的信息由电平计218显示。随着D值变化,电平计218中水平的颜色发生变化。如果所需输出形式为声音指示器,则在示例性实施方式中,参照图10,距离信息通过在此所述的嘟嘟声传送。
本发明的示例性实施方式的技术优点在于,在医学程序过程中,有关工具深度的信息可以更简单的方式提供给用户,以便用户将其注意力集中在医学程序上。
Claims (73)
1.在医学程序中利用计算机辅助手术系统的方法,包括:
接受目的对象的信息;
追踪工具的位置;
确定所述工具的当前位置和所述目的对象之间的标量距离;以及
给所述工具的用户提供所述标量距离的指示。
2.权利要求1的方法,其中所述提供步骤包括给所述工具的所述用户提供所述标量距离的视觉指示。
3.权利要求2的方法,在所述提供步骤之前进一步包括选择视觉指示的类型以提供给用户。
4.权利要求2的方法,其中所述视觉指示通过选自电平计,标度盘,数字显示器,和图形的视觉指示器提供。
5.权利要求2的方法,其中所述提供步骤包括在与计算机辅助手术系统相连的显示装置上提供所述标量距离的所述视觉指示。
6.权利要求2的方法,其中所述提供步骤包括在显示装置上提供所述标量距离的所述视觉指示,所述显示装置置于与所述计算机辅助手术系统相连的触觉装置上。
7.权利要求2的方法,其中所述提供步骤包括在显示装置上提供所述标量距离的所述视觉指示,所述显示装置置于接近患者的解剖体所用的手术工具上。
8.权利要求3的方法,进一步包括至少部分基于所述标量距离选择所述视觉指示的颜色。
9.权利要求2的方法,在所述提供步骤之前,进一步包括至少部分基于所述标量距离选择所述视觉指示。
10.权利要求2的方法,其中所述目的对象包括限定患者解剖体所需形状的触觉对象的表面。
11.权利要求2的方法,其中所述目的对象包括患者解剖体的部分。
12.权利要求2的方法,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
13.权利要求2的方法,其中所述提供步骤包括提供预定的视觉指示,所述指示表明所述标量距离位于可接受的范围内。
14.权利要求2的方法,其中所述提供步骤包括提供预定的视觉指示,所述指示表明所述标量距离位于不可接受的范围内。
15.权利要求1的方法,其中所述提供步骤包括给所述工具的所述用户提供所述标量距离的触觉指示。
16.权利要求1的方法,其中所述提供步骤进一步包括引起与所述用户接触的装置的振动。
17.权利要求1的方法,进一步包括至少部分基于所述标量距离选择指示的类型。
18.权利要求1的方法,其中所述提供步骤包括提供所述指示,表明所述标量距离位于可接受的范围内。
19.权利要求1的方法,其中所述提供步骤包括提供所述指示,表明所述标量距离位于不可接受的范围内。
20.权利要求1的方法,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
21.权利要求1的方法,其中所述提供步骤包括给所述工具的所述用户提供所述标量距离的声音指示。
22.权利要求21的方法,在所述提供步骤之前,进一步包括选择声音指示的类型以提供给所述用户。
23.权利要求21的方法,其中所述提供步骤包括经由与计算机辅助手术系统相连的声音装置提供所述标量距离的所述声音指示。
24.权利要求21的方法,其中所述提供步骤包括经由声音装置提供所述标量距离的所述声音指示,所述声音装置放置在与计算机辅助手术系统相连的触觉装置上。
25.权利要求21的方法,其中所述提供步骤包括经由声音装置提供所述标量距离的所述声音指示,所述声音装置放置在接近患者解剖体所用的手术工具上。
26.权利要求21的方法,在所述提供步骤之前,进一步包括至少部分基于所述标量距离选择所述声音指示。
27.权利要求21的方法,其中所述目的对象包括限定患者解剖体所需形状的触觉对象的表面。
28.权利要求21的方法,其中所述目的对象包括患者解剖体的部分。
29.权利要求21的方法,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
30.权利要求21的方法,其中所述提供步骤包括提供预定的声音指示,表明所述标量距离位于可接受的范围内。
31.权利要求21的方法,其中所述提供步骤包括提供预定的声音指示,表明所述标量距离位于不可接受的范围内。
32.在医学程序中利用的计算机辅助手术系统,包括:
与所述计算机辅助手术系统可操作相连并可操作下列步骤的应用逻辑:
接受目的对象的信息;
追踪工具的位置;
确定所述工具的当前位置和所述目的对象之间的标量距离;以及
给所述工具的用户提供所述标量距离的指示。
33.权利要求32的系统,其中所述应用逻辑进一步可操作给所述工具的所述用户提供所述标量距离的视觉指示。
34.权利要求33的系统,其中所述应用逻辑进一步可操作选择视觉指示的类型以提供给用户。
35.权利要求33的系统,其中所述视觉指示通过选自电平计,标度盘,数字显示器,和图形的视觉指示器提供。
36.权利要求33的系统,其中所述应用逻辑进一步可操作在与计算机辅助手术系统相连的显示装置上提供所述标量距离的所述视觉指示。
37.权利要求33的系统,其中所述应用逻辑进一步可操作在显示装置上提供所述标量距离的所述视觉指示,所述显示装置置于与所述计算机辅助手术系统相连的触觉装置上。
38.权利要求33的系统,其中所述应用逻辑进一步可操作在显示装置上提供所述标量距离的所述视觉指示,所述显示装置置于接近患者的解剖体所用的手术工具上。
39.权利要求34的系统,其中所述应用逻辑至少部分基于所述标量距离进一步可操作选择所述视觉指示的颜色。
40.权利要求33的系统,其中所述应用逻辑至少部分基于所述标量距离进一步可操作选择所述视觉指示。
41.权利要求33的系统,其中所述目的对象包括限定患者解剖体所需形状的触觉对象的表面。
42.权利要求33的系统,其中所述目的对象包括患者解剖体的部分。
43.权利要求33的系统,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
44.权利要求33的系统,其中所述应用逻辑进一步可操作提供预定的视觉指示,所述指示表明所述标量距离位于可接受的范围内。
45.权利要求33的系统,其中所述应用逻辑进一步可操作提供预定的视觉指示,所述指示表明所述标量距离位于不可接受的范围内。
46.权利要求32的系统,其中所述应用逻辑进一步可操作给所述工具的所述用户提供所述标量距离的触觉指示。
47.权利要求32的系统,其中所述应用逻辑进一步可操作引起与所述用户接触的装置的振动。
48.权利要求32的系统,其中所述应用逻辑至少部分基于所述标量距离进一步可操作选择指示的类型。
49.权利要求32的系统,其中所述应用逻辑进一步可操作提供所述指示,表明所述标量距离位于可接受的范围内。
50.权利要求32的系统,其中所述应用逻辑进一步可操作提供所述指示,表明所述标量距离位于不可接受的范围内。
51.权利要求32的系统,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
52.权利要求32的系统,其中所述应用逻辑进一步可操作给所述工具的所述用户提供所述标量距离的声音指示。
53.权利要求52的系统,其中所述应用逻辑进一步可操作选择声音指示的类型以提供给所述用户。
54.权利要求52的系统,其中所述应用逻辑经由与所述计算机辅助手术系统相连的声音装置进一步可操作提供所述标量距离的所述声音指示。
55.权利要求52的系统,其中所述应用逻辑经由声音装置进一步可操作提供所述标量距离的所述声音指示,所述声音装置放置在与所述计算机辅助手术系统相连的触觉装置上。
56.权利要求52的系统,其中所述应用逻辑进一步经由声音装置提供所述标量距离的所述声音指示,所述声音装置放置在接近患者解剖体所用的手术工具上。
57.权利要求52的系统,其中所述应用逻辑至少部分基于所述标量距离进一步可操作选择所述声音指示。
58.权利要求52的系统,其中所述目的对象包括限定患者解剖体所需形状的触觉对象的表面。
59.权利要求52的系统,其中所述目的对象包括患者解剖体的部分。
60.权利要求52的系统,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
61.权利要求52的系统,其中所述应用逻辑进一步可操作提供预定的声音指示,表明所述标量距离位于可接受的范围内。
62.权利要求52的系统,其中所述应用逻辑进一步可操作提供预定的声音指示,表明所述标量距离位于不可接受的范围内。
63.权利要求52的系统,其中所述应用逻辑包括计算机可执行软件代码。
64.权利要求32的系统,其中所述计算机辅助手术系统为触觉装置。
65.权利要求32的系统,其中所述计算机辅助手术系统包括触觉装置。
66.存储指令的计算机可读存储介质,所述指令由计算机执行时引起计算机执行下列步骤:
接受目的对象的信息;
追踪工具的位置;
确定所述工具的当前位置和所述目的对象之间的标量距离;以及
给所述工具的用户提供所述标量距离的指示。
67.权利要求66的计算机可读存储介质,其中所述指示是视觉指示。
68.权利要求66的计算机可读存储介质,其中所述指示是声音指示。
69.权利要求66的计算机可读存储介质,其中所述指示是触觉指示。
70.权利要求66的计算机可读存储介质,进一步包括指令,所述指令由所述计算机执行时引起计算机执行至少部分基于所述标量距离选择指示类型的步骤。
71.权利要求66的计算机可读存储介质,进一步包括指令,所述指令由所述计算机执行时引起计算机执行提供所述指示表明所述标量距离位于可接受范围内的步骤。
72.权利要求66的计算机可读存储介质,进一步包括指令,所述指令由所述计算机执行时引起计算机执行提供所述指示表明所述标量距离位于不可接受范围内的步骤。
73.权利要求66的计算机可读存储介质,其中所述目的对象选自弯曲,点,表面,容积和一组所需位置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/621,119 US7831292B2 (en) | 2002-03-06 | 2003-07-16 | Guidance system and method for surgical procedures with improved feedback |
US10/621,119 | 2003-07-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101031236A true CN101031236A (zh) | 2007-09-05 |
CN100579448C CN100579448C (zh) | 2010-01-13 |
Family
ID=34103178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200480023380A Expired - Lifetime CN100579448C (zh) | 2003-07-16 | 2004-07-16 | 用于具有改进反馈的手术程序的导向系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7831292B2 (zh) |
EP (1) | EP1680007B1 (zh) |
JP (1) | JP4833061B2 (zh) |
CN (1) | CN100579448C (zh) |
CA (1) | CA2532469C (zh) |
WO (1) | WO2005009215A2 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102365062A (zh) * | 2009-02-24 | 2012-02-29 | 马科外科公司 | 假体装置、为植入假体装置而规划去骨的方法和机器人系统 |
CN103162191A (zh) * | 2013-03-19 | 2013-06-19 | 苏州沃伦韦尔高新技术股份有限公司 | 具有测距反馈照度自动调节功能的手术灯 |
TWI417078B (zh) * | 2010-09-09 | 2013-12-01 | Univ Nat Taipei Technology | Intelligent bone cutting device |
CN103620523A (zh) * | 2010-12-29 | 2014-03-05 | 马科外科公司 | 用于提供大致上稳定的触觉的系统和方法 |
CN104188622A (zh) * | 2014-08-22 | 2014-12-10 | 张来波 | 一种新型无线关节镜系统 |
CN104758031A (zh) * | 2015-04-19 | 2015-07-08 | 王玉梅 | 腹腔镜子宫肌瘤切除装置 |
CN105051739A (zh) * | 2013-03-19 | 2015-11-11 | 皇家飞利浦有限公司 | 医学系统的听觉增强 |
CN105188592A (zh) * | 2013-03-15 | 2015-12-23 | Sri国际公司 | 超灵巧型手术系统 |
CN106462243A (zh) * | 2014-03-24 | 2017-02-22 | 直观外科手术操作公司 | 用于关于触觉装置的虚拟反馈的系统和方法 |
CN106715057A (zh) * | 2014-09-25 | 2017-05-24 | 约翰霍普金斯大学 | 使用协同控制的机器人的外科手术系统用户界面 |
CN107072718A (zh) * | 2014-08-28 | 2017-08-18 | 费瑟特-链接公司 | 具有自主导航的手持式外科器具 |
CN107427326A (zh) * | 2015-03-17 | 2017-12-01 | 直观外科手术操作公司 | 用于在手动关节定位期间提供反馈的系统和方法 |
US9921712B2 (en) | 2010-12-29 | 2018-03-20 | Mako Surgical Corp. | System and method for providing substantially stable control of a surgical tool |
CN108451643A (zh) * | 2013-03-15 | 2018-08-28 | 史赛克公司 | 能够以多种模式控制外科器械的外科操纵器 |
CN109803600A (zh) * | 2016-08-10 | 2019-05-24 | 澳大利亚机器人骨科学院有限公司 | 机器人辅助的激光手术系统 |
CN111274705A (zh) * | 2020-01-21 | 2020-06-12 | 武汉大学 | 一种面向磁悬浮视触觉交互的多速率协同方法及系统 |
TWI742635B (zh) * | 2020-04-27 | 2021-10-11 | 創博股份有限公司 | 教導位置與姿態的觸發與補償方法 |
CN117042716A (zh) * | 2021-03-23 | 2023-11-10 | 瑞德医疗机器股份有限公司 | 力觉通知装置以及力觉通知方法 |
Families Citing this family (925)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL113913A (en) * | 1995-05-30 | 2000-02-29 | Friendly Machines Ltd | Navigation method and system |
US6028593A (en) * | 1995-12-01 | 2000-02-22 | Immersion Corporation | Method and apparatus for providing simulated physical interactions within computer generated environments |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US7708741B1 (en) * | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US8010180B2 (en) * | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US11202676B2 (en) | 2002-03-06 | 2021-12-21 | Mako Surgical Corp. | Neural monitor-based dynamic haptics |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
AU2003218010A1 (en) * | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US8996169B2 (en) | 2011-12-29 | 2015-03-31 | Mako Surgical Corp. | Neural monitor-based dynamic haptics |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US6757582B2 (en) * | 2002-05-03 | 2004-06-29 | Carnegie Mellon University | Methods and systems to control a shaping tool |
CA2633137C (en) | 2002-08-13 | 2012-10-23 | The Governors Of The University Of Calgary | Microsurgical robot system |
US8458028B2 (en) | 2002-10-16 | 2013-06-04 | Barbaro Technologies | System and method for integrating business-related content into an electronic game |
JP2004254899A (ja) * | 2003-02-26 | 2004-09-16 | Hitachi Ltd | 手術支援システム及び手術支援方法 |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
WO2004112610A2 (en) | 2003-06-09 | 2004-12-29 | Vitruvian Orthopaedics, Llc | Surgical orientation device and method |
US7559931B2 (en) | 2003-06-09 | 2009-07-14 | OrthAlign, Inc. | Surgical orientation system and method |
JP4865547B2 (ja) * | 2003-06-18 | 2012-02-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Ctフルオロスコピーのための遠隔操作ニードル |
US20080058989A1 (en) * | 2006-04-13 | 2008-03-06 | Board Of Regents Of The University Of Nebraska | Surgical camera robot |
US7042184B2 (en) * | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
US7126303B2 (en) * | 2003-07-08 | 2006-10-24 | Board Of Regents Of The University Of Nebraska | Robot for surgical applications |
US7392076B2 (en) * | 2003-11-04 | 2008-06-24 | Stryker Leibinger Gmbh & Co. Kg | System and method of registering image data to intra-operatively digitized landmarks |
WO2005046514A2 (en) * | 2003-11-10 | 2005-05-26 | Rush University Medical Center | Servo-controlled impacting device for orthopedic implants |
US7181314B2 (en) * | 2003-11-24 | 2007-02-20 | Abb Research Ltd. | Industrial robot with controlled flexibility and simulated force for automated assembly |
US7505030B2 (en) * | 2004-03-18 | 2009-03-17 | Immersion Medical, Inc. | Medical device and procedure simulation |
US7899512B2 (en) * | 2004-03-22 | 2011-03-01 | Vanderbilt University | System and method for surgical instrument disablement via image-guided position feedback |
US9681925B2 (en) * | 2004-04-21 | 2017-06-20 | Siemens Medical Solutions Usa, Inc. | Method for augmented reality instrument placement using an image based navigation system |
US20060041181A1 (en) * | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
FR2871363B1 (fr) * | 2004-06-15 | 2006-09-01 | Medtech Sa | Dispositif robotise de guidage pour outil chirurgical |
US8209027B2 (en) | 2004-07-07 | 2012-06-26 | The Cleveland Clinic Foundation | System and method to design structure for delivering electrical energy to tissue |
US8180601B2 (en) * | 2006-03-09 | 2012-05-15 | The Cleveland Clinic Foundation | Systems and methods for determining volume of activation for deep brain stimulation |
US7346382B2 (en) | 2004-07-07 | 2008-03-18 | The Cleveland Clinic Foundation | Brain stimulation models, systems, devices, and methods |
KR100662341B1 (ko) * | 2004-07-09 | 2007-01-02 | 엘지전자 주식회사 | 디스플레이 장치 및 그의 색 재현 방법 |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8182491B2 (en) | 2004-08-06 | 2012-05-22 | Depuy Spine, Inc. | Rigidly guided implant placement |
US8016835B2 (en) | 2004-08-06 | 2011-09-13 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US8924334B2 (en) * | 2004-08-13 | 2014-12-30 | Cae Healthcare Inc. | Method and system for generating a surgical training module |
DE102004042489B4 (de) * | 2004-08-31 | 2012-03-29 | Siemens Ag | Medizinische Untersuchungs- oder Behandlungseinrichtung mit dazugehörigem Verfahren |
DE102004049258B4 (de) * | 2004-10-04 | 2007-04-26 | Universität Tübingen | Vorrichtung, Verfahren zur Steuerung von operationsunterstützenden medizinischen Informationssystemen und digitales Speichermedium |
US20080015664A1 (en) * | 2004-10-06 | 2008-01-17 | Podhajsky Ronald J | Systems and methods for thermally profiling radiofrequency electrodes |
WO2006042117A2 (en) * | 2004-10-06 | 2006-04-20 | Sherwood Services Ag | Systems and methods for thermally profiling radiofrequency electrodes |
US8007448B2 (en) * | 2004-10-08 | 2011-08-30 | Stryker Leibinger Gmbh & Co. Kg. | System and method for performing arthroplasty of a joint and tracking a plumb line plane |
WO2006042077A2 (en) * | 2004-10-09 | 2006-04-20 | Viatronix Incorporated | Sampling medical images for virtual histology |
US20060207978A1 (en) * | 2004-10-28 | 2006-09-21 | Rizun Peter R | Tactile feedback laser system |
DE102004059166A1 (de) * | 2004-12-08 | 2006-06-29 | Siemens Ag | Betriebsverfahren für eine Unterstützungseinrichtung für eine medizintechnische Anlage und hiermit korrespondierende Gegenstände |
US20060135957A1 (en) * | 2004-12-21 | 2006-06-22 | Dorin Panescu | Method and apparatus to align a probe with a cornea |
US20060200026A1 (en) * | 2005-01-13 | 2006-09-07 | Hansen Medical, Inc. | Robotic catheter system |
US20060190012A1 (en) * | 2005-01-29 | 2006-08-24 | Aesculap Ag & Co. Kg | Method and apparatus for representing an instrument relative to a bone |
CN101160104B (zh) | 2005-02-22 | 2012-07-04 | 马科外科公司 | 触觉引导系统及方法 |
DE102005012696A1 (de) * | 2005-03-18 | 2006-09-21 | Siemens Ag | Medizinisches Untersunchungs- und/oder Behandlungssystem |
DE102005012985A1 (de) * | 2005-03-21 | 2006-07-06 | Siemens Ag | Verfahren zur Kontrolle der Führung eines Instrumentes bei einem Eingriff in ein Objekt |
DE102005017850B4 (de) * | 2005-04-18 | 2014-08-21 | Siemens Aktiengesellschaft | Verfahren zur Integration vektorieller und/oder tensorieller Messdaten in eine Darstellung einer anatomischen Bildaufnahme |
US20110020779A1 (en) * | 2005-04-25 | 2011-01-27 | University Of Washington | Skill evaluation using spherical motion mechanism |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US9867669B2 (en) | 2008-12-31 | 2018-01-16 | Intuitive Surgical Operations, Inc. | Configuration marker design and detection for instrument tracking |
US9526587B2 (en) * | 2008-12-31 | 2016-12-27 | Intuitive Surgical Operations, Inc. | Fiducial marker design and detection for locating surgical instrument in images |
JP2006321027A (ja) * | 2005-05-20 | 2006-11-30 | Hitachi Ltd | マスタ・スレーブ式マニピュレータシステム及びその操作入力装置 |
ATE540634T1 (de) * | 2005-06-06 | 2012-01-15 | Intuitive Surgical Operations | Laparoskopisches ultraschall-robotersystem für chirurgische zwecke |
US11259870B2 (en) | 2005-06-06 | 2022-03-01 | Intuitive Surgical Operations, Inc. | Interactive user interfaces for minimally invasive telesurgical systems |
US8273076B2 (en) * | 2005-06-30 | 2012-09-25 | Intuitive Surgical Operations, Inc. | Indicator for tool state and communication in multi-arm robotic telesurgery |
CN101321606B (zh) | 2005-06-30 | 2013-04-17 | 直观外科手术操作公司 | 多臂机器人远程外科手术中工具状态通信的指示器 |
US20070003612A1 (en) * | 2005-06-30 | 2007-01-04 | Microsoft Corporation | Capsule |
US7324915B2 (en) * | 2005-07-14 | 2008-01-29 | Biosense Webster, Inc. | Data transmission to a position sensor |
DE102005037000B4 (de) | 2005-08-05 | 2011-06-01 | Siemens Ag | Vorrichtung zur automatisierten Planung eines Zugangspfades für einen perkutanen, minimalinvasiven Eingriff |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
CA2520942C (en) * | 2005-09-23 | 2013-03-19 | Queen's University At Kingston | Tactile amplification instrument and method of use |
JP5322648B2 (ja) | 2005-10-20 | 2013-10-23 | インテュイティブ サージカル, インコーポレイテッド | 医療用ロボットシステムにおけるコンピュータディスプレイ上の補助画像の表示および操作 |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US8411034B2 (en) * | 2009-03-12 | 2013-04-02 | Marc Boillot | Sterile networked interface for medical systems |
US20070129629A1 (en) * | 2005-11-23 | 2007-06-07 | Beauregard Gerald L | System and method for surgical navigation |
US20070167744A1 (en) * | 2005-11-23 | 2007-07-19 | General Electric Company | System and method for surgical navigation cross-reference to related applications |
US20070129626A1 (en) * | 2005-11-23 | 2007-06-07 | Prakash Mahesh | Methods and systems for facilitating surgical procedures |
US20070179626A1 (en) * | 2005-11-30 | 2007-08-02 | De La Barrera Jose L M | Functional joint arthroplasty method |
WO2007075844A1 (en) | 2005-12-20 | 2007-07-05 | Intuitive Surgical, Inc. | Telescoping insertion axis of a robotic surgical system |
US11432895B2 (en) | 2005-12-20 | 2022-09-06 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US8672922B2 (en) | 2005-12-20 | 2014-03-18 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US7862476B2 (en) * | 2005-12-22 | 2011-01-04 | Scott B. Radow | Exercise device |
US9266239B2 (en) * | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US9782229B2 (en) * | 2007-02-16 | 2017-10-10 | Globus Medical, Inc. | Surgical robot platform |
US10893912B2 (en) * | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US8606360B2 (en) * | 2006-03-09 | 2013-12-10 | The Cleveland Clinic Foundation | Systems and methods for determining volume of activation for spinal cord and peripheral nerve stimulation |
US8236010B2 (en) | 2006-03-23 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with mimicking end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
JP4953282B2 (ja) * | 2006-05-18 | 2012-06-13 | 株式会社ニデック | 眼科用手術支援装置 |
US9492237B2 (en) * | 2006-05-19 | 2016-11-15 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
US7725214B2 (en) * | 2006-06-13 | 2010-05-25 | Intuitive Surgical Operations, Inc. | Minimally invasive surgical system |
US8560047B2 (en) * | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
EP2034922B1 (en) | 2006-06-22 | 2017-03-15 | Board of Regents of the University of Nebraska | Magnetically coupleable robotic devices |
US8679096B2 (en) | 2007-06-21 | 2014-03-25 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20090192523A1 (en) * | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US9718190B2 (en) * | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
JP5415950B2 (ja) * | 2006-07-25 | 2014-02-12 | アルコン,インコーポレイティド | マルチメディアコンテンツを再生するべく動作可能な手術コンソール |
ES2298051B2 (es) * | 2006-07-28 | 2009-03-16 | Universidad De Malaga | Sistema robotico de asistencia a la cirugia minimamente invasiva capaz de posicionar un instrumento quirurgico en respueta a las ordenes de un cirujano sin fijacion a la mesa de operaciones ni calibracion previa del punto de insercion. |
US8498868B2 (en) * | 2006-08-11 | 2013-07-30 | Siemens Aktiengesellschaft | Technical medical system and method for operating it |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US8485412B2 (en) | 2006-09-29 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical staples having attached drivers and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US20080085499A1 (en) * | 2006-10-05 | 2008-04-10 | Christopher Horvath | Surgical console operable to simulate surgical procedures |
US7879043B2 (en) * | 2006-11-28 | 2011-02-01 | Robert Michael Meneghini | System and method for preventing intraoperative fracture in cementless hip arthroplasty |
US20080163118A1 (en) * | 2006-12-29 | 2008-07-03 | Jason Wolf | Representation of file relationships |
US8632535B2 (en) | 2007-01-10 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US7987001B2 (en) | 2007-01-25 | 2011-07-26 | Warsaw Orthopedic, Inc. | Surgical navigational and neuromonitoring instrument |
US8374673B2 (en) * | 2007-01-25 | 2013-02-12 | Warsaw Orthopedic, Inc. | Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control |
US8146874B2 (en) | 2007-02-02 | 2012-04-03 | Hansen Medical, Inc. | Mounting support assembly for suspending a medical instrument driver above an operating table |
US20100063387A1 (en) * | 2007-02-26 | 2010-03-11 | Koninklijke Philips Electronics N.V. | Pointing device for medical imaging |
US11576736B2 (en) | 2007-03-01 | 2023-02-14 | Titan Medical Inc. | Hand controller for robotic surgery system |
US8792688B2 (en) | 2007-03-01 | 2014-07-29 | Titan Medical Inc. | Methods, systems and devices for three dimensional input and control methods and systems based thereon |
US20080234692A1 (en) | 2007-03-06 | 2008-09-25 | Matt Brandt | Orthopedic jig, pin, and method |
US8727197B2 (en) | 2007-03-15 | 2014-05-20 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configuration with cooperative surgical staple |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
EP2143071B1 (en) * | 2007-04-26 | 2014-02-26 | Koninklijke Philips N.V. | Risk indication for surgical procedures |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
WO2009003170A1 (en) * | 2007-06-27 | 2008-12-31 | Radow Scott B | Stationary exercise equipment |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US20110046659A1 (en) * | 2007-07-09 | 2011-02-24 | Immersion Corporation | Minimally Invasive Surgical Tools With Haptic Feedback |
WO2009014917A2 (en) | 2007-07-12 | 2009-01-29 | Board Of Regents Of The University Of Nebraska | Methods and systems of actuation in robotic devices |
EP2183660B1 (en) * | 2007-07-30 | 2019-06-26 | University of Utah Research Foundation | Shear tactile display system for communicating direction and other tactile cues |
JP2010536435A (ja) | 2007-08-15 | 2010-12-02 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | 医療用膨張、取り付けおよび送達装置、ならびに関連する方法 |
EP2178456B1 (en) | 2007-08-15 | 2018-10-31 | Board of Regents of the University of Nebraska | Modular and cooperative medical system |
DE102007045075B4 (de) * | 2007-09-21 | 2010-05-12 | Siemens Ag | Interventionelles medizinisches Diagnose- und/oder Therapiesystem |
WO2009049682A1 (en) * | 2007-10-19 | 2009-04-23 | Abb Technology Ab | An industrial robot tending a machine and a method for controlling an industrial robot tending a machine |
EP2197385B1 (en) * | 2007-11-07 | 2013-12-25 | Alcon Research, Ltd. | Surgical console information display system |
EP2231072B1 (en) * | 2007-12-10 | 2019-05-22 | Mako Surgical Corp. | A prosthetic device and system for preparing a bone to receive a prosthetic device |
US20090157192A1 (en) * | 2007-12-14 | 2009-06-18 | Microdexterity Systems, Inc. | Replacement joint |
US9220889B2 (en) | 2008-02-11 | 2015-12-29 | Intelect Medical, Inc. | Directional electrode devices with locating features |
US8019440B2 (en) | 2008-02-12 | 2011-09-13 | Intelect Medical, Inc. | Directional lead assembly |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
JP5410110B2 (ja) | 2008-02-14 | 2014-02-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Rf電極を有する外科用切断・固定器具 |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9615826B2 (en) | 2010-09-30 | 2017-04-11 | Ethicon Endo-Surgery, Llc | Multiple thickness implantable layers for surgical stapling devices |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
EP2252231B1 (en) * | 2008-03-11 | 2019-10-16 | Health Research, INC. | System and method for robotic surgery simulation |
US8326462B1 (en) | 2008-03-12 | 2012-12-04 | University Of Utah Research Foundation | Tactile contact and impact displays and associated methods |
US9056549B2 (en) | 2008-03-28 | 2015-06-16 | Denso International America, Inc. | Haptic tracking remote control for driver information center system |
US20090247876A1 (en) * | 2008-03-28 | 2009-10-01 | Cannon Jr Charles W | Laparoscopic probe guidance system |
EP2108328B2 (de) * | 2008-04-09 | 2020-08-26 | Brainlab AG | Bildbasiertes Ansteuerungsverfahren für medizintechnische Geräte |
US20110032090A1 (en) * | 2008-04-15 | 2011-02-10 | Provancher William R | Active Handrest For Haptic Guidance and Ergonomic Support |
US9272153B2 (en) | 2008-05-15 | 2016-03-01 | Boston Scientific Neuromodulation Corporation | VOA generation system and method using a fiber specific analysis |
US8326433B2 (en) | 2008-05-15 | 2012-12-04 | Intelect Medical, Inc. | Clinician programmer system and method for calculating volumes of activation for monopolar and bipolar electrode configurations |
DE102008024261B4 (de) * | 2008-05-20 | 2010-12-30 | Siemens Aktiengesellschaft | Anordnung und Verfahren zur Positionierung von chirurgischen Hilfsmitteln |
DE102008027485B4 (de) * | 2008-06-09 | 2010-02-11 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Deposition einer Solldosisverteilung in einem zyklisch bewegten Zielgebiet |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US12239396B2 (en) | 2008-06-27 | 2025-03-04 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
GB0812631D0 (en) * | 2008-07-10 | 2008-08-20 | Imp Innovations Ltd | Modular knee implants |
CA3050929A1 (en) | 2008-07-24 | 2010-01-28 | OrthAlign, Inc. | Systems and methods for joint replacement |
US8373704B1 (en) | 2008-08-25 | 2013-02-12 | Adobe Systems Incorporated | Systems and methods for facilitating object movement using object component relationship markers |
US8683429B2 (en) * | 2008-08-25 | 2014-03-25 | Adobe Systems Incorporated | Systems and methods for runtime control of hierarchical objects |
DE102008041867B4 (de) * | 2008-09-08 | 2015-09-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Medizinischer Arbeitsplatz und Bedienvorrichtung zum manuellen Bewegen eines Roboterarms |
EP2358310B1 (en) * | 2008-09-10 | 2019-07-31 | OrthAlign, Inc. | Hip surgery systems |
US9679499B2 (en) * | 2008-09-15 | 2017-06-13 | Immersion Medical, Inc. | Systems and methods for sensing hand motion by measuring remote displacement |
US8078440B2 (en) * | 2008-09-19 | 2011-12-13 | Smith & Nephew, Inc. | Operatively tuning implants for increased performance |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8781630B2 (en) * | 2008-10-14 | 2014-07-15 | University Of Florida Research Foundation, Inc. | Imaging platform to provide integrated navigation capabilities for surgical guidance |
AU2009305681A1 (en) * | 2008-10-15 | 2010-04-22 | Biolase, Inc. | Satellite-platformed electromagnetic energy treatment device |
US8594799B2 (en) | 2008-10-31 | 2013-11-26 | Advanced Bionics | Cochlear electrode insertion |
EP2359527B1 (en) | 2008-11-26 | 2021-02-24 | Calgary Scientific Inc. | Method and system for providing remote access to a state of an application program |
JP2012510877A (ja) | 2008-12-04 | 2012-05-17 | ザ クリーブランド クリニック ファウンデーション | 脳内刺激のための標的体積を規定するシステムおよび方法 |
US8374723B2 (en) * | 2008-12-31 | 2013-02-12 | Intuitive Surgical Operations, Inc. | Obtaining force information in a minimally invasive surgical procedure |
US20100167253A1 (en) * | 2008-12-31 | 2010-07-01 | Haptica Ltd. | Surgical training simulator |
US8594841B2 (en) * | 2008-12-31 | 2013-11-26 | Intuitive Surgical Operations, Inc. | Visual force feedback in a minimally invasive surgical procedure |
US20100167250A1 (en) * | 2008-12-31 | 2010-07-01 | Haptica Ltd. | Surgical training simulator having multiple tracking systems |
US10055105B2 (en) | 2009-02-03 | 2018-08-21 | Calgary Scientific Inc. | Method and system for enabling interaction with a plurality of applications using a single user interface |
SG2014007801A (en) * | 2009-02-03 | 2014-04-28 | Calgary Scient Inc | Method and system for enabling interaction with a plurality of applications using a single user interface |
US8610548B1 (en) | 2009-02-03 | 2013-12-17 | University Of Utah Research Foundation | Compact shear tactile feedback device and related methods |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
JP2012517287A (ja) | 2009-02-06 | 2012-08-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | 被駆動式手術用ステープラの改良 |
WO2010093780A2 (en) | 2009-02-13 | 2010-08-19 | University Of Florida Research Foundation, Inc. | Communication and skills training using interactive virtual humans |
US8366719B2 (en) | 2009-03-18 | 2013-02-05 | Integrated Spinal Concepts, Inc. | Image-guided minimal-step placement of screw into bone |
CN101859096A (zh) * | 2009-04-10 | 2010-10-13 | 鸿富锦精密工业(深圳)有限公司 | 采用pid控制器的控制方法及控制装置与机器人 |
DE102009023297A1 (de) * | 2009-05-29 | 2010-12-02 | Kuka Roboter Gmbh | Verfahren und Vorrichtung zum Betrieb einer zusätzlichen Werkzeugachse eines von einem Manipulator geführten Werkzeugs |
US20100312391A1 (en) * | 2009-06-05 | 2010-12-09 | Abb Research Ltd. | Calibration Of A Lead-Through Teaching Device For An Industrial Robot |
WO2010145669A1 (en) | 2009-06-17 | 2010-12-23 | 3Shape A/S | Focus scanning apparatus |
IT1395018B1 (it) * | 2009-07-22 | 2012-09-05 | Surgica Robotica S R L | Apparecchiatura per procedure chirurgiche minimamente invasive |
US10869771B2 (en) | 2009-07-24 | 2020-12-22 | OrthAlign, Inc. | Systems and methods for joint replacement |
US8118815B2 (en) | 2009-07-24 | 2012-02-21 | OrthAlign, Inc. | Systems and methods for joint replacement |
US8876830B2 (en) | 2009-08-13 | 2014-11-04 | Zimmer, Inc. | Virtual implant placement in the OR |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) * | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
EP2470258B1 (en) | 2009-08-27 | 2017-03-15 | The Cleveland Clinic Foundation | System and method to estimate region of tissue activation |
US8218727B2 (en) * | 2009-09-04 | 2012-07-10 | Siemens Medical Solutions Usa, Inc. | System for medical image processing, manipulation and display |
WO2011041262A2 (en) * | 2009-09-30 | 2011-04-07 | University Of Florida Research Foundation, Inc. | Real-time feedback of task performance |
CN102612350B (zh) | 2009-10-01 | 2015-11-25 | 马科外科公司 | 用于安放假体组件和/或限制手术工具移动的手术系统 |
US9211403B2 (en) | 2009-10-30 | 2015-12-15 | Advanced Bionics, Llc | Steerable stylet |
US20120265051A1 (en) * | 2009-11-09 | 2012-10-18 | Worcester Polytechnic Institute | Apparatus and methods for mri-compatible haptic interface |
US8994665B1 (en) | 2009-11-19 | 2015-03-31 | University Of Utah Research Foundation | Shear tactile display systems for use in vehicular directional applications |
EP2512754A4 (en) | 2009-12-17 | 2016-11-30 | Univ Nebraska | MODULAR AND COOPERATIVE MEDICAL DEVICES AND CORRESPONDING SYSTEMS AND METHOD |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
JP5775881B2 (ja) * | 2010-01-15 | 2015-09-09 | イマージョン コーポレーションImmersion Corporation | 触覚的フィードバックをもった最小侵襲性外科手術ツールのためのシステムと方法 |
AU2011341678B2 (en) | 2010-01-21 | 2014-12-11 | OrthAlign, Inc. | Systems and methods for joint replacement |
US20110196376A1 (en) * | 2010-02-09 | 2011-08-11 | Burak Ozgur | Osteo-navigation |
US9298260B2 (en) * | 2010-03-12 | 2016-03-29 | Broadcom Corporation | Tactile communication system with communications based on capabilities of a remote system |
EP2547278B2 (en) | 2010-03-17 | 2019-10-23 | Brainlab AG | Flow control in computer-assisted surgery based on marker positions |
US8913804B2 (en) | 2010-06-14 | 2014-12-16 | Boston Scientific Neuromodulation Corporation | Programming interface for spinal cord neuromodulation |
US8740882B2 (en) * | 2010-07-30 | 2014-06-03 | Lg Electronics Inc. | Medical robotic system and method of controlling the same |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
WO2012018816A2 (en) * | 2010-08-02 | 2012-02-09 | The Johns Hopkins University | Tool exchange interface and control algorithm for cooperative surgical robots |
US20140052150A1 (en) * | 2010-08-02 | 2014-02-20 | The Johns Hopkins University | Method for presenting force sensor information using cooperative robot control and audio feedback |
FR2963693B1 (fr) | 2010-08-04 | 2013-05-03 | Medtech | Procede d'acquisition automatise et assiste de surfaces anatomiques |
EP2600758A1 (en) | 2010-08-06 | 2013-06-12 | Board of Regents of the University of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
EP2417925B1 (en) | 2010-08-12 | 2016-12-07 | Immersion Corporation | Electrosurgical tool having tactile feedback |
WO2012029227A1 (ja) * | 2010-08-31 | 2012-03-08 | パナソニック株式会社 | マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、制御プログラム、並びに、集積電子回路 |
US8657809B2 (en) * | 2010-09-29 | 2014-02-25 | Stryker Leibinger Gmbh & Co., Kg | Surgical navigation system |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
DE102010041726A1 (de) * | 2010-09-30 | 2012-04-05 | Robert Bosch Gmbh | Handwerkzeugmaschinenvorrichtung |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9295464B2 (en) | 2010-09-30 | 2016-03-29 | Ethicon Endo-Surgery, Inc. | Surgical stapler anvil comprising a plurality of forming pockets |
US9301753B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Expandable tissue thickness compensator |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
RU2013119928A (ru) | 2010-09-30 | 2014-11-10 | Этикон Эндо-Серджери, Инк. | Сшивающая система, содержащая удерживающую матрицу и выравнивающую матрицу |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9277919B2 (en) | 2010-09-30 | 2016-03-08 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising fibers to produce a resilient load |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
WO2012048325A2 (en) | 2010-10-08 | 2012-04-12 | The University Of Utah Research Foundation | A multidirectional controller with shear feedback |
CA2816096A1 (en) * | 2010-11-10 | 2012-05-18 | Interactive Machine Systems Pty Limited | Assistance system for steering a machine tool |
FR2968191B1 (fr) * | 2010-12-01 | 2012-12-14 | Univ Paris Curie | Effecteur equipe d'un dispositif pour la localisation d'une partie utile d'un outil |
ES2788853T3 (es) * | 2010-12-06 | 2020-10-23 | 3Shape As | Sistema con integración de interfaz de usuario 3D |
ES2705531T3 (es) * | 2010-12-06 | 2019-03-25 | 3Shape As | Sistema con integración de interfaz de usuario 3D |
US8523043B2 (en) | 2010-12-07 | 2013-09-03 | Immersion Corporation | Surgical stapler having haptic feedback |
US8801710B2 (en) | 2010-12-07 | 2014-08-12 | Immersion Corporation | Electrosurgical sealing tool having haptic feedback |
US9741084B2 (en) | 2011-01-04 | 2017-08-22 | Calgary Scientific Inc. | Method and system for providing remote access to data for display on a mobile device |
US8951266B2 (en) | 2011-01-07 | 2015-02-10 | Restoration Robotics, Inc. | Methods and systems for modifying a parameter of an automated procedure |
HUE056373T2 (hu) | 2011-02-17 | 2022-02-28 | Tyto Care Ltd | Rendszer, kézi diagnosztikai készülék valamint eljárások egy távoli szakszemélyzet által levezényelt non-invazív orvosi vizsgálat automatikus végrehajtására |
CN103781403B (zh) * | 2011-02-17 | 2017-03-08 | 泰拓卡尔有限公司 | 用于执行自动的且自我指导的医学检查的系统和方法 |
CA2734860A1 (en) | 2011-03-21 | 2012-09-21 | Calgary Scientific Inc. | Method and system for providing a state model of an application program |
WO2012129251A2 (en) * | 2011-03-23 | 2012-09-27 | Sri International | Dexterous telemanipulator system |
JP2014513622A (ja) | 2011-03-29 | 2014-06-05 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | 治療刺激提供システムのための通信インタフェース |
BR112013027794B1 (pt) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos |
US9026242B2 (en) | 2011-05-19 | 2015-05-05 | Taktia Llc | Automatically guided tools |
US9592389B2 (en) | 2011-05-27 | 2017-03-14 | Boston Scientific Neuromodulation Corporation | Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US8556816B2 (en) * | 2011-05-27 | 2013-10-15 | Samsung Medison Co., Ltd. | Providing a measuring item candidate group for measuring size of a target object in an ultrasound system |
EP2717796B1 (en) | 2011-06-10 | 2020-02-26 | Board of Regents of the University of Nebraska | In vivo vessel sealing end effector |
CA2839706C (en) | 2011-06-23 | 2017-05-02 | Stryker Corporation | Prosthetic implant and method of implantation |
EP2723270B1 (en) | 2011-06-27 | 2019-01-23 | Board of Regents of the University of Nebraska | On-board tool tracking system of computer assisted surgery |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
EP2732344B1 (en) | 2011-07-11 | 2019-06-05 | Board of Regents of the University of Nebraska | Robotic surgical system |
US8845667B2 (en) | 2011-07-18 | 2014-09-30 | Immersion Corporation | Surgical tool having a programmable rotary module for providing haptic feedback |
CA2844079A1 (en) | 2011-08-09 | 2013-02-14 | Boston Scientific Neuromodulation Corporation | Voa generation system and method using a fiber specific analysis |
US9364665B2 (en) | 2011-08-09 | 2016-06-14 | Boston Scientific Neuromodulation Corporation | Control and/or quantification of target stimulation volume overlap and interface therefor |
WO2013023073A1 (en) | 2011-08-09 | 2013-02-14 | Boston Scientific Neuromodulation Corporation | System and method for weighted atlas generation |
US8918183B2 (en) | 2011-08-09 | 2014-12-23 | Boston Scientific Neuromodulation Corporation | Systems and methods for stimulation-related volume analysis, creation, and sharing |
AU2012296247B2 (en) | 2011-08-15 | 2017-06-22 | Calgary Scientific Inc. | Non-invasive remote access to an application program |
US9720747B2 (en) | 2011-08-15 | 2017-08-01 | Calgary Scientific Inc. | Method for flow control and reliable communication in a collaborative environment |
US10866783B2 (en) * | 2011-08-21 | 2020-12-15 | Transenterix Europe S.A.R.L. | Vocally activated surgical control system |
US10722318B2 (en) * | 2011-08-24 | 2020-07-28 | Mako Surgical Corp. | Surgical tools for selectively illuminating a surgical volume |
WO2013033539A1 (en) | 2011-09-01 | 2013-03-07 | Boston Scientific Neuromodulation Corporation | Methods and system for targeted brain stimulation using electrical parameter maps |
WO2013033566A1 (en) | 2011-09-02 | 2013-03-07 | Stryker Corporation | Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing |
FR2980683B1 (fr) * | 2011-09-30 | 2014-11-21 | Univ Paris Curie | Dispositif de guidage d'un instrument medical insere dans une voie naturelle ou une voie artificielle d'un patient |
EP2761808A4 (en) | 2011-09-30 | 2015-05-20 | Calgary Scient Inc | DECOUPLED APPLICATION WITH EXTENSIONS INTERACTIVE DIGITAL SURFACE LAYER FOR COLLABORATIVE REMOTE COMMON USE OF APPLICATIONS AND ANNOTATION |
JP6502848B2 (ja) | 2011-10-03 | 2019-04-17 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | モジュール式手術用ロボットシステム |
US9060794B2 (en) * | 2011-10-18 | 2015-06-23 | Mako Surgical Corp. | System and method for robotic surgery |
US9081488B2 (en) | 2011-10-19 | 2015-07-14 | Boston Scientific Neuromodulation Corporation | Stimulation leadwire and volume of activation control and display interface |
WO2013057649A1 (en) * | 2011-10-20 | 2013-04-25 | Koninklijke Philips Electronics N.V. | Holographic user interfaces for medical procedures |
FR2982761B1 (fr) * | 2011-11-21 | 2022-04-29 | Gen Electric | Procedes d'assistance a la manipulation d'un instrument, et ensemble d'assistance associe |
SG11201402546WA (en) | 2011-11-23 | 2014-06-27 | Calgary Scient Inc | Methods ans systems for collaborative remote application sharing and conferencing |
FR2983059B1 (fr) | 2011-11-30 | 2014-11-28 | Medtech | Procede assiste par robotique de positionnement d'instrument chirurgical par rapport au corps d'un patient et dispositif de mise en oeuvre. |
FR2983397B1 (fr) * | 2011-12-06 | 2014-07-04 | Univ Paris Curie | Dispositif d'assistance au positionnement d'un instrument medical relativement a un organe interne d'un patient et procede de commande d'un tel dispositif |
KR101828453B1 (ko) * | 2011-12-09 | 2018-02-13 | 삼성전자주식회사 | 의료용 로봇 시스템 및 그 제어 방법 |
KR101876386B1 (ko) * | 2011-12-29 | 2018-07-11 | 삼성전자주식회사 | 의료용 로봇 시스템 및 그 제어 방법 |
US9639156B2 (en) | 2011-12-29 | 2017-05-02 | Mako Surgical Corp. | Systems and methods for selectively activating haptic guide zones |
EP3970784A1 (en) | 2012-01-10 | 2022-03-23 | Board of Regents of the University of Nebraska | Systems and devices for surgical access and insertion |
WO2013110025A2 (en) * | 2012-01-22 | 2013-07-25 | I22, Llc | Graphical system for collecting, presenting and using medical data and the automated generation of surgical reports |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9449433B2 (en) * | 2012-02-22 | 2016-09-20 | Ming Fong | System for reproducing virtual objects |
US20130215132A1 (en) * | 2012-02-22 | 2013-08-22 | Ming Fong | System for reproducing virtual objects |
US9602581B2 (en) | 2012-03-02 | 2017-03-21 | Calgary Scientific Inc. | Remote control of an application using dynamic-linked library (DLL) injection |
US11207132B2 (en) * | 2012-03-12 | 2021-12-28 | Nuvasive, Inc. | Systems and methods for performing spinal surgery |
RU2639857C2 (ru) | 2012-03-28 | 2017-12-22 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий капсулу для среды с низким давлением |
CN104321024B (zh) | 2012-03-28 | 2017-05-24 | 伊西康内外科公司 | 包括多个层的组织厚度补偿件 |
MX353040B (es) | 2012-03-28 | 2017-12-18 | Ethicon Endo Surgery Inc | Unidad retenedora que incluye un compensador de grosor de tejido. |
WO2013158636A1 (en) * | 2012-04-16 | 2013-10-24 | Azizian Mahdi | Dual-mode stereo imaging system for tracking and control in surgical and interventional procedures |
EP3964902B1 (en) | 2012-04-26 | 2024-01-03 | Shaper Tools, Inc. | Systems and methods for performing a task on a material, or locating the position of a device relative to the surface of the material |
EP3845190B1 (en) | 2012-05-01 | 2023-07-12 | Board of Regents of the University of Nebraska | Single site robotic device and related systems |
JP2015517361A (ja) | 2012-05-18 | 2015-06-22 | オースアライン・インコーポレイテッド | 膝関節形成術用の装置および方法 |
US11033841B1 (en) | 2012-05-25 | 2021-06-15 | Plenty Company, LLC | Expandable water filter reservoir |
US9796600B2 (en) | 2013-12-23 | 2017-10-24 | Bell Sports, Inc. | Water container with floatable filter |
US10118113B2 (en) | 2013-12-23 | 2018-11-06 | Bonvi Water, Inc. | Water container with floatable filter system and method |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9408571B2 (en) | 2012-06-18 | 2016-08-09 | Carnegie Mellon University | Apparatus and method for implantation of devices into soft tissue |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US9729673B2 (en) | 2012-06-21 | 2017-08-08 | Calgary Scientific Inc. | Method and system for providing synchronized views of multiple applications for display on a remote computing device |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
CA2876846C (en) | 2012-06-22 | 2021-04-06 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
US9649111B2 (en) | 2012-06-28 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Replaceable clip cartridge for a clip applier |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
CN112932672B (zh) | 2012-08-03 | 2024-09-03 | 史赛克公司 | 用于机器人外科手术的系统和方法 |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
US9820818B2 (en) | 2012-08-03 | 2017-11-21 | Stryker Corporation | System and method for controlling a surgical manipulator based on implant parameters |
EP2879757B1 (en) | 2012-08-04 | 2019-06-26 | Boston Scientific Neuromodulation Corporation | Systems and methods for storing and transferring registration, atlas, and lead information between medical devices |
KR101997566B1 (ko) * | 2012-08-07 | 2019-07-08 | 삼성전자주식회사 | 수술 로봇 시스템 및 그 제어방법 |
JP2015526171A (ja) | 2012-08-08 | 2015-09-10 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | ロボット手術用デバイス、システム及び関連の方法 |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US9649160B2 (en) | 2012-08-14 | 2017-05-16 | OrthAlign, Inc. | Hip replacement navigation system and method |
AU2013308906B2 (en) | 2012-08-28 | 2016-07-21 | Boston Scientific Neuromodulation Corporation | Point-and-click programming for deep brain stimulation using real-time monopolar review trendlines |
WO2014047152A1 (en) * | 2012-09-19 | 2014-03-27 | The Regents Of The University Of Michigan | Advanced intraoperative neural targeting system and method |
US20150238276A1 (en) * | 2012-09-30 | 2015-08-27 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for assisting laparoscopic surgery - directing and maneuvering articulating tool |
CA2829084A1 (en) * | 2012-10-01 | 2014-04-01 | Aaron Fenster | System and method for guiding a medical device to a target region |
WO2014070290A2 (en) | 2012-11-01 | 2014-05-08 | Boston Scientific Neuromodulation Corporation | Systems and methods for voa model generation and use |
SG11201504446TA (en) * | 2012-12-10 | 2015-07-30 | Univ Nanyang Tech | An apparatus for upper body movement |
US10398449B2 (en) * | 2012-12-21 | 2019-09-03 | Mako Surgical Corp. | Systems and methods for haptic control of a surgical tool |
US9888967B2 (en) * | 2012-12-31 | 2018-02-13 | Mako Surgical Corp. | Systems and methods for guiding a user during surgical planning |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
BR112015021098B1 (pt) | 2013-03-01 | 2022-02-15 | Ethicon Endo-Surgery, Inc | Cobertura para uma junta de articulação e instrumento cirúrgico |
BR112015021082B1 (pt) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
EP3459468B1 (en) | 2013-03-13 | 2020-07-15 | Stryker Corporation | Method and system for arranging objects in an operating room |
JP6461082B2 (ja) | 2013-03-13 | 2019-01-30 | ストライカー・コーポレイション | 外科手術システム |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
CA2906672C (en) | 2013-03-14 | 2022-03-15 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9351726B2 (en) | 2013-03-14 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Articulation control system for articulatable surgical instruments |
WO2014160086A2 (en) | 2013-03-14 | 2014-10-02 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
JP6616281B2 (ja) | 2013-03-14 | 2019-12-04 | エスアールアイ インターナショナル | コンパクトなロボット手首部 |
CN112842538B (zh) | 2013-03-15 | 2024-09-10 | 直观外科手术操作公司 | 具有操控界面的外科患者侧手推车 |
US9167999B2 (en) * | 2013-03-15 | 2015-10-27 | Restoration Robotics, Inc. | Systems and methods for planning hair transplantation |
JP6185142B2 (ja) | 2013-03-15 | 2017-08-23 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | 臨床応答データマッピング |
US10105149B2 (en) * | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US20160038253A1 (en) | 2013-03-15 | 2016-02-11 | Cameron Anthony Piron | Method, system and apparatus for controlling a surgical navigation system |
US9498291B2 (en) | 2013-03-15 | 2016-11-22 | Hansen Medical, Inc. | Touch-free catheter user interface controller |
US9101348B2 (en) | 2013-03-15 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Surgical patient side cart with drive system and method of moving a patient side cart |
CA2906772C (en) | 2013-03-15 | 2021-09-21 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
JP5976924B2 (ja) * | 2013-03-29 | 2016-08-24 | 富士フイルム株式会社 | 内視鏡下外科手術装置 |
WO2014157479A1 (ja) * | 2013-03-29 | 2014-10-02 | 富士フイルム株式会社 | 内視鏡下外科手術装置 |
KR20140121581A (ko) * | 2013-04-08 | 2014-10-16 | 삼성전자주식회사 | 수술 로봇 시스템 |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
US9649110B2 (en) | 2013-04-16 | 2017-05-16 | Ethicon Llc | Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output |
US20150005745A1 (en) | 2013-06-26 | 2015-01-01 | Corindus, Inc. | 3-d mapping for guidance of device advancement out of a guide catheter |
US11229490B2 (en) * | 2013-06-26 | 2022-01-25 | Corindus, Inc. | System and method for monitoring of guide catheter seating |
EP3021779A4 (en) | 2013-07-17 | 2017-08-23 | Board of Regents of the University of Nebraska | Robotic surgical devices, systems and related methods |
RU2678363C2 (ru) | 2013-08-23 | 2019-01-28 | ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи | Устройства втягивания пускового элемента для хирургических инструментов с электропитанием |
US9283054B2 (en) | 2013-08-23 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Interactive displays |
JP6410023B2 (ja) * | 2013-09-06 | 2018-10-24 | パナソニックIpマネジメント株式会社 | マスタスレーブロボットの制御装置及び制御方法、ロボット、マスタスレーブロボットの制御プログラム、並びに、マスタスレーブロボットの制御用集積電子回路 |
US10390737B2 (en) | 2013-09-30 | 2019-08-27 | Stryker Corporation | System and method of controlling a robotic system for manipulating anatomy of a patient during a surgical procedure |
JP6000928B2 (ja) * | 2013-10-24 | 2016-10-05 | オリンパス株式会社 | 医療用マニピュレータおよび医療用マニピュレータの初期化方法 |
JP6352416B2 (ja) | 2013-11-14 | 2018-07-04 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | システムレベル相互作用モデルを用いる神経系の刺激及び感知のためのシステム、方法、及び視覚化ツール |
EP3075111B1 (en) | 2013-11-29 | 2017-12-20 | Calgary Scientific Inc. | Method for providing a connection of a client to an unmanaged service in a client-server remote access system |
US10076385B2 (en) * | 2013-12-08 | 2018-09-18 | Mazor Robotics Ltd. | Method and apparatus for alerting a user to sensed lateral forces upon a guide-sleeve in a robot surgical system |
WO2015095715A1 (en) * | 2013-12-20 | 2015-06-25 | Intuitive Surgical Operations, Inc. | Simulator system for medical procedure training |
US10010387B2 (en) | 2014-02-07 | 2018-07-03 | 3Shape A/S | Detecting tooth shade |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
EP3107476B1 (en) | 2014-02-21 | 2024-04-24 | The University of Akron | Imaging and display system for guiding medical interventions |
US9839422B2 (en) | 2014-02-24 | 2017-12-12 | Ethicon Llc | Implantable layers and methods for altering implantable layers for use with surgical fastening instruments |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
WO2015128203A1 (en) * | 2014-02-25 | 2015-09-03 | Koninklijke Philips N.V. | Needle guide and medical intervention system |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
US20150272582A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Power management control systems for surgical instruments |
US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US11116383B2 (en) * | 2014-04-02 | 2021-09-14 | Asensus Surgical Europe S.à.R.L. | Articulated structured light based-laparoscope |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
JP6612256B2 (ja) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | 不均一な締結具を備える締結具カートリッジ |
WO2015171614A1 (en) | 2014-05-05 | 2015-11-12 | Vicarious Surgical Inc. | Virtual reality surgical device |
KR101594989B1 (ko) * | 2014-05-30 | 2016-02-18 | 큐렉소 주식회사 | 조직 위치 정합 방법 및 이를 이용하는 장치 |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
CN106999248B (zh) * | 2014-06-19 | 2021-04-06 | Kb医疗公司 | 用于执行微创外科手术的系统及方法 |
US9959388B2 (en) | 2014-07-24 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Systems, devices, and methods for providing electrical stimulation therapy feedback |
US10265528B2 (en) | 2014-07-30 | 2019-04-23 | Boston Scientific Neuromodulation Corporation | Systems and methods for electrical stimulation-related patient population volume analysis and use |
US10272247B2 (en) | 2014-07-30 | 2019-04-30 | Boston Scientific Neuromodulation Corporation | Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming |
CN106456274B (zh) * | 2014-08-12 | 2019-09-06 | 直观外科手术操作公司 | 检测不受控制的移动 |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US10135242B2 (en) | 2014-09-05 | 2018-11-20 | Ethicon Llc | Smart cartridge wake up operation and data retention |
JP6416560B2 (ja) * | 2014-09-11 | 2018-10-31 | 株式会社デンソー | 位置決め制御装置 |
EP3191009B1 (en) | 2014-09-12 | 2021-03-31 | Board of Regents of the University of Nebraska | Quick-release end effectors and related systems |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
EP3197403B1 (en) | 2014-09-24 | 2022-04-06 | DePuy Ireland Unlimited Company | Surgical planning |
CN107427300B (zh) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | 外科缝合支撑物和辅助材料 |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
WO2016057544A1 (en) | 2014-10-07 | 2016-04-14 | Boston Scientific Neuromodulation Corporation | Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
DE102014222293A1 (de) * | 2014-10-31 | 2016-05-19 | Siemens Aktiengesellschaft | Verfahren zur automatischen Überwachung des Eindringverhaltens eines von einem Roboterarm gehaltenen Trokars und Überwachungssystem |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10376322B2 (en) | 2014-11-11 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
EP3995097B1 (de) * | 2014-11-14 | 2022-09-21 | Brainlab Robotics GmbH | Intelligenter haltearm für die kopfchirurgie mit berührungsempfindlicher bedienung |
US9946350B2 (en) | 2014-12-01 | 2018-04-17 | Qatar University | Cutaneous haptic feedback system and methods of use |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
DE102014226899A1 (de) * | 2014-12-23 | 2016-06-23 | Siemens Healthcare Gmbh | Verfahren zum Betreiben eines medizinisch-robotischen Geräts und ein medizinisch-robotisches Gerät |
CA2974204A1 (en) | 2015-01-30 | 2016-08-04 | Calgary Scientific Inc. | Method of providing access to a service in a client-server remote access system |
US10015264B2 (en) | 2015-01-30 | 2018-07-03 | Calgary Scientific Inc. | Generalized proxy architecture to provide remote access to an application framework |
US10555782B2 (en) | 2015-02-18 | 2020-02-11 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
US10363149B2 (en) | 2015-02-20 | 2019-07-30 | OrthAlign, Inc. | Hip replacement navigation system and method |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10321907B2 (en) | 2015-02-27 | 2019-06-18 | Ethicon Llc | System for monitoring whether a surgical instrument needs to be serviced |
US10226250B2 (en) | 2015-02-27 | 2019-03-12 | Ethicon Llc | Modular stapling assembly |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10433844B2 (en) | 2015-03-31 | 2019-10-08 | Ethicon Llc | Surgical instrument with selectively disengageable threaded drive systems |
US10456883B2 (en) | 2015-05-13 | 2019-10-29 | Shaper Tools, Inc. | Systems, methods and apparatus for guided tools |
GB2538497B (en) | 2015-05-14 | 2020-10-28 | Cmr Surgical Ltd | Torque sensing in a surgical robotic wrist |
JP6481051B2 (ja) | 2015-05-26 | 2019-03-13 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | 電気刺激を分析し活性化容積を選択又は操作するシステム及び方法 |
US10780283B2 (en) | 2015-05-26 | 2020-09-22 | Boston Scientific Neuromodulation Corporation | Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation |
US11058501B2 (en) * | 2015-06-09 | 2021-07-13 | Intuitive Surgical Operations, Inc. | Configuring surgical system with surgical procedures atlas |
US10178992B2 (en) | 2015-06-18 | 2019-01-15 | Ethicon Llc | Push/pull articulation drive systems for articulatable surgical instruments |
US10441800B2 (en) | 2015-06-29 | 2019-10-15 | Boston Scientific Neuromodulation Corporation | Systems and methods for selecting stimulation parameters by targeting and steering |
EP3280490B1 (en) | 2015-06-29 | 2021-09-01 | Boston Scientific Neuromodulation Corporation | Systems for selecting stimulation parameters based on stimulation target region, effects, or side effects |
EP3325233A1 (en) | 2015-07-23 | 2018-05-30 | SRI International Inc. | Robotic arm and robotic surgical system |
WO2017024081A1 (en) | 2015-08-03 | 2017-02-09 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices systems and related methods |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US10980538B2 (en) | 2015-08-26 | 2021-04-20 | Ethicon Llc | Surgical stapling configurations for curved and circular stapling instruments |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10603039B2 (en) | 2015-09-30 | 2020-03-31 | Ethicon Llc | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10168152B2 (en) | 2015-10-02 | 2019-01-01 | International Business Machines Corporation | Using photogrammetry to aid identification and assembly of product parts |
EP3359252B1 (en) | 2015-10-09 | 2020-09-09 | Boston Scientific Neuromodulation Corporation | System and methods for clinical effects mapping for directional stimulations leads |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
EP3373834A4 (en) | 2015-11-12 | 2019-07-31 | Intuitive Surgical Operations Inc. | SURGICAL SYSTEM WITH TRAINING OR ASSISTANCE FUNCTION |
KR20180075563A (ko) | 2015-11-24 | 2018-07-04 | 씽크 써지컬, 인크. | 슬관절 전치환술에서 능동 로봇 핀의 배치 |
US12082893B2 (en) | 2015-11-24 | 2024-09-10 | Think Surgical, Inc. | Robotic pin placement |
US12178532B2 (en) | 2015-11-24 | 2024-12-31 | Think Surgical, Inc. | Robotic alignment of a tool or pin with a virtual plane |
US12220137B2 (en) | 2015-11-24 | 2025-02-11 | Think Surgical, Inc. | Cut guide for arthroplasty procedures |
AU2016365200B2 (en) | 2015-11-30 | 2021-10-28 | Stryker Corporation | Surgical instrument with telescoping nose mechanism |
WO2017103984A1 (ja) * | 2015-12-15 | 2017-06-22 | オリンパス株式会社 | 医療用マニピュレータシステムとその作動方法 |
US10433921B2 (en) * | 2015-12-28 | 2019-10-08 | Mako Surgical Corp. | Apparatus and methods for robot assisted bone treatment |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10667868B2 (en) | 2015-12-31 | 2020-06-02 | Stryker Corporation | System and methods for performing surgery on a patient at a target site defined by a virtual object |
KR20250005419A (ko) | 2016-01-12 | 2025-01-09 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 제어 상태들 간의 단계적 힘 피드백 전이 |
EP4414816A3 (en) * | 2016-01-12 | 2024-09-25 | Intuitive Surgical Operations, Inc. | Uniform scaling of haptic actuators |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
CN108882932B (zh) | 2016-02-09 | 2021-07-23 | 伊西康有限责任公司 | 具有非对称关节运动构造的外科器械 |
US10245029B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instrument with articulating and axially translatable end effector |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
AU2017236893A1 (en) * | 2016-03-21 | 2018-09-06 | Washington University | Virtual reality or augmented reality visualization of 3D medical images |
US11160633B2 (en) * | 2016-03-28 | 2021-11-02 | Sony Olympus Medical Solutions Inc. | Medical observation apparatus, driving control method, medical observation system, and support arm apparatus |
JP2017176307A (ja) * | 2016-03-29 | 2017-10-05 | ソニー株式会社 | 医療用支持アームの制御装置、医療用支持アーム装置の制御方法及び医療用システム |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US10716942B2 (en) | 2016-04-25 | 2020-07-21 | Boston Scientific Neuromodulation Corporation | System and methods for directional steering of electrical stimulation |
JP7176757B2 (ja) | 2016-05-18 | 2022-11-22 | バーチャル インシジョン コーポレイション | ロボット手術装置、システム及び関連する方法 |
US20170352282A1 (en) * | 2016-06-03 | 2017-12-07 | International Business Machines Corporation | Image-based feedback for assembly instructions |
WO2017223505A2 (en) | 2016-06-24 | 2017-12-28 | Boston Scientific Neuromodulation Corporation | Systems and methods for visual analytics of clinical effects |
AU2017204355B2 (en) | 2016-07-08 | 2021-09-09 | Mako Surgical Corp. | Scaffold for alloprosthetic composite implant |
CA3030831A1 (en) | 2016-07-15 | 2018-01-18 | Mako Surgical Corp. | Systems for a robotic-assisted revision procedure |
US10265854B2 (en) * | 2016-08-04 | 2019-04-23 | Synaptive Medical (Barbados) Inc. | Operating room safety zone |
US10500000B2 (en) | 2016-08-16 | 2019-12-10 | Ethicon Llc | Surgical tool with manual control of end effector jaws |
JP6514156B2 (ja) * | 2016-08-17 | 2019-05-15 | ファナック株式会社 | ロボット制御装置 |
RU2748005C2 (ru) | 2016-08-19 | 2021-05-18 | Шапер Тулс, Инк. | Системы, способы и устройство для совместного использования данных об изготовлении инструмента и конструктивных данных |
CN116269696A (zh) | 2016-08-25 | 2023-06-23 | 内布拉斯加大学董事会 | 快速释放工具耦接器以及相关系统和方法 |
JP7090615B2 (ja) | 2016-08-30 | 2022-06-24 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | ロボットデバイス |
WO2018044881A1 (en) | 2016-09-02 | 2018-03-08 | Boston Scientific Neuromodulation Corporation | Systems and methods for visualizing and directing stimulation of neural elements |
US11370113B2 (en) * | 2016-09-06 | 2022-06-28 | Verily Life Sciences Llc | Systems and methods for prevention of surgical mistakes |
US10780282B2 (en) | 2016-09-20 | 2020-09-22 | Boston Scientific Neuromodulation Corporation | Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters |
WO2018058036A1 (en) * | 2016-09-26 | 2018-03-29 | Think Surgical, Inc. | Pin placement holder for surgical pin driver |
JP7221862B2 (ja) * | 2016-09-30 | 2023-02-14 | コーニンクレッカ フィリップス エヌ ヴェ | 医療器具の位置計画及び器具誘導のための解剖学的モデル |
CN109952070B (zh) | 2016-10-05 | 2022-02-01 | 纽文思公司 | 手术导航系统及相关方法 |
CN109803719B (zh) | 2016-10-14 | 2023-05-26 | 波士顿科学神经调制公司 | 用于闭环确定电模拟系统的刺激参数设置的系统和方法 |
US10828114B2 (en) * | 2016-10-18 | 2020-11-10 | Synaptive Medical (Barbados) Inc. | Methods and systems for providing depth information |
GB2570835B (en) * | 2016-10-21 | 2021-11-03 | Synaptive Medical Inc | Methods and systems for providing depth information |
US11207139B2 (en) * | 2016-10-31 | 2021-12-28 | Synaptive Medical Inc. | 3D navigation system and methods |
CN110139620B (zh) | 2016-11-22 | 2022-09-20 | 内布拉斯加大学董事会 | 改进的粗定位装置及相关系统和方法 |
EP3548773A4 (en) | 2016-11-29 | 2020-08-05 | Virtual Incision Corporation | USER CONTROL DEVICE WITH USER PRESENCE DETECTION AND ASSOCIATED SYSTEMS AND PROCEDURES |
WO2018104523A1 (en) | 2016-12-08 | 2018-06-14 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target cutting plane |
WO2018103945A1 (en) | 2016-12-08 | 2018-06-14 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target plane |
EP3551099B1 (en) | 2016-12-08 | 2024-03-20 | Orthotaxy | Surgical system for cutting an anatomical structure according to at least one target plane |
WO2018112199A1 (en) | 2016-12-14 | 2018-06-21 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
US11202682B2 (en) * | 2016-12-16 | 2021-12-21 | Mako Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10918385B2 (en) | 2016-12-21 | 2021-02-16 | Ethicon Llc | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
US20180168579A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical end effector with two separate cooperating opening features for opening and closing end effector jaws |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
US20180168609A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Firing assembly comprising a fuse |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
JP7010957B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | ロックアウトを備えるシャフトアセンブリ |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
JP2020501779A (ja) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | 外科用ステープル留めシステム |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
US11160551B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Articulatable surgical stapling instruments |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10499997B2 (en) | 2017-01-03 | 2019-12-10 | Mako Surgical Corp. | Systems and methods for surgical navigation |
ES2871008T3 (es) | 2017-01-03 | 2021-10-28 | Boston Scient Neuromodulation Corp | Sistemas y procedimientos para seleccionar parámetros de estimulación compatibles con IRM |
ES2821752T3 (es) | 2017-01-10 | 2021-04-27 | Boston Scient Neuromodulation Corp | Sistemas y procedimientos para crear programas de estimulación en base a áreas o volúmenes definidos por el usuario |
JP7233841B2 (ja) * | 2017-01-18 | 2023-03-07 | ケービー メディカル エスアー | ロボット外科手術システムのロボットナビゲーション |
US10799308B2 (en) | 2017-02-09 | 2020-10-13 | Vicarious Surgical Inc. | Virtual reality surgical tools system |
EP3595554A4 (en) | 2017-03-14 | 2021-01-06 | OrthAlign, Inc. | HIP REPLACEMENT NAVIGATION SYSTEM AND PROCEDURE |
AU2018236205B2 (en) | 2017-03-14 | 2023-10-12 | OrthAlign, Inc. | Soft tissue measurement and balancing systems and methods |
US10625082B2 (en) | 2017-03-15 | 2020-04-21 | Boston Scientific Neuromodulation Corporation | Visualization of deep brain stimulation efficacy |
WO2018187090A1 (en) | 2017-04-03 | 2018-10-11 | Boston Scientific Neuromodulation Corporation | Systems and methods for estimating a volume of activation using a compressed database of threshold values |
EP4344658A3 (en) | 2017-05-10 | 2024-07-03 | MAKO Surgical Corp. | Robotic spine surgery system |
US11033341B2 (en) | 2017-05-10 | 2021-06-15 | Mako Surgical Corp. | Robotic spine surgery system and methods |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US11229496B2 (en) * | 2017-06-22 | 2022-01-25 | Navlab Holdings Ii, Llc | Systems and methods of providing assistance to a surgeon for minimizing errors during a surgical procedure |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11478242B2 (en) | 2017-06-28 | 2022-10-25 | Cilag Gmbh International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
CN110944710B (zh) | 2017-07-14 | 2023-12-29 | 波士顿科学神经调制公司 | 估计电刺激的临床效果的系统和方法 |
WO2019023378A1 (en) * | 2017-07-27 | 2019-01-31 | Intuitive Surgical Operations, Inc. | LUMINOUS DISPLAYS IN A MEDICAL DEVICE |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US10960214B2 (en) | 2017-08-15 | 2021-03-30 | Boston Scientific Neuromodulation Corporation | Systems and methods for controlling electrical stimulation using multiple stimulation fields |
US10588644B2 (en) * | 2017-08-31 | 2020-03-17 | DePuy Synthes Products, Inc. | Guide attachment for power tools |
WO2019055681A1 (en) | 2017-09-14 | 2019-03-21 | Vicarious Surgical Inc. | SURGICAL CAMERA SYSTEM WITH VIRTUAL REALITY |
CN111417333B (zh) | 2017-09-27 | 2023-08-29 | 虚拟切割有限公司 | 具有跟踪相机技术的机器人手术设备及相关系统和方法 |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10464209B2 (en) * | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US11432945B2 (en) | 2017-11-07 | 2022-09-06 | Howmedica Osteonics Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11173048B2 (en) | 2017-11-07 | 2021-11-16 | Howmedica Osteonics Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US11241285B2 (en) | 2017-11-07 | 2022-02-08 | Mako Surgical Corp. | Robotic system for shoulder arthroplasty using stemless implant components |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10827971B2 (en) | 2017-12-20 | 2020-11-10 | Howmedica Osteonics Corp. | Virtual ligament balancing |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US20190192148A1 (en) | 2017-12-21 | 2019-06-27 | Ethicon Llc | Stapling instrument comprising a tissue drive |
US10786311B2 (en) * | 2017-12-22 | 2020-09-29 | Acclarent, Inc. | Apparatus and method for registering facial landmarks for surgical navigation system |
CA3087672A1 (en) | 2018-01-05 | 2019-07-11 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
JP7541481B2 (ja) | 2018-01-26 | 2024-08-28 | マコ サージカル コーポレーション | 手術ロボットで案内されたプロテーゼ嵌入のためのエンドエフェクタおよびシステム |
JP2019130602A (ja) * | 2018-01-30 | 2019-08-08 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
US20240173147A1 (en) * | 2018-02-02 | 2024-05-30 | Exactech, Inc. | Soft tissue balancing in robotic knee surgery |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US10835335B2 (en) * | 2018-03-12 | 2020-11-17 | Ethicon Llc | Cable failure detection |
CN112041022B (zh) | 2018-04-27 | 2024-07-02 | 波士顿科学神经调制公司 | 多模式电刺激系统及其制造和使用方法 |
US11285329B2 (en) | 2018-04-27 | 2022-03-29 | Boston Scientific Neuromodulation Corporation | Systems and methods for visualizing and programming electrical stimulation |
US12150713B2 (en) | 2018-05-16 | 2024-11-26 | University Of Maryland, College Park | Confidence-based robotically-assisted surgery system |
US12156708B2 (en) | 2018-05-16 | 2024-12-03 | University Of Maryland, College Park | Confidence-based robotically-assisted surgery system |
US11026752B2 (en) | 2018-06-04 | 2021-06-08 | Medtronic Navigation, Inc. | System and method for performing and evaluating a procedure |
JP7082090B2 (ja) * | 2018-06-27 | 2022-06-07 | グローバス メディカル インコーポレイティッド | 仮想インプラントを調整する方法および関連する手術用ナビゲーションシステム |
US11304692B2 (en) | 2018-07-16 | 2022-04-19 | Cilag Gmbh International | Singular EMR source emitter assembly |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11612438B2 (en) | 2018-09-05 | 2023-03-28 | Point Robotics Medtech Inc. | Navigation system and method for medical operation by a robotic system using a tool |
US11918423B2 (en) | 2018-10-30 | 2024-03-05 | Corindus, Inc. | System and method for navigating a device through a path to a target location |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11607283B2 (en) * | 2019-01-01 | 2023-03-21 | Asensus Surgical Us, Inc. | Dynamic control of surgical instruments in a surgical system using repulsion/attraction modes |
EP3908171A4 (en) | 2019-01-07 | 2022-09-14 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
US11330251B2 (en) | 2019-01-16 | 2022-05-10 | International Business Machines Corporation | Defining a holographic object allowance area and movement path |
CN113301866A (zh) * | 2019-01-23 | 2021-08-24 | 索尼集团公司 | 医疗臂系统、控制装置、控制方法和程序 |
US12059354B2 (en) * | 2019-02-15 | 2024-08-13 | Howmedica Osteonics Corp. | Robotic acetabulum preparation for acceptance of acetabular cup with engagement features |
US11364419B2 (en) | 2019-02-21 | 2022-06-21 | Scott B. Radow | Exercise equipment with music synchronization |
US11564761B2 (en) | 2019-03-08 | 2023-01-31 | Mako Surgical Corp. | Systems and methods for controlling movement of a surgical tool along a predefined path |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
KR20250018425A (ko) | 2019-04-12 | 2025-02-05 | 마코 서지컬 코포레이션 | 수술 기구를 위한 절단 가이드를 조종하기 위한 로봇 시스템 및 방법 |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
AU2020280022B2 (en) * | 2019-05-20 | 2022-08-11 | Icahn School Of Medicine At Mount Sinai | A system and method for interaction and definition of tool pathways for a robotic cutting tool |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US20220079687A1 (en) * | 2019-05-20 | 2022-03-17 | Icahn School Of Medicine At Mount Sinai | Robot mounted camera registration and tracking system for orthopedic and neurological surgery |
JP7331462B2 (ja) * | 2019-05-24 | 2023-08-23 | 京セラドキュメントソリューションズ株式会社 | ロボットシステム、ロボット制御方法及び電子装置 |
US11596882B2 (en) | 2019-05-28 | 2023-03-07 | Plenty Company, LLC | Water pitcher with float and underside filter |
US11497564B2 (en) * | 2019-06-07 | 2022-11-15 | Verb Surgical Inc. | Supervised robot-human collaboration in surgical robotics |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
WO2021011646A2 (en) * | 2019-07-15 | 2021-01-21 | Stryker Corporation | Robotic hand-held surgical instrument systems and methods |
US11432828B1 (en) * | 2019-07-23 | 2022-09-06 | Onpoint Medical, Inc. | Controls for power tools or instruments including bone saws and drills including safety and directional control and haptic feedback |
KR102299679B1 (ko) * | 2019-07-24 | 2021-09-09 | 울산대학교 산학협력단 | 수술 보조 장치 |
US11612440B2 (en) | 2019-09-05 | 2023-03-28 | Nuvasive, Inc. | Surgical instrument tracking devices and related methods |
EP4037597A1 (en) * | 2019-09-30 | 2022-08-10 | MAKO Surgical Corp. | Systems and methods for guiding movement of a tool |
WO2021067113A1 (en) | 2019-10-01 | 2021-04-08 | Mako Surgical Corp. | Systems and methods for providing haptic guidance |
WO2021067597A1 (en) | 2019-10-01 | 2021-04-08 | Mako Surgical Corp. | Surgical systems for guiding robotic manipulators |
US11278416B2 (en) | 2019-11-14 | 2022-03-22 | Howmedica Osteonics Corp. | Concentric keel TKA |
US20210153959A1 (en) * | 2019-11-26 | 2021-05-27 | Intuitive Surgical Operations, Inc. | Physical medical element affixation systems, methods, and materials |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11776144B2 (en) | 2019-12-30 | 2023-10-03 | Cilag Gmbh International | System and method for determining, adjusting, and managing resection margin about a subject tissue |
US12002571B2 (en) | 2019-12-30 | 2024-06-04 | Cilag Gmbh International | Dynamic surgical visualization systems |
US11832996B2 (en) | 2019-12-30 | 2023-12-05 | Cilag Gmbh International | Analyzing surgical trends by a surgical system |
US11896442B2 (en) | 2019-12-30 | 2024-02-13 | Cilag Gmbh International | Surgical systems for proposing and corroborating organ portion removals |
US11744667B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Adaptive visualization by a surgical system |
US11648060B2 (en) | 2019-12-30 | 2023-05-16 | Cilag Gmbh International | Surgical system for overlaying surgical instrument data onto a virtual three dimensional construct of an organ |
US11219501B2 (en) | 2019-12-30 | 2022-01-11 | Cilag Gmbh International | Visualization systems using structured light |
US11759283B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto |
US12207881B2 (en) | 2019-12-30 | 2025-01-28 | Cilag Gmbh International | Surgical systems correlating visualization data and powered surgical instrument data |
US11284963B2 (en) | 2019-12-30 | 2022-03-29 | Cilag Gmbh International | Method of using imaging devices in surgery |
US12053223B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Adaptive surgical system control according to surgical smoke particulate characteristics |
CN115279294A (zh) | 2020-01-13 | 2022-11-01 | 史赛克公司 | 在导航辅助手术期间监控偏移的系统 |
US11464581B2 (en) | 2020-01-28 | 2022-10-11 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
US11559405B2 (en) * | 2020-02-12 | 2023-01-24 | Howmedica Osteonics Corp. | Robotic shoulder fracture management |
EP3886056A1 (en) | 2020-03-16 | 2021-09-29 | Stryker Australia PTY LTD | Automated cut planning for removal of diseased regions |
US12042944B2 (en) * | 2020-03-30 | 2024-07-23 | Depuy Ireland Unlimited Company | Robotic surgical system with graphical user interface |
US20210298834A1 (en) * | 2020-03-30 | 2021-09-30 | Zimmer Biomet Spine, Inc. | Non-optical navigation system for guiding trajectories |
US12019811B2 (en) * | 2020-04-17 | 2024-06-25 | Disney Enterprises, Inc. | Systems and methods to cause an input device to provide movement-based output |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
EP4164536A1 (en) * | 2020-06-12 | 2023-04-19 | Koninklijke Philips N.V. | Automatic selection of collaborative robot control parameters based on tool and user interaction force |
CN115843233A (zh) | 2020-07-06 | 2023-03-24 | 虚拟切割有限公司 | 手术机器人定位系统及相关装置和方法 |
AU2021204625A1 (en) | 2020-07-06 | 2022-01-20 | Howmedica Osteonics Corp. | Anatomic implant for joints |
US11883024B2 (en) | 2020-07-28 | 2024-01-30 | Cilag Gmbh International | Method of operating a surgical instrument |
CN112053346B (zh) * | 2020-09-02 | 2024-06-25 | 上海联影医疗科技股份有限公司 | 一种操作引导信息的确定方法和系统 |
US12023106B2 (en) * | 2020-10-12 | 2024-07-02 | Johnson & Johnson Surgical Vision, Inc. | Virtual reality 3D eye-inspection by combining images from position-tracked optical visualization modalities |
US12045957B2 (en) | 2020-10-21 | 2024-07-23 | Johnson & Johnson Surgical Vision, Inc. | Visualizing an organ using multiple imaging modalities combined and displayed in virtual reality |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US12150857B2 (en) | 2020-11-03 | 2024-11-26 | Mako Surgical Corp. | Multi-component locking implant |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US12178418B2 (en) | 2021-03-31 | 2024-12-31 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
US11812938B2 (en) | 2021-03-31 | 2023-11-14 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
US11844583B2 (en) | 2021-03-31 | 2023-12-19 | Moon Surgical Sas | Co-manipulation surgical system having an instrument centering mode for automatic scope movements |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
US11832909B2 (en) | 2021-03-31 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having actuatable setup joints |
EP4312857A1 (en) | 2021-03-31 | 2024-02-07 | Moon Surgical SAS | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery |
US12167900B2 (en) | 2021-03-31 | 2024-12-17 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
US11819302B2 (en) | 2021-03-31 | 2023-11-21 | Moon Surgical Sas | Co-manipulation surgical system having user guided stage control |
US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
US20220378426A1 (en) | 2021-05-28 | 2022-12-01 | Cilag Gmbh International | Stapling instrument comprising a mounted shaft orientation sensor |
US11925426B2 (en) | 2021-07-16 | 2024-03-12 | DePuy Synthes Products, Inc. | Surgical robot with anti-skive feature |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US20230404572A1 (en) * | 2022-06-17 | 2023-12-21 | Cilag Gmbh International | Smart circular staplers |
US20240216083A1 (en) | 2023-01-04 | 2024-07-04 | Stryker Australia Pty Ltd | Patient Reregistration Systems and Methods |
US11839442B1 (en) | 2023-01-09 | 2023-12-12 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4903536A (en) * | 1988-04-21 | 1990-02-27 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US5207114A (en) * | 1988-04-21 | 1993-05-04 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US5046375A (en) * | 1988-04-21 | 1991-09-10 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
DE69026196T2 (de) * | 1989-11-08 | 1996-09-05 | George S Allen | Mechanischer Arm für ein interaktives, bildgesteuertes, chirurgisches System |
US5086401A (en) * | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US6006126A (en) * | 1991-01-28 | 1999-12-21 | Cosman; Eric R. | System and method for stereotactic registration of image scan data |
US6405072B1 (en) * | 1991-01-28 | 2002-06-11 | Sherwood Services Ag | Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus |
US5279309A (en) * | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) * | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5517990A (en) * | 1992-11-30 | 1996-05-21 | The Cleveland Clinic Foundation | Stereotaxy wand and tool guide |
US5629594A (en) * | 1992-12-02 | 1997-05-13 | Cybernet Systems Corporation | Force feedback system |
US5388480A (en) * | 1993-08-04 | 1995-02-14 | Barrett Technology, Inc. | Pretensioning mechanism for tension element drive systems |
US5343385A (en) * | 1993-08-17 | 1994-08-30 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
US5625576A (en) * | 1993-10-01 | 1997-04-29 | Massachusetts Institute Of Technology | Force reflecting haptic interface |
US5445144A (en) * | 1993-12-16 | 1995-08-29 | Purdue Research Foundation | Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body |
GB9405299D0 (en) * | 1994-03-17 | 1994-04-27 | Roke Manor Research | Improvements in or relating to video-based systems for computer assisted surgery and localisation |
JP3539645B2 (ja) * | 1995-02-16 | 2004-07-07 | 株式会社日立製作所 | 遠隔手術支援装置 |
US5887121A (en) * | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
US5638819A (en) * | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5806518A (en) * | 1995-09-11 | 1998-09-15 | Integrated Surgical Systems | Method and system for positioning surgical robot |
US6147674A (en) * | 1995-12-01 | 2000-11-14 | Immersion Corporation | Method and apparatus for designing force sensations in force feedback computer applications |
US5682886A (en) * | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
US6111577A (en) * | 1996-04-04 | 2000-08-29 | Massachusetts Institute Of Technology | Method and apparatus for determining forces to be applied to a user through a haptic interface |
US5928137A (en) * | 1996-05-03 | 1999-07-27 | Green; Philip S. | System and method for endoscopic imaging and endosurgery |
US5799055A (en) * | 1996-05-15 | 1998-08-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
US6786896B1 (en) * | 1997-09-19 | 2004-09-07 | Massachusetts Institute Of Technology | Robotic apparatus |
US6084587A (en) * | 1996-08-02 | 2000-07-04 | Sensable Technologies, Inc. | Method and apparatus for generating and interfacing with a haptic virtual reality environment |
US5694013A (en) * | 1996-09-06 | 1997-12-02 | Ford Global Technologies, Inc. | Force feedback haptic interface for a three-dimensional CAD surface |
US5980535A (en) * | 1996-09-30 | 1999-11-09 | Picker International, Inc. | Apparatus for anatomical tracking |
US5984930A (en) * | 1996-09-30 | 1999-11-16 | George S. Allen | Biopsy guide |
WO1998033451A1 (en) * | 1997-02-04 | 1998-08-06 | National Aeronautics And Space Administration | Multimodality instrument for tissue characterization |
US5880976A (en) * | 1997-02-21 | 1999-03-09 | Carnegie Mellon University | Apparatus and method for facilitating the implantation of artificial components in joints |
US6205411B1 (en) * | 1997-02-21 | 2001-03-20 | Carnegie Mellon University | Computer-assisted surgery planner and intra-operative guidance system |
US6006127A (en) * | 1997-02-28 | 1999-12-21 | U.S. Philips Corporation | Image-guided surgery system |
US5987960A (en) * | 1997-09-26 | 1999-11-23 | Picker International, Inc. | Tool calibrator |
US6810281B2 (en) * | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US6692485B1 (en) * | 1998-02-24 | 2004-02-17 | Endovia Medical, Inc. | Articulated apparatus for telemanipulator system |
US6233504B1 (en) * | 1998-04-16 | 2001-05-15 | California Institute Of Technology | Tool actuation and force feedback on robot-assisted microsurgery system |
US6546277B1 (en) * | 1998-04-21 | 2003-04-08 | Neutar L.L.C. | Instrument guidance system for spinal and other surgery |
US6337994B1 (en) * | 1998-04-30 | 2002-01-08 | Johns Hopkins University | Surgical needle probe for electrical impedance measurements |
US6985133B1 (en) * | 1998-07-17 | 2006-01-10 | Sensable Technologies, Inc. | Force reflecting haptic interface |
US6417638B1 (en) * | 1998-07-17 | 2002-07-09 | Sensable Technologies, Inc. | Force reflecting haptic interface |
US6552722B1 (en) * | 1998-07-17 | 2003-04-22 | Sensable Technologies, Inc. | Systems and methods for sculpting virtual objects in a haptic virtual reality environment |
US6421048B1 (en) * | 1998-07-17 | 2002-07-16 | Sensable Technologies, Inc. | Systems and methods for interacting with virtual objects in a haptic virtual reality environment |
US6033415A (en) * | 1998-09-14 | 2000-03-07 | Integrated Surgical Systems | System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system |
US6704694B1 (en) * | 1998-10-16 | 2004-03-09 | Massachusetts Institute Of Technology | Ray based interaction system |
US6493608B1 (en) * | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
US6322567B1 (en) * | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6430434B1 (en) * | 1998-12-14 | 2002-08-06 | Integrated Surgical Systems, Inc. | Method for determining the location and orientation of a bone for computer-assisted orthopedic procedures using intraoperatively attached markers |
JP2000279425A (ja) * | 1999-03-30 | 2000-10-10 | Olympus Optical Co Ltd | ナビゲーション装置 |
US6424885B1 (en) * | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6443894B1 (en) * | 1999-09-29 | 2002-09-03 | Acuson Corporation | Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging |
US6674916B1 (en) * | 1999-10-18 | 2004-01-06 | Z-Kat, Inc. | Interpolation in transform space for multiple rigid object registration |
US6377011B1 (en) * | 2000-01-26 | 2002-04-23 | Massachusetts Institute Of Technology | Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus |
US20010034530A1 (en) * | 2000-01-27 | 2001-10-25 | Malackowski Donald W. | Surgery system |
WO2001065121A2 (en) * | 2000-03-01 | 2001-09-07 | Massachusetts Institute Of Technology | Force-controlled hydro-elastic actuator |
US6535756B1 (en) * | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
US6701174B1 (en) * | 2000-04-07 | 2004-03-02 | Carnegie Mellon University | Computer-aided bone distraction |
US6711432B1 (en) * | 2000-10-23 | 2004-03-23 | Carnegie Mellon University | Computer-aided orthopedic surgery |
DE10033723C1 (de) * | 2000-07-12 | 2002-02-21 | Siemens Ag | Visualisierung von Positionen und Orientierung von intrakorporal geführten Instrumenten während eines chirurgischen Eingriffs |
US6850794B2 (en) * | 2000-09-23 | 2005-02-01 | The Trustees Of The Leland Stanford Junior University | Endoscopic targeting method and system |
US6922631B1 (en) * | 2000-10-06 | 2005-07-26 | Honeywell International Inc. | System and method for textually displaying an original flight plan and a modified flight plan simultaneously |
EP1355765B1 (en) * | 2001-01-29 | 2008-05-07 | The Acrobot Company Limited | Active-constraint robots |
US20040102866A1 (en) * | 2001-01-29 | 2004-05-27 | Harris Simon James | Modelling for surgery |
GB0102245D0 (en) * | 2001-01-29 | 2001-03-14 | Acrobot Company The Ltd | Systems/Methods |
JP3579379B2 (ja) * | 2001-08-10 | 2004-10-20 | 株式会社東芝 | 医療用マニピュレータシステム |
EP1312317B1 (de) * | 2001-11-09 | 2004-06-23 | BrainLAB AG | Schwenkbarer Arm mit passiven Aktuatoren |
AU2002361621A1 (en) * | 2001-11-14 | 2003-05-26 | Michael R. White | Apparatus and methods for making intraoperative orthopedic measurements |
GB0127659D0 (en) * | 2001-11-19 | 2002-01-09 | Acrobot Company The Ltd | Apparatus and method for registering the position of a surgical robot |
GB0127658D0 (en) * | 2001-11-19 | 2002-01-09 | Acrobot Company The Ltd | Apparatus for surgical instrument location |
AU2003218010A1 (en) * | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US7831292B2 (en) | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US6671651B2 (en) * | 2002-04-26 | 2003-12-30 | Sensable Technologies, Inc. | 3-D selection and manipulation with a multiple dimension haptic interface |
US6757582B2 (en) * | 2002-05-03 | 2004-06-29 | Carnegie Mellon University | Methods and systems to control a shaping tool |
EP1550024A2 (en) * | 2002-06-21 | 2005-07-06 | Cedara Software Corp. | Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement |
WO2004023103A2 (en) * | 2002-09-09 | 2004-03-18 | Z-Kat, Inc. | Image guided interventional method and apparatus |
EP1667573A4 (en) | 2003-02-04 | 2008-02-20 | Z Kat Inc | METHOD AND APPARATUS FOR COMPUTER-ASSISTED TOTAL HIP REPLACEMENT OPERATION |
WO2004070573A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | Computer-assisted external fixation apparatus and method |
WO2004070581A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | System and method for providing computer assistance with spinal fixation procedures |
US6988009B2 (en) * | 2003-02-04 | 2006-01-17 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
EP1627272B2 (en) * | 2003-02-04 | 2017-03-08 | Mako Surgical Corp. | Interactive computer-assisted surgery system and method |
EP1697874B8 (en) | 2003-02-04 | 2012-03-14 | Mako Surgical Corp. | Computer-assisted knee replacement apparatus |
WO2004069036A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | Computer-assisted knee replacement apparatus and method |
US7411576B2 (en) * | 2003-10-30 | 2008-08-12 | Sensable Technologies, Inc. | Force reflecting haptic interface |
WO2006004894A2 (en) * | 2004-06-29 | 2006-01-12 | Sensable Technologies, Inc. | Apparatus and methods for haptic rendering using data in a graphics pipeline |
-
2003
- 2003-07-16 US US10/621,119 patent/US7831292B2/en active Active
-
2004
- 2004-07-16 CA CA2532469A patent/CA2532469C/en not_active Expired - Fee Related
- 2004-07-16 CN CN200480023380A patent/CN100579448C/zh not_active Expired - Lifetime
- 2004-07-16 EP EP04757075.9A patent/EP1680007B1/en not_active Expired - Lifetime
- 2004-07-16 JP JP2006520381A patent/JP4833061B2/ja not_active Expired - Lifetime
- 2004-07-16 WO PCT/US2004/022978 patent/WO2005009215A2/en active Application Filing
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102365062A (zh) * | 2009-02-24 | 2012-02-29 | 马科外科公司 | 假体装置、为植入假体装置而规划去骨的方法和机器人系统 |
TWI417078B (zh) * | 2010-09-09 | 2013-12-01 | Univ Nat Taipei Technology | Intelligent bone cutting device |
US9588583B2 (en) | 2010-12-29 | 2017-03-07 | Mako Surgical Corp. | System and method for providing substantially stable haptics |
CN103620523A (zh) * | 2010-12-29 | 2014-03-05 | 马科外科公司 | 用于提供大致上稳定的触觉的系统和方法 |
US9921712B2 (en) | 2010-12-29 | 2018-03-20 | Mako Surgical Corp. | System and method for providing substantially stable control of a surgical tool |
CN103620523B (zh) * | 2010-12-29 | 2017-05-31 | 马科外科公司 | 用于提供大致上稳定的触觉的系统和方法 |
US10383699B2 (en) | 2013-03-15 | 2019-08-20 | Sri International | Hyperdexterous surgical system |
US10299883B2 (en) | 2013-03-15 | 2019-05-28 | Sri International | Hyperdexterous surgical system |
US10376337B2 (en) | 2013-03-15 | 2019-08-13 | Sri International | Hyperdexterous surgical system |
CN108451643A (zh) * | 2013-03-15 | 2018-08-28 | 史赛克公司 | 能够以多种模式控制外科器械的外科操纵器 |
CN105188592B (zh) * | 2013-03-15 | 2018-07-27 | Sri国际公司 | 超灵巧型手术系统 |
CN108451643B (zh) * | 2013-03-15 | 2021-02-26 | 史赛克公司 | 能够以多种模式控制外科器械的外科操纵器 |
CN105188592A (zh) * | 2013-03-15 | 2015-12-23 | Sri国际公司 | 超灵巧型手术系统 |
CN105051739A (zh) * | 2013-03-19 | 2015-11-11 | 皇家飞利浦有限公司 | 医学系统的听觉增强 |
CN103162191A (zh) * | 2013-03-19 | 2013-06-19 | 苏州沃伦韦尔高新技术股份有限公司 | 具有测距反馈照度自动调节功能的手术灯 |
CN105051739B (zh) * | 2013-03-19 | 2019-08-06 | 皇家飞利浦有限公司 | 用于听觉增强的医学系统、方法、处理器和可读介质 |
CN106462243B (zh) * | 2014-03-24 | 2019-11-22 | 直观外科手术操作公司 | 用于关于触觉装置的虚拟反馈的系统和方法 |
CN106462243A (zh) * | 2014-03-24 | 2017-02-22 | 直观外科手术操作公司 | 用于关于触觉装置的虚拟反馈的系统和方法 |
CN104188622A (zh) * | 2014-08-22 | 2014-12-10 | 张来波 | 一种新型无线关节镜系统 |
CN107072718A (zh) * | 2014-08-28 | 2017-08-18 | 费瑟特-链接公司 | 具有自主导航的手持式外科器具 |
CN106715057A (zh) * | 2014-09-25 | 2017-05-24 | 约翰霍普金斯大学 | 使用协同控制的机器人的外科手术系统用户界面 |
CN110142787A (zh) * | 2014-09-25 | 2019-08-20 | 约翰霍普金斯大学 | 使用协同控制的机器人的外科手术系统用户界面 |
CN106715057B (zh) * | 2014-09-25 | 2019-07-02 | 约翰霍普金斯大学 | 使用协同控制的机器人的外科手术系统用户界面 |
CN107427326A (zh) * | 2015-03-17 | 2017-12-01 | 直观外科手术操作公司 | 用于在手动关节定位期间提供反馈的系统和方法 |
US10751135B2 (en) | 2015-03-17 | 2020-08-25 | Intuitive Surgical Operations, Inc. | System and method for providing feedback during manual joint positioning |
CN107427326B (zh) * | 2015-03-17 | 2020-10-13 | 直观外科手术操作公司 | 用于在手动关节定位期间提供反馈的系统和方法 |
US10939971B2 (en) | 2015-03-17 | 2021-03-09 | Intuitive Surgical Operations, Inc. | System and method for providing feedback during manual joint positioning |
US12004827B2 (en) | 2015-03-17 | 2024-06-11 | Intuitive Surgical Operations, Inc. | System and method for providing feedback during manual joint positioning |
CN104758031B (zh) * | 2015-04-19 | 2017-09-29 | 李燕 | 腹腔镜子宫肌瘤切除装置 |
CN104758031A (zh) * | 2015-04-19 | 2015-07-08 | 王玉梅 | 腹腔镜子宫肌瘤切除装置 |
CN109803600A (zh) * | 2016-08-10 | 2019-05-24 | 澳大利亚机器人骨科学院有限公司 | 机器人辅助的激光手术系统 |
CN111274705A (zh) * | 2020-01-21 | 2020-06-12 | 武汉大学 | 一种面向磁悬浮视触觉交互的多速率协同方法及系统 |
CN111274705B (zh) * | 2020-01-21 | 2021-12-03 | 武汉大学 | 一种面向磁悬浮视触觉交互的多速率协同方法及系统 |
TWI742635B (zh) * | 2020-04-27 | 2021-10-11 | 創博股份有限公司 | 教導位置與姿態的觸發與補償方法 |
CN117042716A (zh) * | 2021-03-23 | 2023-11-10 | 瑞德医疗机器股份有限公司 | 力觉通知装置以及力觉通知方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1680007B1 (en) | 2013-04-10 |
US20040106916A1 (en) | 2004-06-03 |
CN100579448C (zh) | 2010-01-13 |
CA2532469C (en) | 2012-12-04 |
WO2005009215A2 (en) | 2005-02-03 |
US7831292B2 (en) | 2010-11-09 |
CA2532469A1 (en) | 2005-02-03 |
JP2007534351A (ja) | 2007-11-29 |
WO2005009215A3 (en) | 2007-03-29 |
EP1680007A4 (en) | 2010-11-03 |
EP1680007A2 (en) | 2006-07-19 |
JP4833061B2 (ja) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100579448C (zh) | 用于具有改进反馈的手术程序的导向系统 | |
US11298191B2 (en) | Robotically-assisted surgical guide | |
US9775682B2 (en) | Teleoperation system with visual indicator and method of use during surgical procedures | |
TWI693923B (zh) | 醫療手術導航方法及機器人系統 | |
CN101160104B (zh) | 触觉引导系统及方法 | |
KR20170125360A (ko) | 가상의 환경에서 대응하는 가상의 대상을 조작하도록 물리적 대상을 이용하기 위한 방법 및 관련 장치와 컴퓨터 프로그램 제품 | |
CN107833625A (zh) | 工件的操作系统及其方法 | |
Marisetty et al. | System design of an automated drilling device for neurosurgical applications | |
Amir Hossein | Design and development of a robotic platform for general neurosurgical procedures/Amir Hossein Mehbodniya | |
Mehbodniya | Design and Development of a Robotic Platform for General Neurosurgical Procedures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20100113 |