[go: up one dir, main page]

CN100560502C - 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法 - Google Patents

一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法 Download PDF

Info

Publication number
CN100560502C
CN100560502C CN200710122132.1A CN200710122132A CN100560502C CN 100560502 C CN100560502 C CN 100560502C CN 200710122132 A CN200710122132 A CN 200710122132A CN 100560502 C CN100560502 C CN 100560502C
Authority
CN
China
Prior art keywords
film
ldhs
preparation
solution
layered double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710122132.1A
Other languages
English (en)
Other versions
CN101157475A (zh
Inventor
王连英
张英超
王祎鹏
尹平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN200710122132.1A priority Critical patent/CN100560502C/zh
Publication of CN101157475A publication Critical patent/CN101157475A/zh
Priority to PCT/CN2008/070857 priority patent/WO2009036660A1/zh
Application granted granted Critical
Publication of CN100560502C publication Critical patent/CN100560502C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/80Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
    • C01G53/82Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing zinc, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法,属于层状双金属氢氧化物技术领域。膜层LDHs的化学通式为:[M2+ 1-xM3+ x(OH)2]X+(An-)x/n·mH2O,;其中,M2+代表Mg2+、Ni2+、Zn2+中的任何一种,M3+代表Al3+、Fe3+中的任何一种,An-为NO3 -、Cl-、SO4 2-的任何一种,0.2≤x≤0.4,0≤m≤2。制备方法无需基片支撑,采用气液界面法,在溶液的表面张力和pH梯度共同作用下在空气-水界面处制备均匀致密透明的LDHs薄膜。优点在于:气液界面成膜,成膜过程无需基片支撑,克服了基片对LDHs薄膜制备的影响;室温反应,能耗低;并且设备要求简单、易于操作。

Description

一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法
所属领域
本发明属于层状双金属氢氧化物领域,特别提供了一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法,在空气-水界面处制备均匀致密透明的层状双金属氢氧化物薄膜。
背景技术
层状双金属氢氧化物也称类水滑石(LDHs),是一种重要的无机功能材料。LDHs具有层状结构,其主体层板元素组成、层间客体阴离子种类和数量等均有可调控性。这些特点使LDHs具有多种优异的物理化学特性,在离子交换、吸附、催化、高分子改性、光学材料、磁学材料、电学材料等许多领域展现出极为广阔的应用前景。目前,国内外对LDHs的研究和应用一般均局限于LDHs粉体材料,然而LDHs粉体材料存在着易流失、回收困难等缺点。膜材料相对于粉体材料,更有利于器件化,这将大大拓宽其在工业上的应用,而且对于取向性的薄膜,其电、光、磁等各方面的功能性都会有很大的提高。
与其它层状材料不同的是,LDHs不易制备成薄膜,因而阻碍了LDHs材料的一些应用开发以及器件化。目前文献报道的关于LDHs薄膜的制备方法有限,主要有一步合成法和两步合成法两大类。一步合成法的实例如文献Chem.Lett.,2005,34,1610中,Lei等首先将聚苯乙烯基片用浓硫酸进行磺化处理,之后利用尿素法在其表面制备得到了垂直取向致密的Mg-Al水滑石薄膜;文献Adv.Mater.,2006,18,3089中,Duan等人以阳极氧化铝/铝为基片,采用原位生长法制备得到了具有超疏水性能的Ni-Al水滑石薄膜。两步合成法如文献Adv.Mater.,2001,13,1263中,Gandner等人首先制备得到LDHs的胶体,之后将其浇铸沉积在玻璃基片上获得了烷氧基插层的镁铝LDHs膜;文献Thin Solid Films,2001,397,255中,Akihiko等人利用LB的方法首先在云母基片上负载了带负电荷的钌金属配合物,之后利用其与带正电荷LDHs粒子间的静电作用制备了Ni-Al水滑石与含钌金属配合物的杂化薄膜;文献Chem.commun.,2007,2,123中,Wang等人首先制备得到均分散的LDHs纳米粒子,然后采用“溶剂蒸发法”将其有序组装制备LDHs薄膜。
发明内容
本发明的目的在于:提供一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法,无需基片支撑、均匀致密透明的双金属氢氧化物薄膜的制备方法-气液界面法,在溶液的表面张力和pH梯度共同作用下在空气-水界面处制备均匀致密透明的LDHs薄膜,以实现多功能材料LDHs的器件化。
本发明提供的均匀致密透明的层状双金属氢氧化物薄膜,膜是在空气-水的界面处形成的,成膜过程中无需基片的支撑,克服了基片对LDHs薄膜制备的影响。膜层的化学通式为
[M2+ 1-xM3+ x(OH)2]X+(An-)x/n·mH2O,
其中M2+代表Mg2+、Ni2+、Zn2+中的任何一种,M3+代表Al3+、Fe3+中的任何一种,An-为NO3 -、Cl-、SO4 2-中的任何一种,0.2≤x≤0.33,0≤m≤2。
该LDHs薄膜均匀、致密,光滑,膜的厚度在微米级,随着反应时间的延长而增加。
本发明的层状双金属氢氧化物薄膜具体合成步骤如下:
A、配制可溶性二价无机盐M2+Y和可溶性三价无机盐M3+Y的混合液,溶液中总的金属离子浓度为0.1-0.3mol/L,二价三价金属阳离子摩尔浓度比(M2+/M3+)为2-4∶1;
B、配制质量百分比浓度为0.5-2%的稀氨水溶液;
C、量取等体积的盐溶液和碱溶液于培养皿中,将其置于密封的干燥器中,20-30℃下反应4-24h。反应结束后将空气-水界面处的膜转移到去CO2水中以洗去附着的未反应的混合盐,洗涤1-5次后将其转移到干净的基片上10~40℃下进行干燥。所述的基片为载玻片、硅片或二氧化硅等。
步骤A中二价金属阳离子M2+为Ni2+、Zn2+中的一种,三价金属阳离子M3+为Al3+、Fe3+中的一种。阴离子Y可为Cl-、NO3 -、SO4 2-等无机酸根阴离子,较佳的为NO3 -
将上述材料进行XRD、IR、TG-DTA、元素分析、FESEM表征证明利用该方法成功制备得到了均匀致密透明的LDHs薄膜。膜磨碎后的粉体的IR证明层间阴离子为硝酸根,XRD谱图中也出现了LDHs材料特有的001系列衍射峰,这表明得到的是典型的硝酸根型LDHs。膜的SEM照片显示LDHs薄膜表面光滑致密平整,粒径为纳米量级且高度有序,均匀分布。
本发明优点在于:室温反应,能源消耗低;气液界面成膜,成膜过程中无需基片的支撑,克服了基片对LDHs薄膜制备的影响,成膜后可以转移到硅片、玻璃等任意的基片上;膜表面光滑平整,宏观和微观上都为高度有序的纳米结构;可根据需要调控LDHs层板金属元素及层间阴离子的种类和组成,得到多功能LDHs薄膜;一步反应,设备简单,操作容易。
附图说明
图1为气液界面反应的示意图。
图2为实施例1所获得的Ni2AlNO3LDHs薄膜磨碎后粉末的XRD谱图,横坐标为2θ,单位:度;纵坐标为强度。
图3为实施例1所获得的Ni2AlNO3LDHs薄膜磨碎后粉末的FT-IR谱图,横坐标为波数,单位:cm-1;纵坐标为透过率。
图4为实施例1所获得的Ni2AlNO3LDHs薄膜放大10,000的场发射电子扫描电子显微镜(FESEM)照片。
图5为实施例1所获得的Ni2AlNO3LDHs薄膜放大100,000的场发射电子扫描电子显微镜(FESEM)照片。
具体实施方式
实施例1
步骤A:将1.1604g(0.004mol)的固体Ni(NO3)2.6H2O和0.7503g(0.002mol)的固体Al(NO3)3.9H2O溶于20ml的去CO2水中。
步骤B:量取0.54ml质量百分比浓度为28%的浓氨水,稀释到20ml以得到质量百分比浓度为0.68%的稀氨水。
步骤C:将混合盐和碱液分别置于不同的培养皿中,在密封的干燥器中进行反应,反应温度25℃,反应时间为24h,部分盐溶液表面的膜取出后用去CO2水洗涤三次,之后转移到洗涤干净的硅基片上低温下进行干燥,得到膜样品。剩余膜样品取出后离心洗涤,60℃下干燥24h并研磨,得到Ni2AlNO3LDHs粉末。
膜粉末的IR谱图中在1384cm-1出现的强而尖锐的特征吸收峰为硝酸根的v3反对称伸缩振动峰,而在XRD谱图中2θ为10°、20°以及61°附近出现了LDHs特有的系列衍射峰,产物的粒径为4.75nm.FESEM照片显示膜表面光滑致密平整,粒子粒径结果与由XRD计算的基本一致。
实施例2
步骤A:将4.3360g(0.016mol)的固体Zn(NO3)2.6H2O和3.0012g(0.008mol)的固体Al(NO3)3.9H2O溶于80ml的去CO2水中。
步骤B:量取2.16ml质量百分比浓度为28%的浓氨水,稀释到80ml以得到质量百分比浓度为0.68%的稀氨水。
步骤C:将混合盐和碱液分别置于不同的培养皿中,在密封的干燥器中进行反应,反应温度25℃,反应时间为24h.部分盐溶液表面的膜取出后用去CO2水洗涤三次,之后转移到洗涤干净的硅基片上低温下进行干燥,得到膜样品。剩余膜样品取出后离心洗涤,60℃下干燥24h并研磨,得到Zn2AlNO3LDHs粉末。
膜粉末的IR谱图中在1384cm-1出现的强而尖锐的特征吸收峰为硝酸根的v3反对称伸缩振动峰,而在XRD谱图中2θ为10°、20°以及61°附近出现了LDHs特有的系列衍射峰。FESEM照片显示膜由纳米级的粒子组成,表面光滑致密平整。
实施例3
步骤A:将1.1604g(0.004mol)的固体Ni(NO3)2.6H2O和0.8080g(0.002mol)的固体Fe(NO3)3.9H2O溶于80ml的去CO2水中。
步骤B:量取1.25ml质量百分比浓度为28%的浓氨水,稀释到20ml以得到质量百分比浓度为1.57%的稀氨水。
步骤C:将混合盐和碱液分别置于不同的培养皿中,在密封的干燥器中进行反应,反应温度25℃,反应时间为24h,部分盐溶液表面的膜取出后用去CO2水洗涤三次,之后转移到洗涤干净的硅基片上低温下进行干燥,得到膜样品。剩余膜样品取出后离心洗涤,60℃下干燥24h并研磨,得到Ni2FeNO3LDHs粉末。
膜粉末的IR谱图中在1384cm-1出现的强而尖锐的特征吸收峰为硝酸根的v3反对称伸缩振动峰,而在XRD谱图中2θ为10°、20°以及61°附近出现了LDHs特有的系列衍射峰。FESEM照片显示膜由纳米级的粒子组成,表面光滑致密平整。

Claims (2)

1、一种制备均匀致密透明的层状双金属氢氧化物薄膜的方法,其特征在于:
A、配制可溶性二价无机盐M2+An-和可溶性三价无机盐M3+An-的混合液,溶液中总的金属离子浓度为0.1-0.3mol/L,二价三价金属阳离子摩尔浓度比为2-4∶1,An-为NO3 -、Cl-、SO4 2-无机酸根阴离子;
B、配制质量百分比浓度为0.5-2%的稀氨水溶液;
C、量取等体积的盐溶液和碱溶液于培养皿中,将其置于密封的干燥器中,20-30℃下反应4-24h;反应结束后将空气-水界面处的膜转移到去CO2的水中,以洗去附着的未反应的混合盐,洗涤1-5次后将其转移到干净的基片上10-40℃下进行干燥,所述的基片为载玻片、硅片或二氧化硅;
制得的膜层LDHs的化学通式为:[M2+ 1-xM3+ x(OH)2]x+(An-)x/n·mH2O,其中M2+代表Mg2+、Ni2+、Zn2+中的任何一种,M3+代表Al3+、Fe3+中的任何一种,An-为NO3 -、Cl-、SO4 2-的任何一种,0.2≤x≤0.4,0≤m≤2。
2、根据权利要求1所述的方法,其特征在于,步骤A中的M2+为Ni2+、Zn2+中的一种,M3+为Al3+或Fe3+中的一种,An-为NO3 -
CN200710122132.1A 2007-09-21 2007-09-21 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法 Expired - Fee Related CN100560502C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200710122132.1A CN100560502C (zh) 2007-09-21 2007-09-21 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法
PCT/CN2008/070857 WO2009036660A1 (fr) 2007-09-21 2008-04-30 Procédé de préparation de film d'hydroxydes doubles lamellaires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710122132.1A CN100560502C (zh) 2007-09-21 2007-09-21 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN101157475A CN101157475A (zh) 2008-04-09
CN100560502C true CN100560502C (zh) 2009-11-18

Family

ID=39305728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710122132.1A Expired - Fee Related CN100560502C (zh) 2007-09-21 2007-09-21 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN100560502C (zh)
WO (1) WO2009036660A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100560502C (zh) * 2007-09-21 2009-11-18 北京化工大学 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法
CN101550547B (zh) * 2009-04-14 2010-11-03 北京化工大学 一种纳米铁薄膜制备方法
TWI414483B (zh) * 2009-09-22 2013-11-11 Univ Nat Chunghsing 快速製備層狀雙氫氧化物的方法
CN101818346A (zh) * 2010-04-15 2010-09-01 北京化工大学 一种取向ZnO纳米棒薄膜及其制备方法
EP3235789A4 (en) * 2014-12-17 2018-08-15 NGK Insulators, Ltd. Layered double hydroxide film and composite material containing layered double hydroxide
CN105334251B (zh) * 2015-11-16 2018-05-25 安徽师范大学 类银耳状的Fe-Ni双金属氢氧化物、析氧电极及其制备方法和应用
CN108034988B (zh) * 2017-12-08 2019-09-06 山东理工大学 以多孔阳极氧化铝模板为基底的三维类水滑石薄膜及其制备方法
CN108046298B (zh) * 2017-12-20 2021-05-25 国标(北京)检验认证有限公司 浓缩镁同位素氧化物的纯化方法
CN113278986B (zh) * 2021-04-08 2022-04-01 深圳大学 一种c轴取向NiFe-LDH薄膜电催化剂及其制备方法
CN115124061A (zh) * 2022-06-07 2022-09-30 秦迎 一种聚合物改性类水滑石纳米复合材料及其制备方法
CN116943453B (zh) * 2023-08-03 2024-11-26 中南大学 一种金属多酚网络-层状双金属氢氧化物的油水分离膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003901788A0 (en) * 2003-04-15 2003-05-01 Commonwealth Scientific And Industrial Research Organisation Production of layered double hydroxides
CN1222467C (zh) * 2003-10-23 2005-10-12 浙江大学 一种制备双金属氧化物和水滑石的方法
CN100427401C (zh) * 2005-12-29 2008-10-22 北京化工大学 一种高取向透明双羟基复合金属氧化物薄膜的制备方法
CN100390066C (zh) * 2006-10-12 2008-05-28 北京化工大学 一种二氧化锰/水滑石无机纳米片复合超薄膜及其制备方法
CN100560502C (zh) * 2007-09-21 2009-11-18 北京化工大学 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Large continuous, transparent and orientedself-supportingfilmsof layered double hydroxides withtunablechemicalcomposition. Lianying Wang et al.Chemical Communications,No.2. 2006
Large continuous, transparent and orientedself-supportingfilmsof layered double hydroxides withtunablechemicalcomposition. Lianying Wang et al.Chemical Communications,No.2. 2006 *

Also Published As

Publication number Publication date
WO2009036660A1 (fr) 2009-03-26
CN101157475A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
CN100560502C (zh) 一种均匀致密透明的层状双金属氢氧化物薄膜及其制备方法
CN100572600C (zh) 垂直基底生长的环糊精插层水滑石薄膜及其制备方法
CN103599769B (zh) 一种ZnSn(OH)6纳米立方颗粒/石墨烯三明治结构复合光催化剂
CN103072968B (zh) 碳纳米复合材料及其制备方法
CN101245151B (zh) 一种水滑石/聚合物复合自支撑薄膜及其制备方法
CN104591233B (zh) 一种氧化镁纳米晶包覆石墨烯复合材料及其制备方法
CN108358234B (zh) 一种羟基氯化铜纳米片及其制备方法
CN105688867B (zh) 一种六棱柱型石墨烯‑金属有机框架复合材料及其制备方法
CN101274847A (zh) 一种尖晶石铁氧体磁性中空微球及其制备方法
CN112341631B (zh) 一种基于模板导向法合成ZnAl-MOF-LDH纳米材料的方法
CN102259907A (zh) 多孔氧化锌纳米材料及其制备方法
CN103408055A (zh) 一种球形Cu2O多孔吸附材料的常温制备方法
CN104671289B (zh) 一种Fe2O3纳米片及其制备方法
CN101544355A (zh) 一种层状双羟基复合金属氧化物花状微球的水热制备方法
CN108855217A (zh) 一种铜基金属有机骨架纳米薄片的制备方法及其应用
CN103011187B (zh) 纳米级CaO·3B2O3·4H2O的制备方法
CN102181855A (zh) 一种形貌可控尖晶石薄膜及其制备方法
CN103552988A (zh) 纤维分级结构的层状双氢氧化物基复合材料及其制备方法
CN102923669A (zh) 一种具有结构可逆转变性质的苯甲酸根插层层状过渡金属氢氧化物一维纳米材料及制备方法
CN103482682B (zh) 一种hepes分子引导的多孔氧化锌微球的制备方法
JP2008290913A (ja) 水酸化コバルト・鉄結晶および水酸化コバルト・鉄単層ナノシートならびにそれらの製造方法
CN102650065A (zh) 原位生长于铝基底上的杯芳烃插层水滑石薄膜及其制备方法
CN106006687B (zh) 一种花球层状双金属氢氧化物及其用途
WO2007073639A1 (fr) Procede de preparation de film mince transparent fortement oriente a double couche d'hydroxyde
CN109293940B (zh) 一维hkust-1纳米带及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091118

Termination date: 20100921