CN100583395C - 半导体装置及其制造方法 - Google Patents
半导体装置及其制造方法 Download PDFInfo
- Publication number
- CN100583395C CN100583395C CN200480037017A CN200480037017A CN100583395C CN 100583395 C CN100583395 C CN 100583395C CN 200480037017 A CN200480037017 A CN 200480037017A CN 200480037017 A CN200480037017 A CN 200480037017A CN 100583395 C CN100583395 C CN 100583395C
- Authority
- CN
- China
- Prior art keywords
- layer
- substrate
- silicon
- germanium
- lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 35
- 239000004065 semiconductor Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000463 material Substances 0.000 claims abstract description 162
- 239000000758 substrate Substances 0.000 claims abstract description 136
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims abstract description 80
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000002210 silicon-based material Substances 0.000 claims abstract description 24
- 229910052732 germanium Inorganic materials 0.000 claims description 61
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 61
- 238000005229 chemical vapour deposition Methods 0.000 claims description 31
- 239000002243 precursor Substances 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 13
- 239000012686 silicon precursor Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 230000001427 coherent effect Effects 0.000 claims description 8
- 229910000078 germane Inorganic materials 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 108010075750 P-Type Calcium Channels Proteins 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 108090000699 N-Type Calcium Channels Proteins 0.000 claims description 4
- 102000004129 N-Type Calcium Channels Human genes 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 229910004129 HfSiO Inorganic materials 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 claims description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 10
- 230000004888 barrier function Effects 0.000 claims 5
- 230000006835 compression Effects 0.000 claims 4
- 238000007906 compression Methods 0.000 claims 4
- 239000000428 dust Substances 0.000 claims 4
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 claims 3
- 229910045601 alloy Inorganic materials 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 2
- 229910004283 SiO 4 Inorganic materials 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 142
- 108091006146 Channels Proteins 0.000 description 12
- 229910000676 Si alloy Inorganic materials 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 230000006837 decompression Effects 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- OUMJKIKHEORHMW-UHFFFAOYSA-N dichloromethane silane Chemical compound [SiH4].C(Cl)Cl OUMJKIKHEORHMW-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- -1 hafnium tetrasilicate Chemical compound 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005389 semiconductor device fabrication Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/798—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being provided in or under the channel regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/0251—Graded layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
- H10D30/0278—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs forming single crystalline channels on wafers after forming insulating device isolations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/751—Insulated-gate field-effect transistors [IGFET] having composition variations in the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Recrystallisation Techniques (AREA)
- Element Separation (AREA)
Abstract
本发明各实施例涉及一种CMOS器件,该器件具有(1)选择性沉积在缓变硅锗基片的第一区域上的硅材料的NMOS材料,使得选择性沉积硅材料承受由于该硅材料的晶格间距比第一区域上的缓变硅锗基片材料的晶格间距小而产生的拉伸应变,以及(2)选择性沉积在基片的第二区域上的硅锗材料的PMOS沟道,使得选择性沉积硅锗材料承受由于该选择性沉积硅锗材料的晶格间距比第二区域上的缓变硅锗基片材料的晶格间距大而产生的压缩应变。
Description
技术领域
电路器件及电路器件的制造和结构。
背景技术
提高基片上电路器件(例如,在诸如硅的半导体基片上的集成电路(IC)晶体管、电阻器、电容器等)的性能通常是在设计、制造和操作这些器件时所考虑的主要因素。例如,在设计和制造或构造诸如互补金属氧化物半导体(CMOS)中所常用的金属氧化物(MOS)晶体管半导体器件时,常常需要增加N型MOS器件(NMOS)沟道中电子的移动和增加P型MOS器件(PMOS)沟道中正电荷空穴的移动。
附图说明
本发明的各个实施例通过示例说明,但并不受到附图的限制,在附图中相似标号指示相似元件。应注意,对本说明书中本发明“一”实施例的引用并非必需是同一实施例,而表示至少一个实施例。
图1是一部分半导体基片衬底的横截面示图。
图2是基片上形成缓变(graded)硅锗材料层之后图1所示的半导体基片。
图3示出在缓变硅锗材料区域之间形成电绝缘材料之后图2所示的半导体基片。
图4示出硅材料层在选择性沉积在缓变硅锗材料的第一区域上之后图1所示的半导体基片。
图5示出硅锗材料层在选择性沉积在缓变硅锗材料的第二区域上之后图1所示的半导体基片,其中硅锗材料具有比缓变硅锗材料在第二区域上更高的锗浓度。
图6示出在选择性沉积硅和选择性沉积硅锗材料上形成高介电常数材料层之后图1的半导体基片。
图7示出在选择性沉积硅材料中形成NMOS器件和在选择性沉积硅锗材料中形成PMOS器件之后图1所示的半导体基片。
具体实施方式
图1是半导体衬底基片的局部横截面示图。如图1所示,硅基片110可包括由多晶硅、单晶硅形成或生长、或用于形成诸如硅晶片的硅衬底或基片的各种其它适当技术。例如,根据各实施例,衬底110可通过使单晶硅基片材料生长厚度H0为100埃到1000埃之间的纯硅来形成。
图2是在基片上形成缓变硅锗(SiGe)材料层之后图1所示的半导体基片。图2示出在基片衬底110的顶部形成缓变硅锗的基片材料120。例如,基片材料120可以是通过诸如半导体器件制造腔室的腔室内的缓变弛豫SiGe的化学气相沉积(CVD)外延生长所制成的缓变弛豫硅合金材料层。更具体地说,这种CVD生长可通过将基片衬底110置入腔室、在5标准升每分钟(SLM)到50SLM之间的氢气环绕流中将腔室内加热到500℃~1000℃之间的温度、(诸如通过大气压减压)使该腔室的压力处于10~200托之间、使硅先驱体(precursor)(比如硅烷SiH4、乙硅烷Si2H6、以及二氯甲硅烷SiH2Cl2)以50~500SCCM的流速流入腔室、并将锗先驱体的流速从0SCCM缓慢增加到足以使上表面129具有10%~35%之间百分比的锗的最终流速流入腔室来完成的。更特别地,锗先驱体流可增加到足以使锗从诸如下表面121的0%初始浓度的缓变增加到诸如上表面129的20~30%的最终锗浓度,其中锗浓度的缓变速率为在深度上每毫米(诸如厚度H3中的每毫米)10%锗。根据各实施例,基片材料120可被视为在诸如上表面129上具有5~20%的最终锗浓度的锗浓度。
于是,根据各实施例,缓变硅锗材料的缓变速率和/或厚度可变化,以提供由下表面121上开始的选定缓变速率所导致的上表面129的最终选定锗浓度。此外,根据各实施例,缓变速率可通过缓变中的持续变化、缓变中的线性变化、缓变中的非线性变化、和/或基片材料120中锗度的阶跃缓变变化来建立。具体地说,例如,可增加锗先驱体流,使得缓变的速率可平稳连续地增加,或者使缓变速率可具有基片材料120中锗浓度的每1000~2000埃1%~2%之间增量的急剧阶跃缓变变化。此外,根据各实例,锗先驱体的初始流速、锗先驱体的流速增加、以及锗先驱体的最终流速可取决于(比如上表面129的)的基片材料120中锗的期望最终目标浓度、在形成期间使用的温度、以及锗先驱体的浓度来选择并广泛变化。
例如,在一实施例中,锗先驱体可以是锗烷(GeH4),并可在流速上随时间线性地或非线性地增加,以使上表面129具有所选定的锗百分比。此外,锗先驱体可以用H2稀释的锗烷先驱体,或者可以是增加到100SCCM或以下的最终流速的纯锗烷。实际上,有可能将锗先驱体的流速增加到使所生长的弛豫缓变硅锗薄膜在上表面129为100%锗。
类似地,根据各实施例,基片材料120可以是具有从下表面121的0%增加到上表面120的10%~30%的缓变浓度的缓变弛豫硅锗材料,其中缓变速率为在深度(诸如与厚度H3相关的深度)上每毫米增加5%~15%的锗。缓变弛豫硅锗包括“弛豫”状态的缓变硅锗,诸如其中SiGe结构(基片衬底110加基片材料120)中的硅和锗分子的对准具有相对较少的错位、甚至Ge的百分比缓变增加(比如通过平滑或阶跃缓变增加)。
此外,根据各实施例,形成缓变弛豫硅锗可包括在基片材料120的CVD外延生长期间HCl在50SCCM~100SCCM之间的流动。例如,足够量的HCl可在形成基片材料120期间引入,以增加或改进上表面129的平整度、减少或控制在弛豫硅锗生长期间发展的所谓“网状线”(诸如减少上表面129上可归因于沉积期间硅锗分子的弛豫的十字形应变或网格图案)。此外,根据各实施例,尽管上述基片材料120是由缓变硅锗所形成的,但基片材料120可通过CVD外延伸展、超高真空(UHV)CVD外延生长、和/或各种适当硅合金(比如硅锗)的分子束外延(MBE)外延生长而形成。因而,例如,基片材料120可通过各种适当硅合金材料的充分CVD形成,以形成具有厚度为1~3毫米之间的硅合金材料缓变弛豫层,诸如通过硅锗的CVD形成具有2毫米的厚度H3的缓变基片材料120。此外,基片材料120可通过适当的层转移/粘合技术形成,诸如绝缘体上基片SiGe(SGOI)处理,其中通过由适当处理在大块基片上生长SiGe、然后将SiGe的弛豫顶层转移到不同基片(诸如可以是二氧化硅晶片的基片衬底110)来准备弛豫SiGe基片,以形成基片材料120。基片材料120还被视为可以是非缓变的硅合金材料。
图2还示出上表面129具有第一区域123和第二区域125的基片材料120,这些区域适用于沉积晶体管器件半导体沟道材料。例如,图3示出在缓变硅锗材料的区域之间形成电绝缘材料之后图2所示的半导体基片。图3示出第一区域123和第二区域125之间的线沟槽绝缘(STI)材料130。尽管图3示出第一区域123和第二区域125之间的STI材料130,但可预期足以使CMOS器件的P型阱与CMOS器件的N型阱相隔离的各种适当电性能绝缘材料和结构。
然后,根据各实施例,基片材料120可在第一区域123上掺杂硼和铝之一,以形成诸如用于CMOS器件的NMOS晶体管的具有正电荷的P型阱区域122。类似地,基片材料120可在第二区域125上掺杂磷、砷、和/或锑,以形成诸如用于CMOS器件的PMOS晶体管的具有负电荷的N型阱区域124。为了有选择地掺杂第一区域123和第二区域125,可将掩模置于非选定区域上以防止沉积物质被引入到非选定的区域。
在基片材料120中形成P型阱区域122和N型阱区域124之后,可形成具有厚度适合于基片材料120的第一区域123上第一电路器件的第一沟道的硅材料层,以限定基片材料120的第一界面表面。此外,可形成适用于基片材料120的第二区域125上第二电路器件的第二沟道的硅锗层,以限定基片材料120的第二界面表面。例如,图4示出了在缓变硅锗材料的第一区域上的选择性沉积硅材料层之后图1所示的半导体基片。图4示出了在基片材料120的第二区域125上形成的第一介质层140。根据各实施例,第一介质层140可由诸如抗蚀刻和/或介质材料的材料形成,包括二氧化硅(SiO2)、氮化硅(Si3N4)、抗蚀刻介质、或其它适当介质。
在形成第一介质层140之后,可在基片材料120的第一区域123上形成第一层150。例如,如图4所示,第一层150是由拉伸应变硅的选择性CVD外延生长所形成的硅材料外延层,诸如可承受由于比第一区域123上弛豫缓变硅锗基片材料120的晶格间距小的硅材料晶格间距所引起的在箭头152和154方向上的拉伸应变的硅层。硅层的选择性CVD外延生长可包括:将不具第一层150的结构400置入腔室、在5SLM~50SLM之间的氢气环绕流中将腔室内加热到600℃~900℃之间的温度、(诸如通过大气压或减压)使该腔室的压力处于10~200托之间、并使硅先驱体以50~500SCCM的流速流入腔室以形成厚度H1为10纳米~20纳米之间的硅材料外延层。例如,第一层150可具有这样的厚度,从而在第一区域123上的第一层150与基片材料120的上表面129相耦合所限定的第一界面上足以避免第一层150和基片材料120之间的错位、错合或丝状错位。
更具体地说,形成第一层150可包括流入二氯甲硅烷(SiH2Cl2),以选择性地沉积具有100~1000埃厚度纯硅的硅材料。此外,可期望形成第一层150可包括诸如通过在拉伸应变硅的选择性CVD外延生长期间流入HCl,引入50~500SCCM之间的HCl(比如上述与形成基片材料120相关)。此外,根据各实施例,尽管如上所述第一层150可通过CVD外延生长形成,但第一层150可通过其它适当工艺来形成,包括本文所述的UHV CVD外延生长、SGOI、和/或MBE外延生长,以形成硅层。
同样,根据各实施例,第一层150可包括在第一区域123上形成时承受拉伸应变的其它适当硅材料。
在形成第一层150之后,第二介质层可在第一层150上形成,然后可在基片材料120的第二区域125上形成适用于第二电路器件的第二沟道的硅锗材料层。例如,图5示出在缓变硅锗材料的第二区域上的选择性沉积硅锗材料层之后图1所示的半导体基片,其中硅锗材料具有比缓变硅锗材料在第二区域上更高的锗浓度。图5示出适用于在缓变硅锗基片材料120的第二区域125上形成的第二电路器件的第二沟道的不同第二层160,以及在第一区域123的第一层150上共同形成的第二介质层142。根据各实施例,第二介质层142可在第一层150的表面上共同地沉积,因为第二介质层142的厚度全部一致,并符合第一层150表面的外形。
特别地,图5示出第二层160,诸如可通过压缩应变硅锗的选择性CVD外延生长形成的硅合金材料外延层。例如,通过将不具第二层160的结构500置入腔室,在5SLM~50SLM之间氢气环绕(H2)流中使腔室内加热到500C~800℃之间的温度、(诸如通过大气压或减压)使该腔室的压力处于10~200托之间、使硅先驱体以50~500SCCM的流速流入腔室并以高达100SCCM(未加稀释的)流速使先驱体流入,以使第二层160具有20%~60%之间百分比的锗。因而,可形成诸如具有足够锗百分比的第二层160,以使第二层160可承受由于比第二区域125上缓变硅锗基片材料120的晶格间距大的硅合金材料外延层的晶格间距所引起的在箭头162和164方向的压缩应变。具体地,第二层160的形成可包括锗先驱体以这样的速度流动,使第二层160为厚度H2在10纳米~20纳米之间的硅锗材料外延层。因此,第二层160可具有这样的厚度,从而在第二区域125上的第二层160与基片材料120的上表面129相耦合的限定的第二界面上足以避免错位、错合或丝状错位。
可以理解,使硅先驱体流动用于形成第二层160可包括以诸如上述相对于流动硅先驱体形成基片初底110和第一层150的速率来使先驱体流入或流动。更具体地,例如,上述用于形成第二层160的硅先驱体可以是在与锗先驱体流入组合时以足够使硅锗材料形成来提供具有厚度H2为100~1000埃硅锗材料的第二层160的速率流入的二氯甲硅烷(SiH2Cl2)。类似地,与形成第二层160相关的上述锗先驱体的流入可包括使锗先驱体流入、或以与上述流入的锗先驱体相关的流速使锗先驱体流入,以形成缓变的硅锗基片材料120。具体地说,例如,所流入的锗先驱体而形成第二层160可包括使锗烷(GeH4)流入而足以使第二层160具有选定百分比的锗和选定厚度(比如通过与形成与形成图2的缓变硅锗基片材料相关地使锗烷流入)。
此外,可期望形成第二层160可包括引入50~500SCCM之间的HCl,如上述与形成图4第一层150相关。另外,根据各实施例,尽管上述第二层160为由缓变硅锗形成,但第二层160可通过各种适当硅合金(例如硅锗)的CVD外延生长、UHV CVD外延生长、SGOI、和/或MBE外延生长来形成。
除了在上述第一区域123和第二区域125上掺杂之外,根据各实施例,可用“自对准”(self-aligned)方式进行掺杂,诸如不用附加掩模的方式。例如,图4所示的第一介质140可在图3的晶片300上沉积(例如包括第一区域123和第二区域125)。然后,保护层(例如光致抗蚀剂)可旋涂并暴露在P阱122上。然后去除保护层并蚀刻第一介质140,以暴露P阱122上的第一区域123。然后,可进行离子注入以掺杂P阱122(比如用上述用于掺杂第一区域123的掺杂物)。从晶片300剥去剩下的保护层,且第一层150如图4所示地选择性沉积。此外,当形成第二介质142和第二层160时可使用相似工艺来掺杂第二区域125(比如用上述用于掺杂第二区域125的掺杂物),并产生图5所示的结构。可以理解,上述某些“自对准”掺杂工艺的顺序可颠倒。
此外,根据各实施例,对松弛豫硅锗基片材料中(比如,诸如通过平滑或阶跃缓变Ge百分比增加的、具有Ge百分比增加的基片材料120)锗的增加百分比或缓变浓度,以及缓变弛豫硅锗基片材料和沟道SiGe之间界面上锗的突然增加(诸如在第二区域125上具有比基片材料120高例如10%~30%之间锗百分比的第二层160上的突然增加)进行区分。因而,沟道SiGe材料(例如第二层160)可形成与缓变弛豫基片材料SiGe的相干对准(比如在基片材料120的第二区域125;其中基片材料120也可在缓变基片内诸如沿厚度H3相干对准),但由于基片/沟道界面处(比如第二区域125接触第二层160之处)沟道材料和基片材料之间锗百分比的跃变而将承受压缩应变162和164。另外,尽管以上对形成第二层160的描述集中于形成硅锗层,但根据各实施例。第二层160可由各种适当硅合金材料形成,诸如通过这种材料的选择性外延CVD。
注意,第一层150和/或第二层160可在形成第一区域123和第二区域125之间的电绝缘区域之后(比如在形成STI材料130之前)形成,使得用于形成电绝缘区域的高温处理将不是减少选定厚度、或第一层150中拉伸应变和/或第二层160中压缩应变的引入弛豫的一个因素。此外,可以理解,第一层150和/或第二层160在第一区域123和第二区域125上的选择性形成可包括选定为足够小以增大或提供第一层150的充分稳定性的第一区域123的尺寸和第二区域125的尺寸,以允许在第一区域123上具有选定锗百分比的驰预缓变硅锗基片材料120的缓冲区上的拉伸应变沉积、和允许在第二区域125上具有选定锗百分比的弛豫缓变硅锗基片材料120的缓冲区上的压缩应变沉积,其中第二区域125上的选定锗百分比约等于第一区域123上的选定锗百分比。
此外,第一层150可用硼和/或铝掺杂以形成具有正电荷的P型阱区域(参见上述第一介质层140),而第二层160可用磷、砷、和/或锑掺杂,以形成具有负电荷的N型阱区域。例如,第一层150和/或第二层160可通过引入以上在沉积期间相同的参杂物来掺杂、或用在沉积第一层150和/或第二层160之后相同的掺杂物掺杂。因而,第一层150和/或第二层160可用足量的适当类型掺杂物掺杂,以诸如为NMOS器件和/或PMOS器件分别形成N型沟道区域和/或P型沟道区域,用于CMOS电路。具体地说,例如,第一层150和、或第二层160可用沟道材料的1×1017和1×1018每立方厘米掺杂物粒子进行掺杂。因而,这种掺杂可用少于将因过度杂质散布而导致退化载流子迁移率的掺杂物粒子量来进行。
在形成第二层160之后,第三介质层可在第一层150和不同第二层160上形成。例如,图6示出在选择性沉积硅和选择性沉积硅锗材料上形成高介电常数材料层之后图1所示的半导体基片。图6示出第三介质层144,诸如具有相对较高介电常数的介质材料层(例如“高K介质”,K大于或等于3.9和/或二氧化硅(SiO2)的K),厚度为2~4纳米,在第一层150和第二层160上形成。第三介质层144可通过原子层沉积(ALD)来形成,诸如通过二氧化硅(SiO2)、氧化铪(HfO)、硅酸铪(HfSiO4)、四硅酸铪(HfSi4O7)、氧化锆(ZrO)、硅酸锆(ZrSiO4)、氧化钽(Ta2O5)。
图7示出在选择性沉积硅材料中形成NMOS器件和在选择性沉积硅锗材料中形成PMOS器件之后图1所示的半导体基片。图7示出掺杂后形成P型沟道区域176的第一层150和掺杂后形成N型沟道区域186的第二层160。图7还示出在第一层150上的第三介质层144的表面上具有N型栅电极170(例如具有负电荷的N型栅电极170)、在第一层150中与N型栅电极170相邻的N型第一结区172和第二结区174(诸如具有负电荷的N型第一结区172和第二结区174)的NMOS器件178。图7还示出在N型栅电极170的表面上形成的NMOS隔离片712和714。类似地,图7示出在第二层160上的第三介质层144的表面上具有P型栅电极180(例如其中P型栅电极180具有负电荷)、在第二层160中与P型栅电极180相邻的P型第一结区182和P型第二结区184(诸如其中P型第一结区182和P型第二结区184(诸如其中P型第一结区182的第二结区184具有负电荷)的PMOS器件188。图7还示出在P型栅电极180的表面上形成的PMOS隔离片412和414。
因而,根据各实施例,第一层150可形成为适用作基片材料120的第一区域123上的NMOS器件178的P型沟道区域176,第一层150具有与限定基片的第一界面表面(比如在第一区域123)的基片材料的基片晶格间距不同(诸如比之小)的第一晶格间距的第一材料。类似地,第二层160可形成为适用作基片材料120的不同第二区域125上的PMOS器件188的N型沟道区域186,第二层160具有与第一层的第一晶格间距不同且与基片材料的基片晶格间距不同的第二晶格间距的不同第二材料(比如,第二晶格间距具有比基片材料大的晶格间距),其中第二层限定基片的第二界面表面(比如在第二区域125)。显然,第一层150的第一晶格间距与第一区域123上基片晶格间距的差异可限定第一层150中箭头152和154方向上的拉伸应变,该拉伸应变足以增强或增加第一层150中的电子迁移率(诸如至少50%、75%、80%或85%)。类似地,第二层160的第二晶格间距和第二区域125上基片晶格间距之间的差异可限定第二层160中箭头162和164所示方向上的压缩应变,该压缩应变足以增强或增加第一层150中的空穴迁移率(诸如至少50%、80%、90%、100%或110%)。
此外,可以理解,第一层150中的拉伸应变可以是双轴拉伸应变,诸如在箭头152和154方向上、以及在指向观察者并离开图5-7所示的第一层150的横截面的箭头方向上向外拉伸或扩展第一层150。类似地,可以理解,第二层160中的压缩应变可以是双轴压缩应变,诸如在箭头162和164方向上、以及在离开观察者并指向图5-7所示的第二层160的横截面的箭头方向上向内收缩或挤压第二层160。更特别地,基片材料120的厚度、锗在上表面129上的浓度、第一层150的厚度、第二层160的厚度、以及锗在第二层160中的百分比如本文所述地作选择,使得两维相干拉伸应变因第一层150在第一区域123与基片材料120接合而在第一层150中感生(比如在第一区域123用基片材料120的原子结构排列的第一层150材料的原子结构引起的相干应变,虽然第一层150的材料具有比第一区域123的材料更小晶格间隔的晶格对准)。类似地,以上选择可作成:两维相干压缩应变因第二层160在第二区域125与基片材料120接合而在第二层160中感生(比如在第二区域125用基片材料120的原子结构排列的第二层160材料的原子结构引起的相干应变,虽然第二层160的材料具有比第二区域125的材料更大晶格间隔的晶格对准)。
因此,对于Si1-XGex的基片材料、第一材料硅、和第二材料Si1-YGeY,其中X表示锗在第一区域123和第二区域125上缓变硅锗基片材料120中的百分比,而Y表示锗在接近第二域125的第二层160中的百分比,X可比Y小。例如,X可以为0.1~0.3,而Y为0.2~0.6。在一些实施例中,Y可以大于X为0.1~0.3。此外,在一实施例中,X可以为0.2而Y可以为0.5。
在前面说明书中,本发明参照其特定实施例进行了描述。然而,显然可对其作各种更改和改变,而不背离本发明如权利要求中所述的更精神和范围。因此,说明书和附图被视为是说明性的,而非限制性意义。
Claims (32)
1.一种半导体装置的制造方法,包括:
将选择性的第一层形成为适用作位于基片的第一区域上的第一电路器件的第一沟道,所述第一层包括具有小于限定所述基片的第一界面表面的基片材料的基片晶格间距的第一晶格间距的第一材料,其中第一材料是选择性生长的硅材料,其中所述第一晶格间距与所述基片晶格间距在所述第一界面表面上二维相干对准;
在所述选择性的第一层上形成一绝缘层;以及
将选择性的第二层形成为适用作位于基片的与第一区域不同的第二区域上的第二电路器件的第二沟道,所述第二层包括具有大于所述第一晶格间距,且大于限定所述基片的第二界面表面的基片材料的基片晶格间距的第二晶格间距的与第一材料不同的第二材料,其中第二材料是选择性生长的SiGe材料,其中所述第二晶格间距与所述基片晶格间距在所述第二界面表面上二维相干对准。
2.如权利要求1所述的方法,其特征在于,所述第一晶格间距和所述基片晶格间距之间的差异限定所述第一材料中的拉伸应变,且其中所述第二晶格间距和所述基片晶格间距之间的差异限定所述第二材料中的压缩应变。
3.如权利要求1所述的方法,其特征在于,所述基片材料包括缓变硅合金材料;
其中形成所述第一层包括外延地沉积足够厚度的硅材料,以导致所述第一层中的双轴相干拉伸应变,使得足够将电子迁移率增加至少50%;以及
其中形成所述第二层包括外延地沉积足够厚度的具有一定合金百分比的硅合金材料,以导致所述第二层中的双轴相干压缩应变,使得足够将空穴迁移率增加至少50%。
4.如权利要求1所述的方法,其特征在于,所述基片材料是缓变硅合金材料,它具有足够厚度,并在第一和第二区域上具有足够的合金百分比以导致所述第一层中的双轴拉伸应变以及所述第二层中的双轴相干压缩应变。
5.如权利要求1所述的方法,其特征在于,所述基片材料包括Si1-XGeX,所述第一材料包括硅,所述第二材料包括Si1-YGeY,且X<Y。
6.如权利要求5所述的方法,其特征在于,X为0.1到0.3之间,而Y为0.2到0.6之间。
7.如权利要求1所述的方法,还包括通过硅合金材料的充分化学气相沉积以形成硅合金材料的缓变弛豫层来形成所述基片材料。
8.如权利要求7所述的方法,其特征在于,形成硅合金材料的缓变弛豫层包括:
缓变弛豫SiGe的化学气相沉积(CVD)外延生长包括:
在5标准升每分钟(SLM)到50SLM之间的氢气环绕流中将所述基片加热到500℃到1000℃之间的温度;
使所述基片的压力处于10到200托之间;
使硅先驱体以50标准立方厘米/分钟(SCCM)到500SCCM的流速流入;以及
使锗先驱体的流速从0SCCM缓慢增加到足以使所述基片的第一界面表面和第二界面表面具有10%到35%之间百分比的锗的最终流速。
9.如权利要求8所述的方法,其特征在于,所流入的硅先驱体包括流入硅烷(SiH4)、乙硅烷(Si2H6)、以及二氯甲硅烷(SiH2C12)之一,以沉积具有100到1000埃厚度纯硅的基片衬底材料。
10.如权利要求8所述的方法,其特征在于,增加锗先驱体的流速包括将锗烷(GeH4)的流速从0SCCM增大至足以使所述基片的第一界面表面和第二界面表面具有所述百分比的锗。
11.如权利要求7所述的方法,其特征在于,所形成的缓变弛豫SiGe包括在SiGe的化学气相沉积(CVD)外延生长期间流入50SCCM到100SCCM之间的HCl。
12.如权利要求1所述的方法,其特征在于,形成所述第一层包括硅材料的充分选择性化学气相沉积,以形成硅材料在所述第一区域上的外延层。
13.如权利要求12所述的方法,其特征在于,形成硅材料的外延层包括:
拉伸应变Si的选择性化学气相沉积(CVD)外延生长包括:
在5标准升每分钟(SLM)到50SLM之间的氢气环绕流中将所述基片加热到600℃到900℃之间的温度;
使所述基片的压力处于10到200托之间;
使硅先驱体以50标准立方厘米/分钟(SCCM)到500SCCM的流速流入。
14.如权利要求13所述的方法,其特征在于,使硅先驱体流入包括流入二氯甲硅烷(SiH2C12),以沉积具有100到1000埃厚度纯硅的基片衬底材料。
15.如权利要求12所述的方法,其特征在于,形成硅材料的外延层包括在拉伸应变Si的化学气相沉积(CVD)外延生长期间流入50到500SCCM之间的HCl。
16.如权利要求1所述的方法,其特征在于,形成所述第二层包括硅合金材料的充分选择性化学气相沉积,以形成硅合金材料在所述第二区域上的外延层。
17.如权利要求16所述的方法,其特征在于,形成硅合金材料的外延层包括:
压缩应变SiGe的化学气相沉积(CVD)外延生长包括:
在5标准升每分钟(SLM)到50SLM之间的氢气环绕流中将所述基片加热到500℃到800℃之间的温度;
使所述基片的压力处于10到200托之间;
使硅先驱体以50标准立方厘米/分钟(SCCM)到500SCCM的流速流入;以及
以高达100标准立方厘米/分钟(SCCM)的流速使锗先驱体流入,以使第二层具有20%到50%之间百分比的锗。
18.如权利要求17所述的方法,其特征在于,所流入的硅先驱体包括流入二氯甲硅烷(SiH2C12),以沉积具有100到1000埃厚度SiGe的SiGe材料。
19.如权利要求17所述的方法,其特征在于,所流入的锗先驱体包括流入锗烷(GeH4),以使所述第二层沉积具有100到1000埃厚度的SiGe材料。
20.如权利要求16所述的方法,其特征在于,形成硅合金材料的外延层包括在拉伸应变Si的化学气相沉积(CVD)外延生长期间流入50到500SCCM之间的HCl。
21.如权利要求1所述的方法,还包括:
在形成所述第一层之前形成缓变SiGe材料的基片;以及
在形成所述第一层之前形成所述第一区域和所述第二区域之间的电绝缘材料。
22.如权利要求21所述的方法,还包括:
在所述第一区域上用硼和铝之一掺杂所述基片材料,以形成具有正电荷的P型阱区域;以及
在所述第二区域上用磷、砷和锑之一掺杂所述基片材料,以形成具有负电荷的N型阱区域。
23.如权利要求22所述的方法,还包括:
在形成所述第一层之前在所述基片的所述第二区域上形成第一介质层;
在形成所述第二层之前在所述第一层上形成第二介质层;
在所述第一层和所述第二层上形成第三介质层;
其中,所述第三介质层通过二氧化硅(SiO2)、氧化铪(HfO)、硅酸铪(HfSiO4)、四硅酸铪(HfSi4O7)、氧化锆(ZrO)、硅酸锆(Zr SiO4)、氧化钽(Ta2O5)之一的原子层沉积(ALD)形成。
24.如权利要求23所述的方法,还包括:
用硼和铝之一掺杂所述第一层,以形成具有正电荷的P型沟道区域;
用磷、砷和锑之一掺杂所述第二层,以形成具有负电荷的N型沟道区域;
在所述第一层上的第三介质层的表面上形成N型栅电极;
在与所述N型栅电极相邻的第一层中形成N型第一结区和N型第二结区;
在所述第二层上的第三介质层的表面上形成P型栅电极;
在与所述P型栅电极相邻的第二层中形成P型第一结区和P型第二结区。
25.如权利要求1所述的方法,还包括通过以下来形成所述基片材料:
在大块基片上生长第一厚度的SiGe材料;
将弛豫顶层厚度的所述SiGe材料转移到包括绝缘体材料的基片上。
26.如权利要求1所述的方法,还包括在所述选择性的第一层上形成一绝缘层之前用自对准方式对所述第一层进行掺杂,以及在形成栅绝缘层之前用自对准方式对所述第二层进行掺杂。
27.如权利要求1所述的方法,还包括:在所述第一区域和第二区域之间形成第一隔离材料;在所述第一区域旁边形成第二隔离材料;在所述第二区域旁边形成第三隔离材料;在形成所述第一层之前,在一个与第一区域不同的第二区域上并且在所述第一隔离材料和第三隔离材料的一部分上形成第一绝缘层;其中所述选择性的第一层上的绝缘层是第二绝缘层并且形成所述第一隔离材料和第二隔离材料的一部分上。
28.一种半导体装置,包括:
硅材料选择生长层,适用作Si1-XGeX材料的第一区域上的第一电路器件的第一沟道,以限定缓变弛豫硅锗材料的基片的第一界面表面;
其中,所述硅材料层处于由于所述硅材料的晶格间距比所述第一界面上Si1-XGeX材料的晶格间距小而产生的拉伸应变,
所述缓变弛豫硅锗材料具有以下属性之一:1微米到3微米之间的厚度、在下表面和上表面之间从0%增加到10%到30%之间锗的缓变浓度、以及在深度上每微米增加5%到15%的锗的缓变浓度速率。
29.如权利要求28所述的半导体装置,还包括Si1-YGeY材料层,适用作Si1-XGeX材料的第二区域上的第二电路器件的第二沟道,以限定缓变弛豫硅锗材料的基片的第二界面表面;
其中,所述Si1-YGeY材料层处于由于所述Si1-YGeY材料层的晶格间距比所述第二界面上Si1-XGeX材料的晶格间距大而产生的压缩应变。
30.如权利要求29所述的半导体装置,其特征在于,所述硅材料层是具有10纳米到20纳米之间厚度的硅材料外延层;且其中所述Si1-YGeY材料层是具有10纳米到20纳米之间厚度的Si1-YGeY材料外延层。
31.一种半导体装置,包括:
Si1-YGeY材料选择生长层,适用作Si1-XGeX材料的第二区域上的第二电路器件的第二沟道,以限定缓变弛豫硅锗材料的基片的第二界面表面;
其中,所述Si1-YGeY材料层处于由于所述Si1-YGeY材料层的晶格间距比所述第二界面上Si1-XGeX材料的晶格间距大而产生的压缩应变,
所述缓变弛豫硅锗材料具有以下属性之一:1微米到3微米之间的厚度、在下表面和上表面之间从0%增加到10%到30%之间锗的缓变浓度、以及在深度上每微米增加5%到15%的锗的缓变浓度速率。
32.如权利要求31所述的半导体装置,其特征在于,X为0.2而Y为0.5。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/747,321 | 2003-12-23 | ||
US10/747,321 US7662689B2 (en) | 2003-12-23 | 2003-12-23 | Strained transistor integration for CMOS |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910253860.5A Division CN101714528B (zh) | 2003-12-23 | 2004-12-13 | 半导体装置及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1894774A CN1894774A (zh) | 2007-01-10 |
CN100583395C true CN100583395C (zh) | 2010-01-20 |
Family
ID=34679296
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910253860.5A Expired - Fee Related CN101714528B (zh) | 2003-12-23 | 2004-12-13 | 半导体装置及其制造方法 |
CN200480037017A Expired - Fee Related CN100583395C (zh) | 2003-12-23 | 2004-12-13 | 半导体装置及其制造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910253860.5A Expired - Fee Related CN101714528B (zh) | 2003-12-23 | 2004-12-13 | 半导体装置及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (4) | US7662689B2 (zh) |
JP (2) | JP2007515808A (zh) |
KR (1) | KR100940863B1 (zh) |
CN (2) | CN101714528B (zh) |
DE (1) | DE112004002373B4 (zh) |
TW (1) | TWI256140B (zh) |
WO (1) | WO2005067014A1 (zh) |
Families Citing this family (333)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW415103B (en) * | 1998-03-02 | 2000-12-11 | Ibm | Si/SiGe optoelectronic integrated circuits |
US8994104B2 (en) | 1999-09-28 | 2015-03-31 | Intel Corporation | Contact resistance reduction employing germanium overlayer pre-contact metalization |
US6903384B2 (en) * | 2003-01-15 | 2005-06-07 | Sharp Laboratories Of America, Inc. | System and method for isolating silicon germanium dislocation regions in strained-silicon CMOS applications |
US7456476B2 (en) * | 2003-06-27 | 2008-11-25 | Intel Corporation | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication |
US6909151B2 (en) | 2003-06-27 | 2005-06-21 | Intel Corporation | Nonplanar device with stress incorporation layer and method of fabrication |
US7354815B2 (en) * | 2003-11-18 | 2008-04-08 | Silicon Genesis Corporation | Method for fabricating semiconductor devices using strained silicon bearing material |
US7462526B2 (en) * | 2003-11-18 | 2008-12-09 | Silicon Genesis Corporation | Method for fabricating semiconductor devices using strained silicon bearing material |
US7662689B2 (en) | 2003-12-23 | 2010-02-16 | Intel Corporation | Strained transistor integration for CMOS |
US7154118B2 (en) * | 2004-03-31 | 2006-12-26 | Intel Corporation | Bulk non-planar transistor having strained enhanced mobility and methods of fabrication |
US20050266632A1 (en) * | 2004-05-26 | 2005-12-01 | Yun-Hsiu Chen | Integrated circuit with strained and non-strained transistors, and method of forming thereof |
US7042009B2 (en) | 2004-06-30 | 2006-05-09 | Intel Corporation | High mobility tri-gate devices and methods of fabrication |
US7279756B2 (en) * | 2004-07-21 | 2007-10-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with high-k gate dielectric and quasi-metal gate, and method of forming thereof |
DE102004036971B4 (de) * | 2004-07-30 | 2009-07-30 | Advanced Micro Devices, Inc., Sunnyvale | Technik zur Bewertung lokaler elektrischer Eigenschaften in Halbleiterbauelementen |
US7348284B2 (en) | 2004-08-10 | 2008-03-25 | Intel Corporation | Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow |
US7422946B2 (en) | 2004-09-29 | 2008-09-09 | Intel Corporation | Independently accessed double-gate and tri-gate transistors in same process flow |
US20060086977A1 (en) | 2004-10-25 | 2006-04-27 | Uday Shah | Nonplanar device with thinned lower body portion and method of fabrication |
US7332407B2 (en) * | 2004-12-23 | 2008-02-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for a semiconductor device with a high-k gate dielectric |
JP4369379B2 (ja) * | 2005-02-18 | 2009-11-18 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置 |
US7518196B2 (en) | 2005-02-23 | 2009-04-14 | Intel Corporation | Field effect transistor with narrow bandgap source and drain regions and method of fabrication |
US20060202266A1 (en) | 2005-03-14 | 2006-09-14 | Marko Radosavljevic | Field effect transistor with metal source/drain regions |
US7858481B2 (en) | 2005-06-15 | 2010-12-28 | Intel Corporation | Method for fabricating transistor with thinned channel |
US7547637B2 (en) | 2005-06-21 | 2009-06-16 | Intel Corporation | Methods for patterning a semiconductor film |
US7279375B2 (en) | 2005-06-30 | 2007-10-09 | Intel Corporation | Block contact architectures for nanoscale channel transistors |
US7195934B2 (en) * | 2005-07-11 | 2007-03-27 | Applied Materials, Inc. | Method and system for deposition tuning in an epitaxial film growth apparatus |
US7402875B2 (en) | 2005-08-17 | 2008-07-22 | Intel Corporation | Lateral undercut of metal gate in SOI device |
TWI267926B (en) * | 2005-09-23 | 2006-12-01 | Ind Tech Res Inst | A new method for high mobility enhancement strained channel CMOS with single workfunction metal-gate |
US20070090416A1 (en) | 2005-09-28 | 2007-04-26 | Doyle Brian S | CMOS devices with a single work function gate electrode and method of fabrication |
US7479421B2 (en) | 2005-09-28 | 2009-01-20 | Intel Corporation | Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby |
US7485503B2 (en) | 2005-11-30 | 2009-02-03 | Intel Corporation | Dielectric interface for group III-V semiconductor device |
US7525160B2 (en) * | 2005-12-27 | 2009-04-28 | Intel Corporation | Multigate device with recessed strain regions |
US20070152266A1 (en) * | 2005-12-29 | 2007-07-05 | Intel Corporation | Method and structure for reducing the external resistance of a three-dimensional transistor through use of epitaxial layers |
US7772060B2 (en) * | 2006-06-21 | 2010-08-10 | Texas Instruments Deutschland Gmbh | Integrated SiGe NMOS and PMOS transistors |
US8080452B2 (en) * | 2006-08-01 | 2011-12-20 | Nxp, B.V. | Effecting selectivity of silicon or silicon-germanium deposition on a silicon or silicon-germanium substrate by doping |
US8143646B2 (en) | 2006-08-02 | 2012-03-27 | Intel Corporation | Stacking fault and twin blocking barrier for integrating III-V on Si |
KR100809327B1 (ko) * | 2006-08-10 | 2008-03-05 | 삼성전자주식회사 | 반도체 소자 및 그 제조방법 |
CN100530654C (zh) * | 2006-08-18 | 2009-08-19 | 台湾积体电路制造股份有限公司 | 集成电路及形成集成电路的掩模组 |
DE102006051492B4 (de) * | 2006-10-31 | 2011-05-19 | Advanced Micro Devices, Inc., Sunnyvale | Halbleiterbauelement mit NMOS- und PMOS-Transistoren mit eingebettetem Si/Ge-Material zum Erzeugen einer Zugverformung und einer Druckverformung und Verfahren zur Herstellung eines solchen Halbleiterbauelements |
US7863653B2 (en) * | 2006-11-20 | 2011-01-04 | International Business Machines Corporation | Method of enhancing hole mobility |
US8558278B2 (en) * | 2007-01-16 | 2013-10-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained transistor with optimized drive current and method of forming |
US8450165B2 (en) * | 2007-05-14 | 2013-05-28 | Intel Corporation | Semiconductor device having tipless epitaxial source/drain regions |
KR20090038653A (ko) * | 2007-10-16 | 2009-04-21 | 삼성전자주식회사 | Cmos 소자 및 그 제조방법 |
CN100570823C (zh) * | 2007-11-06 | 2009-12-16 | 清华大学 | 一种使用缩颈外延获得低位错密度外延薄膜的方法 |
US7842982B2 (en) | 2008-01-29 | 2010-11-30 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
JP4543093B2 (ja) * | 2008-01-29 | 2010-09-15 | 株式会社東芝 | 半導体装置 |
US7993998B2 (en) | 2008-03-06 | 2011-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS devices having dual high-mobility channels |
US7943961B2 (en) * | 2008-03-13 | 2011-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain bars in stressed layers of MOS devices |
US8362566B2 (en) | 2008-06-23 | 2013-01-29 | Intel Corporation | Stress in trigate devices using complimentary gate fill materials |
US7808051B2 (en) * | 2008-09-29 | 2010-10-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Standard cell without OD space effect in Y-direction |
US20100102393A1 (en) * | 2008-10-29 | 2010-04-29 | Chartered Semiconductor Manufacturing, Ltd. | Metal gate transistors |
US20100181626A1 (en) * | 2009-01-21 | 2010-07-22 | Jing-Cheng Lin | Methods for Forming NMOS and PMOS Devices on Germanium-Based Substrates |
US8017469B2 (en) | 2009-01-21 | 2011-09-13 | Freescale Semiconductor, Inc. | Dual high-k oxides with sige channel |
US8217470B2 (en) * | 2009-02-12 | 2012-07-10 | International Business Machines Corporation | Field effect device including recessed and aligned germanium containing channel |
US8298876B2 (en) * | 2009-03-27 | 2012-10-30 | International Business Machines Corporation | Methods for normalizing strain in semiconductor devices and strain normalized semiconductor devices |
FR2953989B1 (fr) * | 2009-12-10 | 2012-05-18 | Commissariat Energie Atomique | Procede de formation de materiaux metalliques comportant des semi-conducteurs |
JP5166458B2 (ja) | 2010-01-22 | 2013-03-21 | 株式会社東芝 | 半導体装置及びその製造方法 |
KR20110095456A (ko) * | 2010-02-19 | 2011-08-25 | 삼성전자주식회사 | 트랜지스터 및 그 제조 방법 |
CN101976667B (zh) * | 2010-09-06 | 2012-07-18 | 清华大学 | 一种高性能cmos器件 |
US8901537B2 (en) | 2010-12-21 | 2014-12-02 | Intel Corporation | Transistors with high concentration of boron doped germanium |
US9484432B2 (en) | 2010-12-21 | 2016-11-01 | Intel Corporation | Contact resistance reduction employing germanium overlayer pre-contact metalization |
US8828840B2 (en) * | 2011-01-12 | 2014-09-09 | Chinese Academy of Sciences, Institute of Microelectronics | Semiconductor device and method for manufacturing the same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US8647941B2 (en) * | 2011-08-17 | 2014-02-11 | United Microelectronics Corp. | Method of forming semiconductor device |
CN102437127A (zh) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | 基于硅-锗硅异质结的单晶体管dram单元及其制备方法 |
CN102437126A (zh) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | 基于源体异质结的单晶体管dram单元及其制备方法 |
US8680576B2 (en) * | 2012-05-16 | 2014-03-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS device and method of forming the same |
US9029959B2 (en) | 2012-06-29 | 2015-05-12 | International Business Machines Corporation | Composite high-k gate dielectric stack for reducing gate leakage |
EP2682983B1 (en) * | 2012-07-03 | 2016-08-31 | Imec | CMOS device comprising silicon and germanium and method for manufacturing thereof |
US8969190B2 (en) * | 2012-08-24 | 2015-03-03 | Globalfoundries Inc. | Methods of forming a layer of silicon on a layer of silicon/germanium |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
KR102069275B1 (ko) * | 2013-06-07 | 2020-01-22 | 삼성전자주식회사 | 변형된 채널층을 갖는 반도체 소자 및 그 제조 방법 |
KR102021765B1 (ko) | 2013-06-17 | 2019-09-17 | 삼성전자 주식회사 | 반도체 장치 |
KR102077447B1 (ko) | 2013-06-24 | 2020-02-14 | 삼성전자 주식회사 | 반도체 장치 및 이의 제조 방법 |
KR102056874B1 (ko) | 2013-07-31 | 2019-12-17 | 삼성전자주식회사 | 핀 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 제조 방법 |
US9224734B2 (en) | 2013-09-13 | 2015-12-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS devices with reduced leakage and methods of forming the same |
KR102099195B1 (ko) * | 2013-09-27 | 2020-04-09 | 인텔 코포레이션 | 다층형 순응성 기판들을 갖는 비-평면형 반도체 디바이스들 |
US9553149B2 (en) | 2013-11-08 | 2017-01-24 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor device with a strained region and method of making |
KR102203033B1 (ko) | 2013-12-18 | 2021-01-14 | 인텔 코포레이션 | 평면형 이종 디바이스 |
US9859278B2 (en) * | 2013-12-27 | 2018-01-02 | Intel Corporation | Bi-axial tensile strained GE channel for CMOS |
US20150194307A1 (en) * | 2014-01-06 | 2015-07-09 | Globalfoundries Inc. | Strained fin structures and methods of fabrication |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
KR102259328B1 (ko) | 2014-10-10 | 2021-06-02 | 삼성전자주식회사 | 반도체 장치 및 그 제조 방법 |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
CN105206583A (zh) * | 2015-08-28 | 2015-12-30 | 西安电子科技大学 | 基于SOI的应变Si沟道倒梯形栅CMOS集成器件及制备方法 |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US9443873B1 (en) | 2015-12-14 | 2016-09-13 | International Business Machines Corporation | Structure and method for tensile and compressive strained silicon germanium with same germanium concentration by single epitaxy step |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10205024B2 (en) * | 2016-02-05 | 2019-02-12 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure having field plate and associated fabricating method |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9842929B1 (en) * | 2016-06-09 | 2017-12-12 | International Business Machines Corporation | Strained silicon complementary metal oxide semiconductor including a silicon containing tensile N-type fin field effect transistor and silicon containing compressive P-type fin field effect transistor formed using a dual relaxed substrate |
US9917154B2 (en) | 2016-06-29 | 2018-03-13 | International Business Machines Corporation | Strained and unstrained semiconductor device features formed on the same substrate |
CN109314133B (zh) * | 2016-06-30 | 2022-04-29 | 英特尔公司 | 具有后道晶体管的集成电路管芯 |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10840350B2 (en) * | 2016-10-31 | 2020-11-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Nanolaminate structure, semiconductor device and method of forming nanolaminate structure |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
KR102707542B1 (ko) | 2016-12-02 | 2024-09-20 | 삼성전자주식회사 | 반도체 메모리 소자 및 그 제조 방법 |
KR102762543B1 (ko) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
TWI815813B (zh) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | 用於分配反應腔內氣體的噴頭總成 |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
JP7214724B2 (ja) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | バッチ炉で利用されるウェハカセットを収納するための収納装置 |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US10593672B2 (en) | 2018-01-08 | 2020-03-17 | International Business Machines Corporation | Method and structure of forming strained channels for CMOS device fabrication |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (ja) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法 |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102600229B1 (ko) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
KR20210027265A (ko) | 2018-06-27 | 2021-03-10 | 에이에스엠 아이피 홀딩 비.브이. | 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 막 및 구조체 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (ko) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI866480B (zh) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR102727227B1 (ko) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
TWI838458B (zh) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | 用於3d nand應用中之插塞填充沉積之設備及方法 |
JP7603377B2 (ja) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR102809999B1 (ko) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP7598201B2 (ja) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP7612342B2 (ja) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
KR20200141002A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법 |
KR20200141931A (ko) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | 석영 에피택셜 챔버를 세정하는 방법 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
KR20210018761A (ko) | 2019-08-09 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | 냉각 장치를 포함한 히터 어셈블리 및 이를 사용하는 방법 |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR102806450B1 (ko) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR102733104B1 (ko) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
TWI846966B (zh) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成光阻底層之方法及包括光阻底層之結構 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885693B (zh) | 2019-11-29 | 2025-06-10 | Asmip私人控股有限公司 | 基板处理设备 |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN112992667A (zh) | 2019-12-17 | 2021-06-18 | Asm Ip私人控股有限公司 | 形成氮化钒层的方法和包括氮化钒层的结构 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
KR102271030B1 (ko) * | 2019-12-20 | 2021-07-01 | 서울대학교산학협력단 | 선택적 영역 성장을 이용한 cmos 소자의 제조 방법 |
JP7636892B2 (ja) | 2020-01-06 | 2025-02-27 | エーエスエム・アイピー・ホールディング・ベー・フェー | チャネル付きリフトピン |
TW202140135A (zh) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (ko) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202513845A (zh) | 2020-02-03 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置結構及其形成方法 |
KR20210100010A (ko) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 대형 물품의 투과율 측정을 위한 방법 및 장치 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (ko) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법 |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210113043A (ko) | 2020-03-04 | 2021-09-15 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 정렬 고정구 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (ko) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
KR102719377B1 (ko) | 2020-04-03 | 2024-10-17 | 에이에스엠 아이피 홀딩 비.브이. | 배리어층 형성 방법 및 반도체 장치의 제조 방법 |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
KR20210127620A (ko) | 2020-04-13 | 2021-10-22 | 에이에스엠 아이피 홀딩 비.브이. | 질소 함유 탄소 막을 형성하는 방법 및 이를 수행하기 위한 시스템 |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210130646A (ko) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 방법 |
KR20210132612A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 화합물들을 안정화하기 위한 방법들 및 장치 |
CN113555279A (zh) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | 形成含氮化钒的层的方法及包含其的结构 |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
TW202208671A (zh) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括硼化釩及磷化釩層的結構之方法 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
KR102783898B1 (ko) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210137395A (ko) | 2020-05-07 | 2021-11-17 | 에이에스엠 아이피 홀딩 비.브이. | 불소계 라디칼을 이용하여 반응 챔버의 인시츄 식각을 수행하기 위한 장치 및 방법 |
KR102788543B1 (ko) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145079A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 플랜지 및 장치 |
KR102795476B1 (ko) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TWI876048B (zh) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
KR20210156219A (ko) | 2020-06-16 | 2021-12-24 | 에이에스엠 아이피 홀딩 비.브이. | 붕소를 함유한 실리콘 게르마늄 층을 증착하는 방법 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TWI873359B (zh) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202202649A (zh) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TWI864307B (zh) | 2020-07-17 | 2024-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構、方法與系統 |
KR20220011092A (ko) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템 |
TWI878570B (zh) | 2020-07-20 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
TW202219303A (zh) | 2020-07-27 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 薄膜沉積製程 |
KR20220021863A (ko) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (zh) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 清潔基板的方法、選擇性沉積的方法、及反應器系統 |
TWI874701B (zh) | 2020-08-26 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成金屬氧化矽層及金屬氮氧化矽層的方法 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
TW202217045A (zh) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積間隙填充流體之方法及相關系統和裝置 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (ko) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 산화물 증착 방법 |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
KR20220041751A (ko) | 2020-09-25 | 2022-04-01 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 처리 방법 |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220050048A (ko) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치 |
TW202217037A (zh) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積釩金屬的方法、結構、裝置及沉積總成 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202229620A (zh) | 2020-11-12 | 2022-08-01 | 特文特大學 | 沉積系統、用於控制反應條件之方法、沉積方法 |
TW202229795A (zh) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 具注入器之基板處理設備 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
CN112542482A (zh) * | 2020-12-02 | 2021-03-23 | 海宁波恩斯坦生物科技有限公司 | 一种无源空腔型单晶FBAR与有源GaN HEMT的单片异质异构集成结构 |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (zh) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成臨限電壓控制用之結構的方法 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202232639A (zh) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 具有可旋轉台的晶圓處理設備 |
TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4599789A (en) * | 1984-06-15 | 1986-07-15 | Harris Corporation | Process of making twin well VLSI CMOS |
US4619033A (en) * | 1985-05-10 | 1986-10-28 | Rca Corporation | Fabricating of a CMOS FET with reduced latchup susceptibility |
US5155571A (en) * | 1990-08-06 | 1992-10-13 | The Regents Of The University Of California | Complementary field effect transistors having strained superlattice structure |
JPH07115137A (ja) * | 1993-10-20 | 1995-05-02 | Hitachi Ltd | 半導体装置の製造方法 |
JPH0823797A (ja) | 1994-07-08 | 1996-01-30 | Komatsu Zenoah Co | 樹木移植装置 |
JP3761918B2 (ja) * | 1994-09-13 | 2006-03-29 | 株式会社東芝 | 半導体装置の製造方法 |
WO1996015550A1 (en) * | 1994-11-10 | 1996-05-23 | Lawrence Semiconductor Research Laboratory, Inc. | Silicon-germanium-carbon compositions and processes thereof |
US6445043B1 (en) * | 1994-11-30 | 2002-09-03 | Agere Systems | Isolated regions in an integrated circuit |
JP3372158B2 (ja) * | 1996-02-09 | 2003-01-27 | 株式会社東芝 | 半導体装置及びその製造方法 |
US6051471A (en) * | 1996-09-03 | 2000-04-18 | Advanced Micro Devices, Inc. | Method for making asymmetrical N-channel and symmetrical P-channel devices |
JP3272966B2 (ja) * | 1996-09-17 | 2002-04-08 | 株式会社東芝 | 半導体装置 |
US6399970B2 (en) | 1996-09-17 | 2002-06-04 | Matsushita Electric Industrial Co., Ltd. | FET having a Si/SiGeC heterojunction channel |
JPH10270685A (ja) * | 1997-03-27 | 1998-10-09 | Sony Corp | 電界効果トランジスタとその製造方法、半導体装置とその製造方法、その半導体装置を含む論理回路および半導体基板 |
US5891769A (en) * | 1997-04-07 | 1999-04-06 | Motorola, Inc. | Method for forming a semiconductor device having a heteroepitaxial layer |
KR20010021740A (ko) * | 1997-07-11 | 2001-03-15 | 에를링 블로메, 타게 뢰브그렌 | 무선 주파수에서 사용되는 집적 회로 소자를 제조하는 방법 |
US6200866B1 (en) * | 1998-02-23 | 2001-03-13 | Sharp Laboratories Of America, Inc. | Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET |
JP4258034B2 (ja) * | 1998-05-27 | 2009-04-30 | ソニー株式会社 | 半導体装置及び半導体装置の製造方法 |
JP2000068389A (ja) * | 1998-08-25 | 2000-03-03 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
JP2000243854A (ja) * | 1999-02-22 | 2000-09-08 | Toshiba Corp | 半導体装置及びその製造方法 |
US6350993B1 (en) * | 1999-03-12 | 2002-02-26 | International Business Machines Corporation | High speed composite p-channel Si/SiGe heterostructure for field effect devices |
JP4521542B2 (ja) * | 1999-03-30 | 2010-08-11 | ルネサスエレクトロニクス株式会社 | 半導体装置および半導体基板 |
US6174775B1 (en) * | 1999-06-25 | 2001-01-16 | Taiwan Semiconductor Manufacturing Company | Method for making a dual gate structure for CMOS device |
JP2001044425A (ja) * | 1999-07-30 | 2001-02-16 | Hitachi Ltd | 半導体装置 |
TW426940B (en) * | 1999-07-30 | 2001-03-21 | United Microelectronics Corp | Manufacturing method of MOS field effect transistor |
JP2001160594A (ja) * | 1999-09-20 | 2001-06-12 | Toshiba Corp | 半導体装置 |
US6339232B1 (en) * | 1999-09-20 | 2002-01-15 | Kabushika Kaisha Toshiba | Semiconductor device |
JP2001338988A (ja) * | 2000-05-25 | 2001-12-07 | Hitachi Ltd | 半導体装置及びその製造方法 |
JP2002359247A (ja) * | 2000-07-10 | 2002-12-13 | Canon Inc | 半導体部材、半導体装置およびそれらの製造方法 |
US6429061B1 (en) * | 2000-07-26 | 2002-08-06 | International Business Machines Corporation | Method to fabricate a strained Si CMOS structure using selective epitaxial deposition of Si after device isolation formation |
JP4145036B2 (ja) * | 2000-09-28 | 2008-09-03 | 株式会社リコー | 光情報記録媒体 |
WO2002052652A1 (en) * | 2000-12-26 | 2002-07-04 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and its manufacturing method |
KR100385857B1 (ko) * | 2000-12-27 | 2003-06-02 | 한국전자통신연구원 | SiGe MODFET 소자 제조방법 |
JP2002280568A (ja) * | 2000-12-28 | 2002-09-27 | Toshiba Corp | 半導体装置及びその製造方法 |
US6306715B1 (en) * | 2001-01-08 | 2001-10-23 | Chartered Semiconductor Manufacturing Ltd. | Method to form smaller channel with CMOS device by isotropic etching of the gate materials |
EP1364411A1 (en) * | 2001-03-02 | 2003-11-26 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed cmos electronics and high speed analog circuits |
GB2373256B (en) * | 2001-03-14 | 2005-03-30 | Du Pont | Fabrics comprising melt spun yarns having high lustre |
US6531324B2 (en) * | 2001-03-28 | 2003-03-11 | Sharp Laboratories Of America, Inc. | MFOS memory transistor & method of fabricating same |
US6348386B1 (en) * | 2001-04-16 | 2002-02-19 | Motorola, Inc. | Method for making a hafnium-based insulating film |
JP3875040B2 (ja) * | 2001-05-17 | 2007-01-31 | シャープ株式会社 | 半導体基板及びその製造方法ならびに半導体装置及びその製造方法 |
JP2002343790A (ja) * | 2001-05-21 | 2002-11-29 | Nec Corp | 金属化合物薄膜の気相堆積方法及び半導体装置の製造方法 |
US6717213B2 (en) * | 2001-06-29 | 2004-04-06 | Intel Corporation | Creation of high mobility channels in thin-body SOI devices |
JP4034627B2 (ja) * | 2001-09-28 | 2008-01-16 | テキサス インスツルメンツ インコーポレイテツド | 集積回路及びその製造方法 |
US6703271B2 (en) * | 2001-11-30 | 2004-03-09 | Taiwan Semiconductor Manufacturing Company | Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer |
US6600170B1 (en) * | 2001-12-17 | 2003-07-29 | Advanced Micro Devices, Inc. | CMOS with strained silicon channel NMOS and silicon germanium channel PMOS |
US6858500B2 (en) * | 2002-01-16 | 2005-02-22 | Fuji Electric Co., Ltd. | Semiconductor device and its manufacturing method |
US6649492B2 (en) * | 2002-02-11 | 2003-11-18 | International Business Machines Corporation | Strained Si based layer made by UHV-CVD, and devices therein |
US7138310B2 (en) * | 2002-06-07 | 2006-11-21 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
US6764908B1 (en) * | 2002-06-19 | 2004-07-20 | Advanced Micro Devices, Inc. | Narrow width CMOS devices fabricated on strained lattice semiconductor substrates with maximized NMOS and PMOS drive currents |
US6878611B2 (en) * | 2003-01-02 | 2005-04-12 | International Business Machines Corporation | Patterned strained silicon for high performance circuits |
US6878592B1 (en) * | 2003-01-14 | 2005-04-12 | Advanced Micro Devices, Inc. | Selective epitaxy to improve silicidation |
US6734072B1 (en) * | 2003-03-05 | 2004-05-11 | Chartered Semiconductor Manufacturing Ltd. | Method of fabricating a MOSFET device using a spike rapid thermal oxidation procedure |
US6955952B2 (en) * | 2003-03-07 | 2005-10-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain balanced structure with a tensile strained silicon channel and a compressive strained silicon-germanium channel for CMOS performance enhancement |
US6963078B2 (en) * | 2003-03-15 | 2005-11-08 | International Business Machines Corporation | Dual strain-state SiGe layers for microelectronics |
US7247534B2 (en) * | 2003-11-19 | 2007-07-24 | International Business Machines Corporation | Silicon device on Si:C-OI and SGOI and method of manufacture |
US7662689B2 (en) | 2003-12-23 | 2010-02-16 | Intel Corporation | Strained transistor integration for CMOS |
-
2003
- 2003-12-23 US US10/747,321 patent/US7662689B2/en not_active Expired - Fee Related
-
2004
- 2004-12-13 JP JP2006547116A patent/JP2007515808A/ja active Pending
- 2004-12-13 DE DE200411002373 patent/DE112004002373B4/de not_active Expired - Fee Related
- 2004-12-13 CN CN200910253860.5A patent/CN101714528B/zh not_active Expired - Fee Related
- 2004-12-13 CN CN200480037017A patent/CN100583395C/zh not_active Expired - Fee Related
- 2004-12-13 WO PCT/US2004/041917 patent/WO2005067014A1/en active Application Filing
- 2004-12-13 KR KR1020067012730A patent/KR100940863B1/ko not_active Expired - Fee Related
- 2004-12-16 TW TW93139177A patent/TWI256140B/zh not_active IP Right Cessation
-
2009
- 2009-10-30 US US12/609,711 patent/US8373154B2/en not_active Expired - Fee Related
-
2011
- 2011-01-06 JP JP2011001306A patent/JP5175367B2/ja not_active Expired - Fee Related
-
2013
- 2013-02-11 US US13/764,675 patent/US8748869B2/en not_active Expired - Fee Related
-
2014
- 2014-05-02 US US14/268,938 patent/US9112029B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20140239345A1 (en) | 2014-08-28 |
KR20060103936A (ko) | 2006-10-04 |
DE112004002373T5 (de) | 2006-11-16 |
TW200527684A (en) | 2005-08-16 |
JP2011142325A (ja) | 2011-07-21 |
US20130153965A1 (en) | 2013-06-20 |
JP2007515808A (ja) | 2007-06-14 |
US7662689B2 (en) | 2010-02-16 |
JP5175367B2 (ja) | 2013-04-03 |
WO2005067014A1 (en) | 2005-07-21 |
US20050136584A1 (en) | 2005-06-23 |
CN101714528A (zh) | 2010-05-26 |
US9112029B2 (en) | 2015-08-18 |
KR100940863B1 (ko) | 2010-02-09 |
US8373154B2 (en) | 2013-02-12 |
US8748869B2 (en) | 2014-06-10 |
DE112004002373B4 (de) | 2010-09-16 |
CN101714528B (zh) | 2014-04-30 |
US20100044754A1 (en) | 2010-02-25 |
TWI256140B (en) | 2006-06-01 |
CN1894774A (zh) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100583395C (zh) | 半导体装置及其制造方法 | |
JP5141029B2 (ja) | 半導体装置とその製造方法 | |
KR100856437B1 (ko) | 반도체 디바이스 제조 방법 및 반도체 장치 | |
US7592619B2 (en) | Epitaxy layer and method of forming the same | |
CN100429788C (zh) | 用于提高mos性能的引入栅极的应变 | |
US10115826B2 (en) | Semiconductor structure and the manufacturing method thereof | |
JP4949628B2 (ja) | Cmosプロセス中に歪み半導基板層を保護する方法 | |
CN102292811B (zh) | 具有外延成长的应力引发源极与漏极区的金氧半导体装置的制造方法 | |
CN101573795A (zh) | 具有未合金硅化物的迁移率增加的结构和方法 | |
CN101233606A (zh) | 用于制造受应力的mos器件的方法 | |
JP5070779B2 (ja) | 半導体装置の製造方法および半導体装置 | |
US20170179127A1 (en) | Semiconductor structure having silicon germanium fins and method of fabricating same | |
CN120048729A (zh) | 外延工艺方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100120 Termination date: 20121213 |