JP4521542B2 - 半導体装置および半導体基板 - Google Patents
半導体装置および半導体基板 Download PDFInfo
- Publication number
- JP4521542B2 JP4521542B2 JP08783199A JP8783199A JP4521542B2 JP 4521542 B2 JP4521542 B2 JP 4521542B2 JP 08783199 A JP08783199 A JP 08783199A JP 8783199 A JP8783199 A JP 8783199A JP 4521542 B2 JP4521542 B2 JP 4521542B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- strained
- channel
- strain
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 24
- 239000000758 substrate Substances 0.000 title description 56
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 17
- 239000000969 carrier Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 263
- 230000005669 field effect Effects 0.000 description 38
- 238000000034 method Methods 0.000 description 38
- 230000000295 complement effect Effects 0.000 description 16
- 238000005468 ion implantation Methods 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 229910052732 germanium Inorganic materials 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- -1 oxygen ions Chemical class 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004335 scaling law Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/751—Insulated-gate field-effect transistors [IGFET] having composition variations in the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/797—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Description
【発明の属する技術分野】
本発明は半導体装置およびその製造方法に関し、特に電界効果トランジスタを含む半導体装置に関する。
【0002】
【従来の技術】
SiMOS型電界効果トランジスタ(Si-MOSFET)を用いた集積回路では、いわゆるスケーリング則にのっとって、デバイス寸法の縮小や動作電圧の低減などを行うことにより、消費電力の低減と、高速化を両立してきた。
【0003】
しかしながら、寸法縮小に伴い発生する短チャンネル効果の問題や、低電圧化した場合に顕著になる、ドレイン電圧としきい値電圧の近接による動作マージンの低下など、多くの問題点が生じてきている。
【0004】
また、高速化の指標となる移動度に目を向けると、上記のさまざまな改良が、皮肉なことに実デバイスにおけるSiの移動度を100以下と、バルクの値をはるかに下回らせる結果に陥れている。
【0005】
このように従来のSi-MOSFETではもはや性能向上がきわめて困難になってきている。
【0006】
【発明が解決しようとする課題】
これ以上の性能向上には、半導体材料そのものの改良で高速化を図る必要性がある。本質的に高速である所謂化合物半導体を用いることは、ひとつの解答ではあるものの、Si集積回路の製造技術との融合性の点ではなはだ困難であり、かつ製造コストが膨大になるため、現実的な解決策ではない。
【0007】
本発明の目的は、Siおよびこれと同族元素であるGe,Cなどの組合せを用いて、低消費電力で高速な電界効果トランジスタを有する半導体装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的は、電界効果トランジスタのチャネルが形成されるチャネル形成層に歪印加半導体層により歪を印加せしめ、チャネル中のキャリアの移動度を無歪のチャネル形成層の材料より大きくすることにより達成できる。例えば、チャネル形成層の材料がSiの場合は、歪印加によりSiチャネル形成層の面内の格子定数を無歪のSiより大きくする。
【0009】
SiあるいはGeに歪を印加すると、歪を受けないSiあるいはGeに比べてキャリアの移動度が増大しうることが示唆されている(M.V.Fischetti and S.E.Laux:J.Appl.Phys.80(1996)2234)。これは、サファイア上にSiを堆積すると、Siが面内歪を受けることにより移動度が増加する現象と起源を同じくし、古くから知られていることである。本発明はこの現象を応用して電界効果トランジスタおよびそれを用いた集積回路等の半導体装置を作製するものである。
【0010】
また上記目的は、チャネル形成層とこのチャネル形成層の両面に隣接する層との界面の価電子帯の頂点のエネルギーを、ゲート絶縁膜側の方を他方より大きくしたp型電界効果トランジスタを有する半導体装置によっても達成できる。
【0011】
また上記目的は、チャネル形成層とこのチャネル形成層の両面に隣接する層との界面の伝導帯の頂点のエネルギーを、ゲート絶縁膜側の方を他方より小さくしたn型電界効果トランジスタを有する半導体装置によっても達成できる。
【0012】
また上記目的は、電界効果トランジスタのチャネル中のキャリアに対するエネルギー障壁が、チャネルに対しゲート絶縁膜とは反対側に存在する構造とし、かつチャネルが形成されるチャネル形成層の格子を歪ませて、チャネル中のキャリアの移動度を無歪のチャネル形成層の材料より大きくすることによっても達成できる。
【0013】
【発明の実施の形態】
はじめに歪を受けたSiをチャネルとする電界効果トランジスタのバンド構造と動作原理について説明する。Siに歪を与える歪印加層にはSi1-xGex(0<x<1)を用いることが適当である。図1にSiO2ゲート絶縁膜3/歪Si層1/Si1-xGex歪印加層2という積層構造のバンド図を示す。歪Si層1のバンドギャップ6はSi1-xGex歪印加層2のバンドギャップ7よりも広く、しかも価電子帯5、伝導帯4ともにエネルギーが下がるタイプのバンド不連続を示す。
【0014】
さて、n型の電界効果トランジスタの場合、ゲートに正の電圧を印加してやると、図2のようにゲート絶縁膜3と歪Si層1の界面付近でバンドが曲がり、この部分に出来た歪Si層1中の伝導帯の三角井戸10に電子が蓄積され、トランジスタ動作を行うことが出来る。これは通常のMOS型電界効果トランジスタと全く同じである。
【0015】
また、P型の電界効果トランジスタの場合、ゲートに負の電圧を印加してやると、図3のようにゲート絶縁膜3と歪Si層1の界面付近でバンドが曲がる。ところが、この部分に出来た歪Si層1中の価電子帯の三角井戸11よりも、歪Si層1とSi1-xGex歪印加層2の界面に出来たSi1-xGex歪印加層2中の価電子帯の三角井戸12に多くの正孔が蓄積されてしまう。しかし、歪Si層1に比べてSi1-xGex歪印加層2内の正孔の移動度は著しく小さいため、通常のMOS型電界効果トランジスタと比較して速度の向上が図れないという問題がある。また、相補型電界効果トランジスタを構成した場合に、pn両チャネル間のバランスが取り難くなるという問題がある。
【0016】
このような問題を解決するためには、三角井戸12中の正孔の蓄積を減らせば良く、その方法として以下に示すものがある。1番目の方法は、ソース・ドレインの接合深さを歪Si層1の厚さよりも十分に浅くすることにより、Si1-xGex歪印加層2への正孔の流出を防止する。具体的には、歪Si層1の厚みがたとえば70nmのときに接合深さを40nm程度にすれば良い。これは、チャネル長0.1ミクロン以下の短チャネルデバイスで用いられる値と大差ない値であるので、充分実現可能な値である。
【0017】
2番目の方法は、Si1-xGex歪印加層2の歪Si層1との界面付近に好ましくは深さ0.1〜30nmの範囲で、急峻にn型ドーピングを行なう方法である。この方法により、図4に示すように、 Si1-xGex歪印加層2中の価電子帯の三角井戸12の頂点43のエネルギーレベルが低下する。例えば、歪Si層1中の価電子帯の三角井戸11の頂点42のエネルギーレベルよりも低くなる。その結果、三角井戸12中の正孔の蓄積が減る。この方法は、歪Si層1または歪Si層1とSi1-xGex歪印加層2の両方にn型ドーピングすることによっても実現できる。これらの場合も、ドーピング深さは0.1〜30nmの範囲が好ましい。
【0018】
3番目の方法は、 Si1-xGex歪印加層2側に正の電圧が印加されるように基板バイアス電圧を制御する方法である。この方法により、図5に示すように、Si1-xGex歪印加層2側が下がった右下がりのバンド構造となり、歪Si層1中の価電子帯の三角井戸11の頂点42のエネルギーレベルよりも、Si1-xGex歪印加層2中の価電子帯の三角井戸12の頂点43のエネルギーレベルの方が低くなる。その結果、三角井戸12中の正孔の蓄積が減る。
【0019】
以上述べたように、歪Siチャネルから歪印加層への正孔の流出を防止することが、p型電界効果トランジスタあるいは相補型電界効果トランジスタの実現に不可欠な要因である。さらに、デバイスの高速化と低電圧化を図るために、次に示すような構成をとることも有効である。すなわち、 p型電界効果トランジスタの場合はドレイン領域、n型電界効果トランジスタの場合はソース領域の材料をSi1-xGex歪印加層と同一の母材望ましくは同一組成比とする。このようにすると、歪SiとSiGeとのバンド不連続によりソース・ドレイン間の電界の分布が変化し、より効果的にキャリアを加速することが可能となる。これにより、更なる高速化が図れると共に、ピンチオフ電圧の低下によってより低電圧での動作が可能となる。
【0020】
これまで、電子・正孔ともに歪Siをチャネルとするトランジスタについて述べてきたが、正孔については歪Si1-yGey(0<y≦1)をチャネルとして用いると、さらに高移動度化、すなわち高速化が実現する。歪印加層にSi1-xGexを用いた場合、その上に積層するSiには面内引張り歪が、 Si1-yGeyには面内圧縮歪が印加される。
【0021】
Si1-xGex歪印加層2の上に歪Si1-yGey層25、歪Si層1、ゲート絶縁膜3の順に積層した場合、図6に示すようなバンド図になり、歪Si層1とゲート絶縁膜3の界面付近の歪Si層1中の伝導帯の三角井戸10に電子が、歪Si層1と歪Si1-yGey層25の界面付近の歪Si1-yGey層25中の価電子帯の三角井戸20に正孔が蓄積される。歪Si層1を正孔のチャネルに用いる場合と異なり、正孔の歪印加層2への流出は起こりにくくなる。歪Si層1と歪Si1-yGey層25の積層順序はどちらを上にしてもデバイスとして動作させることは可能である。但し、歪Si1-yGey層25内の正孔の移動度の方が歪Si層1内の電子の移動度よりも高くなるため、相補型電界効果トランジスタを構成したときの相互コンダクタンスの平衡を考慮すると、歪Si1-yGey層25がゲート電極より遠い、つまり歪Si層1の下にある構成のほうが望ましい。
【0022】
また、歪Si層1あるいは歪Si1-yGey層25とゲート絶縁膜3の間にもう一層SiGe層をはさんでも良い。この場合、電子あるいは正孔はこのSiGe層との界面付近の歪Si層1あるいは歪Si1-yGey層25に蓄積されるので、ゲート絶縁膜3の界面準位や散乱の影響を受けないですむ。
【0023】
また、歪Si層と歪Si1-yGey層は積層せずに、選択成長法などを用いて、pチャネルの領域では歪Si1-yGey層を、nチャネルの領域では歪Si層を成長するようにしてもよい。
【0024】
歪印加層には、Si1-xGexを用いることが望ましい。SiとGeではGeの格子定数がおよそ4%ほど大きい。Si1-xGexはGe組成比xに応じて格子定数が内挿値をとる。したがって、適当なxを選べば、その上に積層するSiあるいはGeに所望の歪を印加することが出来る。例えば、xを0.5とすればSi、Geそれぞれ2%の面内引張歪と面内圧縮歪を印加できる。xの選び方によって、SiとSi1-yGeyの歪の大きさを適当に制御することができる。すなわち、歪Si層の面内の格子定数を無歪のSiに対して4%未満の範囲で大きくでき、歪Si1-yGey 層の面内の格子定数を無歪のGe に対して4%未満の範囲で小さくできる。これによって電子と正孔の移動度のバランスを制御できるので、相補型電界効果トランジスタの相互コンダクタンスのバランスをとることが出来る。従来の相補型電界効果トランジスタでは素子の寸法を変えることのみにより調整していたが、本法ではさらに設計の自由度が増し、高集積化にも有利になる。
【0025】
歪の制御はSi1-xGexのGe組成比xを変化する以外にも、Cを加えて(Si1-xGex)1-yCyの組成比yを変化させても良い。Cを加える方法としては、歪印加層の成長時にCを添加させても良いし、歪印加層を成長した後にイオン注入などの方法によって加えてもよい。
【0026】
歪印加層は一定組成のSi1-xGexを成長する方法、Si基板から成長方向に向かって徐々に組成比xを増加させていく方法、いわゆるグレーデッドバッファ層としても良い。また、Si基板上に低温で欠陥密度の高いSi層を成長したり、水素、SiあるいはGeなどのイオン打込みなどの方法で欠陥層を形成し、しかる後にSi1-xGexを成長すると、Si基板上に直接Si1-xGexを成長した時に比べて貫通転移密度を減らすことができ、さらに表面の平坦性を良好になるため、好ましい。
【0027】
また、基板および歪印加層の部分をいわゆるSOI(Silicon on insulator)構造にすると、浮遊容量の低減により一層の高速化が図れるようになる。SOIには貼り合せ式SOI基板やSIMOX(Separation by Implanted Oxigen)基板などが市販されており、この基板上にSi1-xGex歪印加層を成長することによりSOIの特長を生かした歪Si( Si1-yGey(0<y≦1))電界効果トランジスタを製造できる。
【0028】
また、Si基板上にまずSi1-xGex歪印加層を成長し、しかる後に酸素イオンを打ち込み、熱処理を行うことにより、Si1-xGex歪印加層ないしはその直下のSi中にSiO2絶縁層を埋め込み、しかる後に歪Si層を成長する方法、あるいは、Si基板上にまずSi1-xGex歪印加層および歪Si層を成長し、しかる後に酸素イオンを打ち込み熱処理を行うことにより、歪Si層内部にSiO2絶縁層を埋め込む方法を用いることも可能である。これらの方法を用いると、SOI活性層の厚みを薄く出来て素子分離に優れ、pMOS、nMOS用のウェル層が不要になる。また、後者の場合、歪Si層の直下にSiO2絶縁層があるため、前記したようなpMOSにおける正孔の歪印加層への流出の問題が生じない。
【0029】
あるいはまた、Si基板上にSi1-xGex歪印加層を成長し、さらにSi層を成長した後、このSi層の一部ないしは全部を熱酸化した基板を用意する。あるいはSi層の熱酸化の代わりにSi1-xGex歪印加層の上にSiO2層を気相成長法などで成長しても良い。そして、これと別に用意した支持基板とSiO2を向かい合わせて貼り合せ、さらにSi1-xGex歪印加層を成長した側のSi基板を研磨する、あるいは水素イオンの打ち込みや途中に多孔質Si層を挿入しておくなどの手法により切断を行って、Si1-xGex歪印加層を露出させると、Si1-xGex歪印加層付きの貼り合せSOI基板が製造できる。この方法によれば、Si1-xGex歪印加層のうちSi基板に近い、欠陥密度の高い部分を除去することが出来るため欠陥密度の低減が図れ、さらに研磨やエッチングなどを行えば表面平坦性の確保も容易になる。また、この方法により、SOI活性層の厚みを薄く出来て素子分離に優れ、pMOS、nMOS用のウェル層が不要になる。
【0030】
上記貼り合せSOI基板の切断に際しては、Si1-xGex歪印加層を残しておく必要は必ずしもない。すなわち、Si基板上にSi1-xGex歪印加層を成長し、さらに歪Si層を成長し、その一部を熱酸化した基板を別に用意した支持基板とSiO2を向かい合わせて貼り合せ、歪Si層の部分を残して切断あるいは研磨を行い、SiO2層の上に歪Si層が載った基板を製造することが出来る。この基板は、見かけは従来の貼り合せSOI基板とまったく変わらず、ただSOI層に歪がかかっているだけである。したがって、従来のSOI基板とまったく同様に扱うことが出来て、素子分離に優れ、pMOS、nMOS用のウェル層が不要になり、かつ、歪の効果によりSOI活性層の有効質量が軽く、電子・正孔移動度が高いという歪Siの特徴を備えることになる。また、歪Si層の直下にSiO2絶縁層があるため、前記したようなpMOSにおける正孔の歪印加層への流出の問題が生じない。
【0031】
歪Si層の厚みには一定の制限がある。なぜなら、歪の大きさによって無転移で成長できる歪Si層の膜厚の上限が存在するからである。これを臨界膜厚と呼んでおり、Si1-xGex歪印加層に歪Si層を成長させた場合でいえば、例えばx=0.2のとき歪の大きさは約0.8%で臨界膜厚は100nm前後、x=0.5のとき歪の大きさは約2%で臨界膜厚は10nm前後になる。ただし、この臨界膜厚の大きさは歪Si層の成長条件に依存しており一義的に決定できるものではない。また、SOI基板と歪Si層を組み合わせた場合のように間に酸化膜層が挿入されている構造の場合も上記の制限とは異なってくる。しかしながら、実用上有意な歪の大きさを実現させる組成であるxが0.2から0.8程度の範囲、歪にして0.8から3.2%程度の範囲で、歪Si層の膜厚が1nmから200nmの範囲にあることが望ましい。1nm未満では電界効果トランジスタでチャネルを形成する活性層の厚みとして不充分であるし、200nmより厚いと転移の発生が始まり、電気特性への悪影響が出始めるからである。
【0032】
用いる基板結晶の面方位の選択と、チャネルでのキャリア走行方向の関係の選択は、より高速な動作をさせる場合に必要な要件である。
【0033】
基板面方位として{100}面を用いることは、従来の多くのSi半導体素子がこの面方位を用いていることから、従来素子との結合、同一プロセスの利用といった点で有利であるとともに、歪を印加させたときの移動度も大きく増大し、望ましい結晶方位である。この場合チャネルの面内方向は<110>あるいは<001>方向とすることが、エピ成長やエッチングなどのプロセスの制御性を高める上で有利である。
【0034】
基板面方位として{110}面を用いることも可能である。この場合、チャネルの方向としては<110>あるいは<001>方向とすることが歪を印加することによる移動度の増大の点で有利である。また、電子のチャネルとしては<110>方向を用いるとさらに望ましい。ただし、nMOSFETとpMOSFETのバランスを考慮した場合に、必ずしもこの配置である必要はない。
【0035】
以上に記述したように、チャネルを形成する活性層に歪を加えた電界効果トランジスタないしは相補型電界効果トランジスタおよびこれを用いた半導体装置は、従来に比べて、チャネルを流れるキャリアの有効質量が軽く、従って移動度が高く、高速化が図れ、さらに素子の高集積化、高性能化が図れるために、その工業的価値は極めて高い。
【0036】
以下、実施例により本発明を詳細に説明する。
【0037】
実施例1
図7は、本実施例に係るCMOSFETの断面図である。Si基板13を洗浄した後、ただちに化学気相成長装置に導入し、Si0.7Ge0.3歪印加層2を成長する。Si基板13の面方位は{100}とする。膜厚は500nmとする。原料にはSi2H6およびGeH4を用い、成長温度700℃で成長する。ここで、導電型決定のためのドーピングは行わない。Si1-xGex歪印加層2のGe組成比xはいかようにも制御可能であるが、歪Si層1へ印加する歪の適正化のためには、 x で0.2-0.4にすると良い結果が得られる。
【0038】
次に、Si1-xGex歪印加層2上に化学気相成長法により歪Si層1を形成する。ここで、導電型決定のためのドーピングは行わない。膜厚は60nmとした。この層はSi1-xGex歪印加層2の格子定数がSiより大きいことから面内引っ張り歪を受けている。これにより、この中のキャリア(電子および正孔)移動度は、無歪Si中よりも大きくなる。なお、Si層およびSiGe層の成長は化学気相成長法に限らない。
【0039】
次に、トレンチ分離法により素子分離絶縁領域19を形成し、歪Si層1の下部およびSi1-xGex歪印加層2にわたってウェル形成用イオン打込みを行う。 PMOS領域の下部にはP等のV族元素を注入してn型とし、 NMOS領域の下部にはB等のIII族元素を注入してp型とする。さらに、歪Si層1の上部に、PMOS領域にはIII族元素、 NMOS領域にはV族元素を注入してしきい値を調整する。
【0040】
次に、歪Si層1の表面を熱酸化し、SiO2ゲート絶縁膜3を形成する。さらに、その上にポリシリコンゲート電極16を形成した後、ゲート領域以外をエッチングにより除去する。さらに、セルフアラインによりソースドレイン領域をイオン注入法により形成する。このとき、 B等のIII族元素を注入すればp型ソースドレイン領域17が形成でき、P等のV族元素を注入すればn型ソースドレイン領域18が形成できるのでPMOS、NMOSともに同一ウェハ上に作製できる。このとき、Si1-xGex歪印加層2への漏れ電流を減らすために、イオン注入深さは歪Si層1の厚みの半分以下の30nmとした。最後に、層間絶縁膜(図示せず)を形成し、コンタクトホールをあけ、Al等の金属膜を蒸着し、パターニングし、金属配線を形成して、電界効果トランジスタが完成する。このトランジスタは、同一寸法でSi基板上に直接作製した無歪Siの電界効果トランジスタに比べて、相互コンダクタンスがおよそ3倍、遮断周波数も2.4倍になった。
【0041】
実施例2
図8は、本実施例に係るCMOSFETの断面図である。本実施例は、実施例1におけるソースドレイン領域17、18の深さ30nmを通常の場合の50 nmと深くする代わりに、Si1-xGex歪印加層2の形成において、その上部30nmの範囲で、Pドーピングガスを混合して、1018毎立法センチメートルの高濃度で、急峻にn型ドーピングを行ったものである。その際、pMOS領域のみにドーピングを行うために、nMOS領域を酸化膜で被覆しておきドーピング後にこれを除去する。
【0042】
ただし、急峻ドーピングを行ったpMOS領域にはウェル形成用イオン打込みは行わない。
【0043】
本実施例においても、相互コンダクタンスおよび遮断周波数について実施例1と同等の効果が得られた。
【0044】
実施例3
図9は、本実施例に係るCMOSFETの断面図である。本実施例は、実施例2における急峻ドーピングの代わりに、 pMOSのウェル領域に正のバイアスを印加したものである。
【0045】
具体的には、素子領域外で、pMOSのSi1-xGex歪印加層2までコンタクトホールを開け、そこにオーミック電極を形成し、バイアス印加電極22とする。
【0046】
バイアス印加電極22に+1Vの電圧を印加することにより、バイアス印加なしの場合と比較して、パンチスルー電流を5%以下に低減させることが出来た。
【0047】
なお、実施例1乃至3の方法は、同時に適用できる方法であり、2種あるいは3種を組み合わせることができる。
【0048】
実施例4
図10は、本実施例に係るCMOSFETの断面図である。本実施例は、実施例1における歪Si層1のp型MOSFETのドレイン領域15、n型MOSFETのソース領域14を選択的にエッチングし、その部分をSi1-xGex層23を選択成長して埋め戻すものである。なお、この部分の表面層5nmはSiとし、以後のプロセスによるSi1-xGex層23の損傷を防止する。
【0049】
本実施例のトランジスタは、従来型MOSFETでよく用いられる動作電圧3Vに比べ、これを低減できる。
【0050】
実施例5
図11は、本実施例に係るCMOSFETの断面図である。本実施例の特徴は、歪Gey層をPMOSのチャネルとして用いたことにある。
【0051】
Si基板13にあらかじめ水素イオン打込みにより表面から100nmの領域にわたって高欠陥密度層を形成する。この基板を洗浄した後、ただちに化学気相成長装置に導入し、xを0.3から成長方向に向って0.5まで変化させたSi1-xGexからなる歪印加層の下層2を成長する。膜厚は300nmとする。原料にはSi2H6およびGeH4を用い、成長温度700℃で成長する。
【0052】
さらにSi0.5Ge0.5からなる歪印加層の上層24を膜厚30nm、歪Ge層25を膜厚10nm、歪Si層1を膜厚13nmで順に同様に積層形成する。なお、Si、GeおよびSiGe層の成長は化学気相成長法に限らず、上記組成の結晶成長が可能な方法であれば良い。歪Ge層25は面内圧縮応力を受け、歪Si層1は面内引っ張り応力を受ける。これにより、歪Ge層25の正孔、歪Si層1の電子ともに通常のSiに比べて有効質量が低減され、移動度が上昇する。
【0053】
次に、実施例1と同様の方法で、素子分離絶縁領域19形成、歪印加層の上層であるSi0.5Ge0.5層24および下層であるSi1-xGex層2にわたってのウェル形成用イオン打込み、ならびに歪Si層1の上部および歪Ge層25の上部にしきい値調整用低濃度イオン打込みを行う。続いて、SiO2ゲート酸化膜3の形成、ゲート電極16の形成、ソースドレイン領域17、18の形成を行う。ソースドレイン領域17、18のイオン注入深さはnMOSに対しては歪Si層1の厚みと同程度の10nmとし、pMOSに対しては歪Ge層25に達する20nmとした。最後に、層間絶縁膜の形成、コンタクトホールあけ、金属配線の形成を行いCMOSFETが完成する。
【0054】
本実施例ではx=0.5のSi0.5Ge0.5層24を歪印加層の上層として成長しているので、歪Si層1および歪Ge層25へ与える歪印加量が大きい。
【0055】
本実施例では、チャネルに歪Gey層を用いたが、Siを混ぜた歪Si1-yGey層(0<y<1)を用いることもできる。この場合、組成比yはSi1-xGex歪印加層の組成比xより大きくする。
【0056】
実施例6
図12は、本実施例に係るCMOSFETの断面図である。本実施例、実施例5における歪Si層1上にSi0.5Ge0.5障壁層30を2nm形成したものである。
【0057】
このように、 Si0.5Ge0.5障壁層30を歪Si層1とゲート絶縁膜3の間に設けているので、電子は歪Si層1とゲート絶縁膜3界面の散乱を受けず、 Si0.5Ge0.5障壁層30と歪Si層1の界面付近の歪Si層1中に蓄積される。
【0058】
また、本実施例では歪Ge層25の上部に歪Si層1を積層したが、この順序は逆にしても構わない。ソースドレイン領域1718のイオン注入深さはnMOSに対しては歪Si層1の厚さと同程度の12nmとし、pMOSに対しては歪Ge層25に達する22nmとする。
【0059】
実施例7
図13は、本実施例に係るCMOSFETの断面図である。本実施例は、実施例5における歪Si層1と歪Ge層25を積層せず並列配置したものである。
【0060】
具体的には、Si0.5Ge0.5歪印加層24上にpMOS領域には歪Ge層25を10nm、nMOS領域には歪Si層1を12nm選択成長させる。歪Ge層25は面内圧縮応力を受け、歪Si層1は面内引っ張り応力を受けている。これにより、歪Ge層25の正孔、歪Si層1の電子ともに通常のSiに比べて有効質量が低減され、移動度が上昇する。
【0061】
実施例8
図14は、本実施例に係るSOI基板の断面図である。表面に100nm厚みの高欠陥密度エピ層を形成したSi基板13を洗浄した後、ただちに化学気相成長装置に導入し、Si1-xGex歪印加層2を成長する。膜厚は150nmとする。原料にはSi2H6およびGeH4を用い、成長温度700℃で成長する。Si1-xGex歪印加層2のGe組成比xはいかようにも制御可能であるが、後で形成する歪Si層1へ印加する歪みの適正化のためには、xを0.2-0.4とすると良い結果が得られる。本実施例では0.3とする。なお、SiおよびSiGe層の成長は化学気相成長法に限らず、上記組成の結晶成長が可能な方法であれば良い。
【0062】
次に酸素イオンを加速電圧180KeV、ドーズ量4×1017/cm2の条件でSi1-xGex歪印加層2の上から注入し、1350℃で8時間アニールを行う。これにより、Si1-xGex歪印加層2の直下にSiO2絶縁層26が形成される。SiO2絶縁層26の厚みは凡そ100nmであり、絶縁耐圧50V以上が確保される。アニール処理により、Si1-xGex歪印加層2は欠陥密度が極めて低く、平坦でかつ歪み緩和が十分になされる。さらに、この上部に厚さ60nmの歪Si層1を化学気相成長法で形成する。
【0063】
以後、発明の実施例1等と同様のプロセスを用いて、CMOSFETを製造することができる。なお、本基板を用いることによりウェル層のイオン注入が不要になる。
【0064】
また、浮遊容量が大幅に低減されるため、実装レベルでの動作速度を通常のSi基板使用時に比べ40%ほど高めることが出来た。
【0065】
実施例9
図15はSOI基板の他の実施例の断面図である。実施例8と同様の方法でSi1-xGex歪印加層2まで形成した後、Si1-xGex歪印加層2の上に厚さ120nmの歪Si層1を化学気相成長法で形成する。次に、酸素イオンを加速電圧50KeV、ドーズ量2×1017/cm2の条件で歪Si層1の上から注入し、1300℃で8時間アニールを行う。これにより、歪Si層1の内部にSiO2絶縁層26が形成される。SiO2絶縁層26の厚みは凡そ30nmとなる。
【0066】
本実施例では、ウェル層のイオン注入が不要になる他、pMOSでの正孔のSiGe歪印加層への流出が起こり難いため、ドーピングやバイアス印加等による正孔の流出防止策を特に用いる必要はない。
【0067】
実施例10
図16は、本実施例に係るSOI基板の製造工程断面図である。まず、図16(a)に示すように、表面に100nm厚みの高欠陥密度エピ層を形成したSi基板13を洗浄した後、ただちに化学気相成長装置に導入し、Si1-xGex歪印加層2を成長する。膜厚は300nmとする。原料にはSi2H6およびGeH4を用い、成長温度700℃で成長する。Si1-xGex歪印加層2のGe組成比xはいかようにも制御可能であるが、歪Si層1へ印加する歪みの適正化のためには、xを0.2-0.4とすると良い結果が得られる。本実施例では0.3とする。なお、SiおよびSiGe層の成長は化学気相成長法に限らず、上記組成の結晶成長が可能な方法であれば良い。またSi基板13の代わりにGe基板あるいはSiGe混晶基板を用いても良い。Geの混晶比xが大きい場合、Ge基板やGe混晶比の大きいSiGe基板を用いるほうが、Si1-xGex歪印加層2の成長が容易、あるいは不要になる。
【0068】
次に歪Si層1を成長し、表面を熱酸化し、次いで切断位置28の深さに水素イオンを注入し、この位置に損傷層を形成する。こうして図16(a)に示す状態になる。切断位置28はSi1-xGex歪印加層2の内部としても良いし、歪Si層1の内部としても良い。
【0069】
さらに表面の酸化膜と別に用意した支持基板29を接合位置27で接合し、図16(b)のような状態になる。次いで500℃でアニールすると切断位置28で切断され、切断位置28がSi1-xGex歪印加層2の内部の場合は図16(c)のような状態になり、歪Si層1の内部の場合は図16( d )のような状態になる。図16(c)に示す場合は、さらに表面に60nmの歪Si層1をエピタキシャル成長させる。
【0070】
以後、発明の実施例1等と同様のプロセスを用いて、CMOSFETを製造することができる。なお、本基板を用いることによりウェル層のイオン注入が不要になる。さらに、図16( d )の構造の場合にはpMOSでの正孔のSiGe歪印加層への流出が起こらないため、ドーピングやバイアス印加等による正孔の流出防止策が不要になる。
【0071】
また、浮遊容量が大幅に低減されるため、実装レベルでの動作速度を通常のSi基板使用時に比べ40%ほど高めることが出来た。
【0072】
実施例11
実施例1で示した方法で、{100}面のSi基板13を用いて相補型電界効果トランジスタをSi1-xGex歪印加層2のGe組成比xを種々に変えて作製し、素子の相互コンダクタンスから歪Siチャネル中の<001>方向の電子および正孔の移動度を見積ると、表1に示すように混晶比が0.2程度でも移動度の増加がかなり大きい。単位は、歪が%(正の値が引張歪)、移動度がcm2/Vsである。
【0073】
表1
Ge組成比x 歪 電子移動度 正孔移動度
0 0 1300 400
0.1 0.4 2600 850
0.2 0.8 3300 2000
0.3 1.2 3550 3100
0.4 1.6 3500 4500
0.5 2.0 3450 5200
0.6 2.4 3400 6100
実施例7で示した方法で、{100}面のSi基板13を用いてpMOSFETをSi1-xGex歪印加層2のGe組成比xを種々に変えて作製し、素子の相互コンダクタンスから歪Geチャネル中の<001>方向の正孔の移動度を見積ると、表2に示すように面内圧縮歪を受けるに従い移動度が飛躍的に大きくなる。単位は、歪が%(正の値が引張歪)、移動度がcm2/Vsである。
【0074】
表2
Ge組成比x 歪 正孔移動度
1.0 0 1900
0.9 -0.4 2800
0.8 -0.8 4100
0.7 -1.2 7000
0.6 -1.6 9000
0.5 -2.0 12000
0.4 -2.4 13500
実施例1で示した方法で、{110}面のSi基板13を用いて相補型電界効果トランジスタを作製し、素子の相互コンダクタンスから歪Siチャネル中の<001>方向、<110>方向の電子および正孔の移動度を見積ると、表3に示すように電子移動度は<110>方向の方が大きくなる。単位は、歪が%(正の値が引張歪)、移動度がcm2/Vsである。
【0075】
表3
Ge組成比x 歪 方位 電子移動度 正孔移動度
0.2 0.8 <001> 900 1800
0.2 0.8 <110> 3100 1800
0.3 1.2 <001> 900 2700
0.3 1.2 <110> 3300 2700
【0076】
【発明の効果】
本発明によれば高速かつ低消費電力の相補型電界効果トランジスタおよびこれを内蔵する半導体装置を実現できる。
【図面の簡単な説明】
【図1】本発明の具体例であるSiO2ゲート絶縁膜/歪Si層/Si1-xGex歪印加層という積層構造のバンド図である。
【図2】図1に示す構造のゲートに正のバイアスを印加した状態のバンド図である。
【図3】図1に示す構造のゲートに負のバイアスを印加した状態のバンド図である。
【図4】図1に示す構造のSi1-xGex歪印加層の最上部に急峻n型ドーピングを施した状態のバンド図である。
【図5】図1に示す構造に基板バイアス電圧を印加した状態のバンド図である。
【図6】本発明の具体例であるSiO2ゲート絶縁膜/歪Si層/歪Si1-yGey層/Si1-xGex歪印加層という積層構造のバンド図である。
【図7】本発明の実施例1の相補型電界効果トランジスタの断面構造図である。
【図8】本発明の実施例2の相補型電界効果トランジスタの断面構造図である。
【図9】本発明の実施例3の相補型電界効果トランジスタの断面構造図である。
【図10】本発明の実施例4の相補型電界効果トランジスタの断面構造図である。
【図11】本発明の実施例5の相補型電界効果トランジスタの断面構造図である。
【図12】本発明の実施例6の相補型電界効果トランジスタの断面構造図である。
【図13】本発明の実施例7の相補型電界効果トランジスタの断面構造図である。
【図14】本発明の実施例8のSOI基板の断面図である。
【図15】本発明の実施例9のSOI基板の断面図である。
【図16】本発明の実施例10のSOI基板の製造工程断面図である。
【符号の説明】
1…歪Si層、2…Si1-xGex歪印加層、3…SiO2ゲート絶縁層、4…伝導帯、5…価電子帯、6…歪Siのバンドギャップ、7…Si1-xGexのバンドギャップ、8…伝導帯不連続、9…価電子帯…不連続、10…ゲート絶縁膜/歪Si層界面付近の歪Si層中の伝導帯の三角井戸、11…ゲート絶縁膜/歪Si層界面付近の歪Si層中の価電子帯の三角井戸、12…歪Si層/ Si1-xGex歪印加層界面付近のSi1-xGex歪印加層2中の価電子帯の三角井戸、13…Si基板、14…ソース電極、15…ドレイン電極、16…ゲート、17…p型ソースドレイン領域、18…n型ソースドレイン領域、19…素子分離絶縁領域、20…歪Si層/歪Si1-yGey層界面付近の歪Si1-yGey層中の価電子帯の三角井戸、21…急峻n型ドーピング層、22…バイアス印加電極、23…Si1-xGexドレイン層、24…Si0.5Ge0.5層、25…歪Si1-yGey層(0<y≦1)、26…SiO2絶縁層、27…接合位置、28…切断位置、29…支持基板、30…Si0.5Ge0.5障壁層、40、41…伝導帯の三角井戸の頂点、42、43…価電子帯の三角井戸の頂点。
Claims (9)
- MOSFETの動作時に、前記MOSFETのゲート電極下にチャネルが形成されるチャネル形成層と、前記チャネル形成層の格子に歪を印加せしめる歪印加半導体層を有し、
前記MOSFETのソース領域およびドレイン領域は、前記チャネルの両側にそれぞれ形成されており、
前記ソース領域または前記ドレイン領域は、前記チャネル形成層をエッチングすることで形成された溝内に埋め込まれたSiGe層に形成されており、
前記チャネル中のキャリアの移動度は、前記チャネルが無歪であった場合と比較して大きくなっていることを特徴とする半導体装置。 - 前記チャネル形成層はSiからなり、
前記チャネル内の格子定数は、無歪のSiの格子定数よりも大きいことを特徴とする請求項1記載の半導体装置。 - 前記歪印加半導体層はSi1−xGex(0<x<1)からなることを特徴とする請求項1または2に記載の半導体装置。
- MOSFETの動作時に、前記MOSFETのゲート電極下にチャネルが形成されるSi層を有し、
前記MOSFETのソース領域およびドレイン領域は、前記チャネルの両側にそれぞれ形成されており、
前記ソース領域または前記ドレイン領域は、前記Si層をエッチングすることで形成された溝内に埋め込まれたSiGe層に形成されており、
前記チャネルには歪が発生しており、
前記チャネル中のキャリアの移動度は、前記チャネルが無歪であった場合と比較して大きくなっていることを特徴とする半導体装置。 - 前記チャネル内のSiの格子定数は、無歪のSiの格子定数よりも大きいことを特徴とする請求項4記載の半導体装置。
- 前記埋め込まれたSiGe層は、選択成長で形成された層であることを特徴とする請求項1乃至5のいずれか1項に記載の半導体装置。
- 前記埋め込まれたSiGe層の表面にはSi膜が形成されていることを特徴とする請求項1乃至6のいずれか1項に記載の半導体装置。
- 前記MOSFETはn型MOSFETであり、
前記ソース領域は、前記埋め込まれたSiGe層に形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の半導体装置。 - 前記MOSFETはp型MOSFETであり、
前記ドレイン領域は、前記埋め込まれたSiGe層に形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の半導体装置。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08783199A JP4521542B2 (ja) | 1999-03-30 | 1999-03-30 | 半導体装置および半導体基板 |
AU33306/00A AU3330600A (en) | 1999-03-30 | 2000-03-28 | Semiconductor device and semiconductor substrate |
PCT/JP2000/001917 WO2000060671A1 (en) | 1999-03-30 | 2000-03-28 | Semiconductor device and semiconductor substrate |
CNB008069034A CN1210809C (zh) | 1999-03-30 | 2000-03-28 | 半导体器件和半导体衬底 |
KR10-2001-7012200A KR100447492B1 (ko) | 1999-03-30 | 2000-03-28 | 반도체장치 및 반도체기판 |
EP00911430A EP1174928A4 (en) | 1999-03-30 | 2000-03-28 | SEMICONDUCTOR AND SEMICONDUCTOR SUBSTRATE |
CNB2005100743185A CN100386863C (zh) | 1999-03-30 | 2000-03-28 | 半导体器件制造方法及其半导体器件 |
TW089105855A TW557577B (en) | 1999-03-30 | 2000-03-29 | Semiconductor device and semiconductor substrate |
US10/920,432 US20050017236A1 (en) | 1999-03-30 | 2004-08-18 | Semiconductor device and semiconductor substrate |
US12/010,123 US7579229B2 (en) | 1999-03-30 | 2008-01-22 | Semiconductor device and semiconductor substrate |
US12/505,942 US8304810B2 (en) | 1999-03-30 | 2009-07-20 | Semiconductor device and semiconductor substrate having selectively etched portions filled with silicon germanium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08783199A JP4521542B2 (ja) | 1999-03-30 | 1999-03-30 | 半導体装置および半導体基板 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010027575A Division JP2010141349A (ja) | 2010-02-10 | 2010-02-10 | 半導体装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000286418A JP2000286418A (ja) | 2000-10-13 |
JP4521542B2 true JP4521542B2 (ja) | 2010-08-11 |
Family
ID=13925896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08783199A Expired - Fee Related JP4521542B2 (ja) | 1999-03-30 | 1999-03-30 | 半導体装置および半導体基板 |
Country Status (8)
Country | Link |
---|---|
US (3) | US20050017236A1 (ja) |
EP (1) | EP1174928A4 (ja) |
JP (1) | JP4521542B2 (ja) |
KR (1) | KR100447492B1 (ja) |
CN (2) | CN100386863C (ja) |
AU (1) | AU3330600A (ja) |
TW (1) | TW557577B (ja) |
WO (1) | WO2000060671A1 (ja) |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6107653A (en) | 1997-06-24 | 2000-08-22 | Massachusetts Institute Of Technology | Controlling threading dislocation densities in Ge on Si using graded GeSi layers and planarization |
US7227176B2 (en) | 1998-04-10 | 2007-06-05 | Massachusetts Institute Of Technology | Etch stop layer system |
US6528033B1 (en) * | 2000-01-18 | 2003-03-04 | Valence Technology, Inc. | Method of making lithium-containing materials |
US6602613B1 (en) | 2000-01-20 | 2003-08-05 | Amberwave Systems Corporation | Heterointegration of materials using deposition and bonding |
EP1249036A1 (en) | 2000-01-20 | 2002-10-16 | Amberwave Systems Corporation | Low threading dislocation density relaxed mismatched epilayers without high temperature growth |
US6969875B2 (en) | 2000-05-26 | 2005-11-29 | Amberwave Systems Corporation | Buried channel strained silicon FET using a supply layer created through ion implantation |
WO2002015244A2 (en) | 2000-08-16 | 2002-02-21 | Massachusetts Institute Of Technology | Process for producing semiconductor article using graded expitaxial growth |
US6649480B2 (en) | 2000-12-04 | 2003-11-18 | Amberwave Systems Corporation | Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs |
US6844227B2 (en) | 2000-12-26 | 2005-01-18 | Matsushita Electric Industrial Co., Ltd. | Semiconductor devices and method for manufacturing the same |
US6703688B1 (en) | 2001-03-02 | 2004-03-09 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6723661B2 (en) | 2001-03-02 | 2004-04-20 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6830976B2 (en) | 2001-03-02 | 2004-12-14 | Amberwave Systems Corproation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6724008B2 (en) | 2001-03-02 | 2004-04-20 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
WO2002082514A1 (en) | 2001-04-04 | 2002-10-17 | Massachusetts Institute Of Technology | A method for semiconductor device fabrication |
JP4831885B2 (ja) | 2001-04-27 | 2011-12-07 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US6900094B2 (en) | 2001-06-14 | 2005-05-31 | Amberwave Systems Corporation | Method of selective removal of SiGe alloys |
US7301180B2 (en) | 2001-06-18 | 2007-11-27 | Massachusetts Institute Of Technology | Structure and method for a high-speed semiconductor device having a Ge channel layer |
US6916727B2 (en) | 2001-06-21 | 2005-07-12 | Massachusetts Institute Of Technology | Enhancement of P-type metal-oxide-semiconductor field effect transistors |
JP2004538634A (ja) | 2001-08-06 | 2004-12-24 | マサチューセッツ インスティテュート オブ テクノロジー | ひずみ層を有する半導体基板及びその形成方法 |
EP1415337B1 (en) * | 2001-08-09 | 2009-11-18 | Amberwave Systems Corporation | Dual layer cmos devices |
US6974735B2 (en) | 2001-08-09 | 2005-12-13 | Amberwave Systems Corporation | Dual layer Semiconductor Devices |
WO2003015138A2 (en) | 2001-08-09 | 2003-02-20 | Amberwave Systems Corporation | Optimized buried-channel fets based on sige heterostructures |
US7138649B2 (en) * | 2001-08-09 | 2006-11-21 | Amberwave Systems Corporation | Dual-channel CMOS transistors with differentially strained channels |
US6831292B2 (en) | 2001-09-21 | 2004-12-14 | Amberwave Systems Corporation | Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same |
WO2003028106A2 (en) | 2001-09-24 | 2003-04-03 | Amberwave Systems Corporation | Rf circuits including transistors having strained material layers |
JP2003115587A (ja) | 2001-10-03 | 2003-04-18 | Tadahiro Omi | <110>方位のシリコン表面上に形成された半導体装置およびその製造方法 |
JP2005516389A (ja) * | 2002-01-23 | 2005-06-02 | スピネカ セミコンダクター, インコーポレイテッド | 歪み半導体基板を用いてショットキまたはショットキのような接触を形成するソースおよび/またはドレインを有する電界効果トランジスタ |
WO2003079415A2 (en) | 2002-03-14 | 2003-09-25 | Amberwave Systems Corporation | Methods for fabricating strained layers on semiconductor substrates |
DE10218381A1 (de) * | 2002-04-24 | 2004-02-26 | Forschungszentrum Jülich GmbH | Verfahren zur Herstellung einer oder mehrerer einkristalliner Schichten mit jeweils unterschiedlicher Gitterstruktur in einer Ebene einer Schichtenfolge |
US7074623B2 (en) | 2002-06-07 | 2006-07-11 | Amberwave Systems Corporation | Methods of forming strained-semiconductor-on-insulator finFET device structures |
US7307273B2 (en) | 2002-06-07 | 2007-12-11 | Amberwave Systems Corporation | Control of strain in device layers by selective relaxation |
US7335545B2 (en) | 2002-06-07 | 2008-02-26 | Amberwave Systems Corporation | Control of strain in device layers by prevention of relaxation |
US20030227057A1 (en) | 2002-06-07 | 2003-12-11 | Lochtefeld Anthony J. | Strained-semiconductor-on-insulator device structures |
US7138310B2 (en) | 2002-06-07 | 2006-11-21 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
US6995430B2 (en) | 2002-06-07 | 2006-02-07 | Amberwave Systems Corporation | Strained-semiconductor-on-insulator device structures |
US7615829B2 (en) | 2002-06-07 | 2009-11-10 | Amberwave Systems Corporation | Elevated source and drain elements for strained-channel heterojuntion field-effect transistors |
WO2003105206A1 (en) | 2002-06-10 | 2003-12-18 | Amberwave Systems Corporation | Growing source and drain elements by selecive epitaxy |
US6982474B2 (en) | 2002-06-25 | 2006-01-03 | Amberwave Systems Corporation | Reacted conductive gate electrodes |
US7375385B2 (en) | 2002-08-23 | 2008-05-20 | Amberwave Systems Corporation | Semiconductor heterostructures having reduced dislocation pile-ups |
US7594967B2 (en) | 2002-08-30 | 2009-09-29 | Amberwave Systems Corporation | Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy |
JP4546021B2 (ja) | 2002-10-02 | 2010-09-15 | ルネサスエレクトロニクス株式会社 | 絶縁ゲート型電界効果型トランジスタ及び半導体装置 |
EP1588406B1 (en) | 2003-01-27 | 2019-07-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures with structural homogeneity |
JP4190906B2 (ja) | 2003-02-07 | 2008-12-03 | 信越半導体株式会社 | シリコン半導体基板及びその製造方法 |
KR100728173B1 (ko) | 2003-03-07 | 2007-06-13 | 앰버웨이브 시스템즈 코포레이션 | 쉘로우 트렌치 분리법 |
US6887798B2 (en) | 2003-05-30 | 2005-05-03 | International Business Machines Corporation | STI stress modification by nitrogen plasma treatment for improving performance in small width devices |
TWI242232B (en) | 2003-06-09 | 2005-10-21 | Canon Kk | Semiconductor substrate, semiconductor device, and method of manufacturing the same |
US7329923B2 (en) | 2003-06-17 | 2008-02-12 | International Business Machines Corporation | High-performance CMOS devices on hybrid crystal oriented substrates |
US7049898B2 (en) * | 2003-09-30 | 2006-05-23 | Intel Corporation | Strained-silicon voltage controlled oscillator (VCO) |
US20050116290A1 (en) | 2003-12-02 | 2005-06-02 | De Souza Joel P. | Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers |
US7662689B2 (en) | 2003-12-23 | 2010-02-16 | Intel Corporation | Strained transistor integration for CMOS |
US7161169B2 (en) * | 2004-01-07 | 2007-01-09 | International Business Machines Corporation | Enhancement of electron and hole mobilities in <110> Si under biaxial compressive strain |
US7579636B2 (en) | 2004-01-08 | 2009-08-25 | Nec Corporation | MIS-type field-effect transistor |
JP4892976B2 (ja) * | 2004-01-08 | 2012-03-07 | 日本電気株式会社 | Mis型電界効果トランジスタ |
US7037794B2 (en) | 2004-06-09 | 2006-05-02 | International Business Machines Corporation | Raised STI process for multiple gate ox and sidewall protection on strained Si/SGOI structure with elevated source/drain |
US7227205B2 (en) * | 2004-06-24 | 2007-06-05 | International Business Machines Corporation | Strained-silicon CMOS device and method |
US7217949B2 (en) | 2004-07-01 | 2007-05-15 | International Business Machines Corporation | Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI) |
US6991998B2 (en) | 2004-07-02 | 2006-01-31 | International Business Machines Corporation | Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer |
US7384829B2 (en) * | 2004-07-23 | 2008-06-10 | International Business Machines Corporation | Patterned strained semiconductor substrate and device |
DE102004036971B4 (de) * | 2004-07-30 | 2009-07-30 | Advanced Micro Devices, Inc., Sunnyvale | Technik zur Bewertung lokaler elektrischer Eigenschaften in Halbleiterbauelementen |
JP2006108365A (ja) * | 2004-10-05 | 2006-04-20 | Renesas Technology Corp | 半導体装置およびその製造方法 |
JP4604637B2 (ja) * | 2004-10-07 | 2011-01-05 | ソニー株式会社 | 半導体装置および半導体装置の製造方法 |
US7393733B2 (en) | 2004-12-01 | 2008-07-01 | Amberwave Systems Corporation | Methods of forming hybrid fin field-effect transistor structures |
US7173312B2 (en) | 2004-12-15 | 2007-02-06 | International Business Machines Corporation | Structure and method to generate local mechanical gate stress for MOSFET channel mobility modification |
US7274084B2 (en) | 2005-01-12 | 2007-09-25 | International Business Machines Corporation | Enhanced PFET using shear stress |
US7432553B2 (en) | 2005-01-19 | 2008-10-07 | International Business Machines Corporation | Structure and method to optimize strain in CMOSFETs |
US7220626B2 (en) | 2005-01-28 | 2007-05-22 | International Business Machines Corporation | Structure and method for manufacturing planar strained Si/SiGe substrate with multiple orientations and different stress levels |
US7224033B2 (en) | 2005-02-15 | 2007-05-29 | International Business Machines Corporation | Structure and method for manufacturing strained FINFET |
US7470972B2 (en) | 2005-03-11 | 2008-12-30 | Intel Corporation | Complementary metal oxide semiconductor integrated circuit using uniaxial compressive stress and biaxial compressive stress |
US7291539B2 (en) | 2005-06-01 | 2007-11-06 | International Business Machines Corporation | Amorphization/templated recrystallization method for hybrid orientation substrates |
US7202513B1 (en) | 2005-09-29 | 2007-04-10 | International Business Machines Corporation | Stress engineering using dual pad nitride with selective SOI device architecture |
US7655511B2 (en) | 2005-11-03 | 2010-02-02 | International Business Machines Corporation | Gate electrode stress control for finFET performance enhancement |
US7564081B2 (en) | 2005-11-30 | 2009-07-21 | International Business Machines Corporation | finFET structure with multiply stressed gate electrode |
US7863197B2 (en) | 2006-01-09 | 2011-01-04 | International Business Machines Corporation | Method of forming a cross-section hourglass shaped channel region for charge carrier mobility modification |
JP2007335573A (ja) * | 2006-06-14 | 2007-12-27 | Hitachi Ltd | 半導体装置およびその製造方法 |
KR20090038653A (ko) * | 2007-10-16 | 2009-04-21 | 삼성전자주식회사 | Cmos 소자 및 그 제조방법 |
US7842982B2 (en) | 2008-01-29 | 2010-11-30 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
DE102008062685A1 (de) * | 2008-12-17 | 2010-06-24 | Siltronic Ag | Halbleiterscheibe mit einer SiGe-Schicht und Verfahren zur Herstellung der SiGe-Schicht |
WO2010085754A1 (en) * | 2009-01-23 | 2010-07-29 | Lumenz Inc. | Semiconductor devices having dopant diffusion barriers |
JP5601848B2 (ja) * | 2010-02-09 | 2014-10-08 | 三菱電機株式会社 | SiC半導体装置の製造方法 |
JP5703148B2 (ja) * | 2011-07-04 | 2015-04-15 | 株式会社半導体エネルギー研究所 | 半導体装置 |
GB201112327D0 (en) * | 2011-07-18 | 2011-08-31 | Epigan Nv | Method for growing III-V epitaxial layers |
CN103377941B (zh) * | 2012-04-28 | 2016-08-10 | 中芯国际集成电路制造(上海)有限公司 | Pmos晶体管及形成方法 |
US20130334571A1 (en) * | 2012-06-19 | 2013-12-19 | International Business Machines Corporation | Epitaxial growth of smooth and highly strained germanium |
JP5695614B2 (ja) * | 2012-08-22 | 2015-04-08 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN102967814B (zh) * | 2012-10-19 | 2015-05-20 | 西安电子科技大学 | 晶体管晶格形变导致性能退化的测试装置及方法 |
US10032870B2 (en) | 2015-03-12 | 2018-07-24 | Globalfoundries Inc. | Low defect III-V semiconductor template on porous silicon |
FR3051596B1 (fr) * | 2016-05-17 | 2022-11-18 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat de type semi-conducteur contraint sur isolant |
FR3051595B1 (fr) * | 2016-05-17 | 2022-11-18 | Soitec Silicon On Insulator | Procede de fabrication d'un substrat de type semi-conducteur contraint sur isolant |
CN108766967B (zh) * | 2018-05-23 | 2021-05-28 | 燕山大学 | 一种平面复合应变Si/SiGe CMOS器件及制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03187269A (ja) * | 1989-12-18 | 1991-08-15 | Hitachi Ltd | 半導体装置 |
JPH06177375A (ja) * | 1992-12-10 | 1994-06-24 | Hitachi Ltd | 半導体装置及びその製造方法 |
JPH0982944A (ja) * | 1995-09-18 | 1997-03-28 | Toshiba Corp | 歪シリコン電界効果トランジスタ及びその製造方法 |
JPH09321307A (ja) * | 1996-05-29 | 1997-12-12 | Toshiba Corp | 半導体装置 |
JPH10270685A (ja) * | 1997-03-27 | 1998-10-09 | Sony Corp | 電界効果トランジスタとその製造方法、半導体装置とその製造方法、その半導体装置を含む論理回路および半導体基板 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5376769A (en) * | 1976-12-20 | 1978-07-07 | Toshiba Corp | Simiconductor device |
JP2685819B2 (ja) * | 1988-03-31 | 1997-12-03 | 株式会社東芝 | 誘電体分離半導体基板とその製造方法 |
US5013681A (en) * | 1989-09-29 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Navy | Method of producing a thin silicon-on-insulator layer |
JPH03280437A (ja) * | 1990-03-29 | 1991-12-11 | Toshiba Corp | 半導体装置およびその製造方法 |
US5240876A (en) * | 1991-02-22 | 1993-08-31 | Harris Corporation | Method of fabricating SOI wafer with SiGe as an etchback film in a BESOI process |
JP3017860B2 (ja) * | 1991-10-01 | 2000-03-13 | 株式会社東芝 | 半導体基体およびその製造方法とその半導体基体を用いた半導体装置 |
US5461250A (en) | 1992-08-10 | 1995-10-24 | International Business Machines Corporation | SiGe thin film or SOI MOSFET and method for making the same |
US5344524A (en) * | 1993-06-30 | 1994-09-06 | Honeywell Inc. | SOI substrate fabrication |
US5461243A (en) * | 1993-10-29 | 1995-10-24 | International Business Machines Corporation | Substrate for tensilely strained semiconductor |
JP3187269B2 (ja) | 1994-12-12 | 2001-07-11 | 株式会社ホンダロック | ロック装置 |
JP3361922B2 (ja) * | 1994-09-13 | 2003-01-07 | 株式会社東芝 | 半導体装置 |
US5710450A (en) * | 1994-12-23 | 1998-01-20 | Intel Corporation | Transistor with ultra shallow tip and method of fabrication |
JP3262747B2 (ja) * | 1996-09-17 | 2002-03-04 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
US6399970B2 (en) * | 1996-09-17 | 2002-06-04 | Matsushita Electric Industrial Co., Ltd. | FET having a Si/SiGeC heterojunction channel |
US5847419A (en) * | 1996-09-17 | 1998-12-08 | Kabushiki Kaisha Toshiba | Si-SiGe semiconductor device and method of fabricating the same |
DE59707274D1 (de) * | 1996-09-27 | 2002-06-20 | Infineon Technologies Ag | Integrierte CMOS-Schaltungsanordnung und Verfahren zu deren Herstellung |
US5891769A (en) * | 1997-04-07 | 1999-04-06 | Motorola, Inc. | Method for forming a semiconductor device having a heteroepitaxial layer |
US5906951A (en) * | 1997-04-30 | 1999-05-25 | International Business Machines Corporation | Strained Si/SiGe layers on insulator |
US6689211B1 (en) * | 1999-04-09 | 2004-02-10 | Massachusetts Institute Of Technology | Etch stop layer system |
JP2000277715A (ja) * | 1999-03-25 | 2000-10-06 | Matsushita Electric Ind Co Ltd | 半導体基板,その製造方法及び半導体装置 |
US6326279B1 (en) * | 1999-03-26 | 2001-12-04 | Canon Kabushiki Kaisha | Process for producing semiconductor article |
WO2001054202A1 (en) * | 2000-01-20 | 2001-07-26 | Amberwave Systems Corporation | Strained-silicon metal oxide semiconductor field effect transistors |
-
1999
- 1999-03-30 JP JP08783199A patent/JP4521542B2/ja not_active Expired - Fee Related
-
2000
- 2000-03-28 WO PCT/JP2000/001917 patent/WO2000060671A1/ja active IP Right Grant
- 2000-03-28 KR KR10-2001-7012200A patent/KR100447492B1/ko not_active IP Right Cessation
- 2000-03-28 CN CNB2005100743185A patent/CN100386863C/zh not_active Expired - Fee Related
- 2000-03-28 CN CNB008069034A patent/CN1210809C/zh not_active Expired - Fee Related
- 2000-03-28 EP EP00911430A patent/EP1174928A4/en not_active Withdrawn
- 2000-03-28 AU AU33306/00A patent/AU3330600A/en not_active Abandoned
- 2000-03-29 TW TW089105855A patent/TW557577B/zh not_active IP Right Cessation
-
2004
- 2004-08-18 US US10/920,432 patent/US20050017236A1/en not_active Abandoned
-
2008
- 2008-01-22 US US12/010,123 patent/US7579229B2/en not_active Expired - Fee Related
-
2009
- 2009-07-20 US US12/505,942 patent/US8304810B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03187269A (ja) * | 1989-12-18 | 1991-08-15 | Hitachi Ltd | 半導体装置 |
JPH06177375A (ja) * | 1992-12-10 | 1994-06-24 | Hitachi Ltd | 半導体装置及びその製造方法 |
JPH0982944A (ja) * | 1995-09-18 | 1997-03-28 | Toshiba Corp | 歪シリコン電界効果トランジスタ及びその製造方法 |
JPH09321307A (ja) * | 1996-05-29 | 1997-12-12 | Toshiba Corp | 半導体装置 |
JPH10270685A (ja) * | 1997-03-27 | 1998-10-09 | Sony Corp | 電界効果トランジスタとその製造方法、半導体装置とその製造方法、その半導体装置を含む論理回路および半導体基板 |
Also Published As
Publication number | Publication date |
---|---|
JP2000286418A (ja) | 2000-10-13 |
KR100447492B1 (ko) | 2004-09-07 |
US8304810B2 (en) | 2012-11-06 |
CN100386863C (zh) | 2008-05-07 |
EP1174928A4 (en) | 2007-05-16 |
KR20010110690A (ko) | 2001-12-13 |
US20050017236A1 (en) | 2005-01-27 |
CN1349662A (zh) | 2002-05-15 |
WO2000060671A1 (en) | 2000-10-12 |
TW557577B (en) | 2003-10-11 |
AU3330600A (en) | 2000-10-23 |
US20080206961A1 (en) | 2008-08-28 |
CN1716570A (zh) | 2006-01-04 |
EP1174928A1 (en) | 2002-01-23 |
US7579229B2 (en) | 2009-08-25 |
CN1210809C (zh) | 2005-07-13 |
US20090283839A1 (en) | 2009-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4521542B2 (ja) | 半導体装置および半導体基板 | |
US6921982B2 (en) | FET channel having a strained lattice structure along multiple surfaces | |
KR100392166B1 (ko) | 반도체 장치의 제조 방법 및 반도체 장치 | |
US8436336B2 (en) | Structure and method for a high-speed semiconductor device having a Ge channel layer | |
CN100397596C (zh) | 制备场效应晶体管横向沟道的方法及场效应晶体管 | |
US20040227169A1 (en) | Semiconductor devices and method for manufacturing the same | |
JP2000031491A (ja) | 半導体装置,半導体装置の製造方法,半導体基板および半導体基板の製造方法 | |
JP2014038898A (ja) | 半導体装置 | |
CN102194827A (zh) | 一种基于高介电常数材料的抗辐照soi器件及制备方法 | |
JP2002270834A (ja) | 半導体装置及びその製造方法 | |
CN104952871B (zh) | 一种混合晶向无结cmos结构 | |
JP2010141349A (ja) | 半導体装置の製造方法 | |
JP3600174B2 (ja) | 半導体装置の製造方法及び半導体装置 | |
JP2001044425A (ja) | 半導体装置 | |
CN102723341B (zh) | 一种混合晶面应变Si垂直沟道BiCMOS集成器件及制备方法 | |
CN102723342B (zh) | 一种混合晶面垂直沟道应变BiCMOS集成器件及制备方法 | |
CN102738155B (zh) | 一种混合晶面双多晶BiCMOS集成器件及制备方法 | |
CN102820305B (zh) | 一种混合晶面应变Si垂直沟道CMOS集成器件及制备方法 | |
CN102738165B (zh) | 一种混合晶面平面应变BiCMOS集成器件及制备方法 | |
CN102751282B (zh) | 一种基于晶面选择的应变BiCMOS集成器件及制备方法 | |
CN102723343B (zh) | 一种基于晶面选择的三多晶平面BiCMOS集成器件及制备方法 | |
WO2002103801A1 (en) | Structures and methods for a high-speed semiconductor device | |
CN102738163A (zh) | 一种双多晶SiGe HBT混合晶面BiCMOS集成器件及制备方法 | |
CN102738177A (zh) | 一种基于SOI衬底的应变Si BiCMOS集成器件及制备方法 | |
CN102751289A (zh) | 一种基于晶面选择的三应变SOI Si基BiCMOS集成器件及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060322 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100423 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140604 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |