[go: up one dir, main page]

CN100377334C - Word line structure of split gate flash memory unit and manufacturing method thereof - Google Patents

Word line structure of split gate flash memory unit and manufacturing method thereof Download PDF

Info

Publication number
CN100377334C
CN100377334C CNB031530095A CN03153009A CN100377334C CN 100377334 C CN100377334 C CN 100377334C CN B031530095 A CNB031530095 A CN B031530095A CN 03153009 A CN03153009 A CN 03153009A CN 100377334 C CN100377334 C CN 100377334C
Authority
CN
China
Prior art keywords
layer
flash memory
word line
manufacturing
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB031530095A
Other languages
Chinese (zh)
Other versions
CN1581463A (en
Inventor
喻中一
罗际兴
蔡嘉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to CNB031530095A priority Critical patent/CN100377334C/en
Publication of CN1581463A publication Critical patent/CN1581463A/en
Application granted granted Critical
Publication of CN100377334C publication Critical patent/CN100377334C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

一种分离栅极快闪内存单元(SplitGateFlashMemoryCell)的字符线(WordLine)结构及其制造方法。此方法先提供分离栅极快闪内存单元的栅极结构,其中此栅极结构上形成有字符线的材料层。再在此字符线材料层上形成覆盖层。接着,利用化学机械研磨(CMP)技术移除部分的覆盖层与部分的字符线材料层。在暴露的字符线材料层的表面上形成氧化层后,去除剩下的覆盖层及其下方的字符线材料层,从而形成分离栅极快闪内存单元的方型(Box-shape)字符线。

Figure 03153009

A word line structure of a split gate flash memory cell and a manufacturing method thereof. The method first provides a gate structure of a split gate flash memory cell, wherein a material layer of a word line is formed on the gate structure. A covering layer is then formed on the word line material layer. Next, a chemical mechanical polishing (CMP) technique is used to remove part of the covering layer and part of the word line material layer. After an oxide layer is formed on the surface of the exposed word line material layer, the remaining covering layer and the word line material layer below are removed, thereby forming a box-shaped word line of the split gate flash memory cell.

Figure 03153009

Description

分离栅极快闪内存单元的字符线结构及其制造方法 Word line structure of split gate flash memory unit and manufacturing method thereof

技术领域technical field

本发明涉及一种分离栅极快闪内存单元(Split Gate Flash Memory Cell)的字符线(Word Line)及其制造方法,特别涉及一种利用化学机械研磨(CMP)技术来制造分离栅极快闪内存单元的方型(Box-shape)字符线的方法。The present invention relates to a split gate flash memory unit (Split Gate Flash Memory Cell) word line (Word Line) and its manufacturing method, in particular to a chemical mechanical polishing (CMP) technology to manufacture split gate flash The method of the square (Box-shape) word line of the memory unit.

背景技术Background technique

在闪存元件中,分离栅极闪存元件与堆栈栅极闪存元件相比之下,不仅体积较微小,而且更省电。因此,目前分离栅极闪存已成为相当受欢迎的存储元件。在分离栅极闪存中,通常利用多晶硅间隙壁来做为字符线,来降低分离栅极闪存的尺寸。Among the flash memory devices, compared with the stacked gate flash memory device, the split gate flash memory device is not only smaller in size, but also saves more power. Therefore, split-gate flash memory has become a very popular storage device at present. In the split gate flash memory, polysilicon spacers are usually used as word lines to reduce the size of the split gate flash memory.

请参照图1至图7,图1至图7为现有分离栅极快闪内存单元的字符线的工艺剖面图。首先,在半导体的基材100上形成依序堆栈的氧化层102、多晶硅层104以及氮化层106。其中,氧化层102以及多晶硅层104用来制作浮置栅极(Floating Gate)的材料层。再利用微影与蚀刻工艺定义氮化层106与多晶硅层104,移除部分的氮化层106以及部分的多晶硅层104,借以形成开口108,从而提供制作部分的内存栅极元件的区域。其中,此开口108并未暴露出氧化层102,而且开口108在多晶硅层104的区域的侧壁成倾斜状,形成凹槽状结构,如图1所示。Please refer to FIG. 1 to FIG. 7 . FIG. 1 to FIG. 7 are process cross-sectional views of word lines of conventional split-gate flash memory cells. Firstly, an oxide layer 102 , a polysilicon layer 104 and a nitride layer 106 are sequentially stacked on a semiconductor substrate 100 . Wherein, the oxide layer 102 and the polysilicon layer 104 are used to make a material layer of a floating gate (Floating Gate). The nitride layer 106 and the polysilicon layer 104 are defined by lithography and etching processes, and part of the nitride layer 106 and part of the polysilicon layer 104 are removed to form an opening 108 to provide a region for forming part of the memory gate device. Wherein, the opening 108 does not expose the oxide layer 102 , and the sidewall of the opening 108 in the region of the polysilicon layer 104 is inclined to form a groove-like structure, as shown in FIG. 1 .

开口108形成后,先利用沉积与回蚀刻的方式在开口108的侧壁上形成氮化硅间隙壁109。再同样利用沉积与回蚀刻的方式在开口108中的氮化硅间隙壁109上形成氧化硅间隙壁110,所形成的结构如图2所示。完成氧化硅间隙壁110后,利用微影及蚀刻工艺去除开口108中所暴露的多晶硅层104,从而暴露出部分的氧化层102。接着,形成氧化硅间隙壁114,而同时移除了开口中暴露的氧化层102,进而暴露出部分的基材100。此时,进行对开口108中暴露出的基材100的离子布植步骤,借以在基材100中形成源极112,如图3所示。After the opening 108 is formed, silicon nitride spacers 109 are formed on the sidewalls of the opening 108 by means of deposition and etch-back. Then, the silicon oxide spacer 110 is formed on the silicon nitride spacer 109 in the opening 108 by means of deposition and etching back, and the formed structure is shown in FIG. 2 . After the silicon oxide spacer 110 is completed, the polysilicon layer 104 exposed in the opening 108 is removed by lithography and etching processes, thereby exposing a portion of the oxide layer 102 . Next, a silicon oxide spacer 114 is formed, and at the same time, the oxide layer 102 exposed in the opening is removed, thereby exposing a portion of the substrate 100 . At this time, an ion implantation step is performed on the substrate 100 exposed in the opening 108 , so as to form the source electrode 112 in the substrate 100 , as shown in FIG. 3 .

源极112形成后,利用沉积的方式在开口108中填入多晶硅层116,其中此多晶硅层116覆盖在所暴露的基材100、氧化硅间隙壁114以及部分的氧化硅间隙壁110上,并与源极112接触。接着,再次利用回蚀刻的方式去除多余的多晶硅层116,而仅留下开口108内的多晶硅层116,且暴露出部分的氧化硅间隙壁110。此时,已完成了闪存的源极112的内部连线布植。之后,利用热氧化方式进行多晶硅层116表面的氧化,借以在多晶硅层116的表面形成氧化层118。待氧化层118形成后,去除其余的氮化层106、部分的多晶硅层104、部分的氧化层102以及氮化硅间隙壁109,从而形成分离栅极快闪内存单元的栅极结构120,如图4所示。After the source electrode 112 is formed, a polysilicon layer 116 is filled in the opening 108 by deposition, wherein the polysilicon layer 116 covers the exposed substrate 100, the silicon oxide spacer 114 and part of the silicon oxide spacer 110, and contact with source 112 . Next, the excess polysilicon layer 116 is removed by etching back again, leaving only the polysilicon layer 116 in the opening 108 and exposing part of the silicon oxide spacers 110 . At this point, the internal connection implantation of the source 112 of the flash memory has been completed. After that, the surface of the polysilicon layer 116 is oxidized by thermal oxidation, so as to form an oxide layer 118 on the surface of the polysilicon layer 116 . After the oxide layer 118 is formed, the rest of the nitride layer 106, part of the polysilicon layer 104, part of the oxide layer 102 and the silicon nitride spacer 109 are removed, thereby forming the gate structure 120 of the split-gate flash memory unit, as Figure 4 shows.

然后,先利用沉积方式形成氧化层122覆盖在栅极结构120以及基材100上,再利用沉积方式形成多晶硅层124覆盖在氧化层122上,从而形成如图5所示的结构。接着,在多晶硅层124上覆盖一层氧化层126,其中氧化层126用来作为后续的间隙壁蚀刻的牺牲罩幕,所形成的结构如图6所示。Then, an oxide layer 122 is formed to cover the gate structure 120 and the substrate 100 by deposition, and then a polysilicon layer 124 is formed to cover the oxide layer 122 by deposition, thereby forming the structure shown in FIG. 5 . Next, an oxide layer 126 is covered on the polysilicon layer 124, wherein the oxide layer 126 is used as a sacrificial mask for subsequent spacer etching, and the formed structure is shown in FIG. 6 .

此时,可开始制作分离栅极闪存元件的字符线,先进行穿透性(BreakThrough)蚀刻步骤,将部分的氧化层126移除,但仍有部分的氧化层126残留在多晶硅层124的侧壁旁。再进行回蚀刻步骤,从而将部分的氧化层126以及部分的多晶硅层124去除,借以在栅极结构120旁形成多晶硅间隙壁128。其中,所形成的多晶硅间隙壁128即为分离栅极快闪内存单元130的字符线。由于栅极结构120及氧化层126的结构和回蚀刻的交互作用,而导致在所形成的多晶硅间隙壁128的表面上产生凹陷区132,进而在多晶硅间隙壁128上形成栅栏状结构134。At this point, the word line of the split-gate flash memory element can be fabricated, and a breakthrough (BreakThrough) etching step is first performed to remove part of the oxide layer 126, but there is still part of the oxide layer 126 remaining on the side of the polysilicon layer 124. next to the wall. An etch-back step is then performed to remove part of the oxide layer 126 and part of the polysilicon layer 124 to form a polysilicon spacer 128 next to the gate structure 120 . Wherein, the formed polysilicon spacer 128 is the word line of the split-gate flash memory unit 130 . Due to the interaction between the structure of the gate structure 120 and the oxide layer 126 and the etch back, a recessed region 132 is formed on the surface of the formed polysilicon spacer 128 , thereby forming a fence structure 134 on the polysilicon spacer 128 .

上述现有技术利用蚀刻方式制造分离栅极快闪内存单元的字符线时,不仅难以有效控制内存单元的关键尺寸,而且作为字符线的间隙壁无法形成较佳的方型结构,反而常在间隙壁上形成栅栏状结构,严重影响内存单元的电性品质与工艺可靠度。When the above-mentioned prior art utilizes the etching method to manufacture word lines of split gate flash memory cells, not only is it difficult to effectively control the key dimensions of the memory cells, but also the spacers of the word lines cannot form a better square structure. A fence-like structure is formed on the wall, which seriously affects the electrical quality and process reliability of the memory unit.

发明内容Contents of the invention

因此本发明的目的就是提供一种分离栅极快闪内存单元的字符线的制造方法,其为在字符线材料层形成后,在此字符线材料层上形成覆盖层,再利用化学机械研磨技术平坦化字符线材料层,进而可获得方型结构的字符线。Therefore the object of the present invention is to provide a kind of manufacturing method of the word line of split gate flash memory cell, and it is after the word line material layer is formed, forms cover layer on this word line material layer, utilizes chemical mechanical polishing technology again The word line material layer is flattened, and then the word line with a square structure can be obtained.

本发明的另一目的是提供一种分离栅极快闪内存单元的制造方法,借由调整化学机械研磨工艺的参数,来提升化学机械研磨的机械应力,并辅以字符线材料层上的覆盖层,这样一来,不仅可顺利平坦化覆盖在栅极结构的字符线材料层,还有利于去除多余的字符线材料层,从而制造出方型结构的字符线。Another object of the present invention is to provide a method for manufacturing a split gate flash memory unit, by adjusting the parameters of the chemical mechanical polishing process, the mechanical stress of chemical mechanical polishing is improved, and the covering on the word line material layer is supplemented In this way, not only the word line material layer covering the gate structure can be smoothly planarized, but also the redundant word line material layer can be removed, so as to manufacture the word line with square structure.

根据本发明的上述目的,提出一种分离栅极快闪内存单元的字符线的制造方法。According to the above objectives of the present invention, a method for manufacturing word lines of split gate flash memory cells is proposed.

依照本发明一较佳实施例,本发明的分离栅极快闪内存单元的字符线的制造方法至少包括下列步骤:首先,提供一基材,其中此分离栅极快闪内存单元的一栅极结构已形成于部分的基材上,而且上述栅极结构的侧壁至少包括一间隙壁,其中此间隙壁的材料可为氧化硅。再形成一介电层位于上述的栅极结构与基材上,而此介电层的材料可为氧化硅。接着,形成一导电层位于上述的介电层上,此导电层的材料较佳为多晶硅。待此导电层形成后,形成一覆盖层位于此导电层上,其中覆盖层的材料较佳为氮化硅。然后,利用化学机械研磨的方式进行一平坦化步骤直至暴露出上述的间隙壁为止。此时,去除平坦化步骤后剩余的覆盖层及覆盖层下方的导电层,即完成分离栅极快闪内存单元的方型结构字符线。According to a preferred embodiment of the present invention, the manufacturing method of the word line of the split-gate flash memory unit of the present invention at least includes the following steps: first, a substrate is provided, wherein a gate of the split-gate flash memory unit The structure has been formed on part of the base material, and the sidewall of the gate structure includes at least one spacer, wherein the material of the spacer can be silicon oxide. A dielectric layer is formed on the above-mentioned gate structure and substrate, and the material of the dielectric layer can be silicon oxide. Next, a conductive layer is formed on the above-mentioned dielectric layer, and the material of the conductive layer is preferably polysilicon. After the conductive layer is formed, a cover layer is formed on the conductive layer, wherein the material of the cover layer is preferably silicon nitride. Then, a planarization step is performed by means of chemical mechanical polishing until the above-mentioned spacers are exposed. At this time, the remaining cover layer and the conductive layer under the cover layer after the planarization step are removed, that is, the word line of the square structure of the split-gate flash memory unit is completed.

根据本发明的上述目的,提出一种分离栅极快闪内存单元的字符线结构,至少包括:分离栅极快闪内存单元的一栅极结构位于一基材上;以及一方型间隙壁位于上述的栅极结构的一侧壁上。According to the above object of the present invention, a word line structure of a split gate flash memory unit is proposed, at least including: a gate structure of the split gate flash memory unit is located on a substrate; and a square spacer is located on the above-mentioned on one side wall of the gate structure.

借由增加化学机械研磨工艺的机械应力,以及适当调整覆盖层的厚度,相当容易就可获得具垂直侧壁的字符线结构,而且存储元件的关键尺寸也可获得有效控制。再者,由于字符线材料层经平坦化步骤后,剩余的字符线材料层具有平坦表面,因此不会在字符线上形成栅栏状结构。这样一来,不仅可大幅改善存储元件的电性品质,还可提升工艺合格率。By increasing the mechanical stress of the chemical mechanical polishing process and properly adjusting the thickness of the covering layer, a word line structure with vertical sidewalls can be obtained quite easily, and the critical dimensions of the memory element can also be effectively controlled. Furthermore, after the word line material layer is planarized, the remaining word line material layer has a flat surface, so no fence-like structure will be formed on the word line. In this way, not only the electrical quality of the storage element can be greatly improved, but also the process yield can be improved.

本发明所揭露的分离栅极快闪内存单元的字符线及其制造方法,除了可有效控制内存单元的关键尺寸外,还可顺利形成方型结构的字符线。The word line of the split-gate flash memory unit disclosed by the present invention and its manufacturing method can not only effectively control the key size of the memory unit, but also smoothly form the word line with a square structure.

附图说明Description of drawings

下面结合附图对本发明的具体实施方式作进一步详细的描述。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.

附图中,In the attached picture,

图1至图7为现有分离栅极快闪内存单元的字符线的工艺剖面图;1 to 7 are process cross-sectional views of word lines of existing split-gate flash memory cells;

图8至图15为依照本发明一较佳实施例的一种分离栅极快闪内存单元的字符线的工艺剖面图。8 to 15 are process cross-sectional views of a word line of a split-gate flash memory cell according to a preferred embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的叙述更加详尽与完备请参照图8至图15,图8至图15为依照本发明一较佳实施例的一种分离栅极快闪内存单元的字符线的工艺剖面图。首先,利用例如热氧化的方式在半导体的基材200上形成栅极介电层202,其中栅极介电层202的材料可例如为氧化硅等。再利用例如化学气相沉积(CVD)的方式形成导电层204,其中导电层204的材料较佳为多晶硅。上述的栅极介电层202与导电层204为提供制作浮置栅极的材料层。接着,利用例如化学气相沉积的方式形成氮化层206覆盖在导电层204上。待氮化层206形成后,利用例如微影以及蚀刻工艺进行定义步骤,以去除部分的氮化层206以及部分的导电层204,但并不暴露出栅极介电层202,从而在氮化层206与导电层204中形成开口208。其中,开口208用来提供制作部分的内存栅极元件的区域,而且开口208在导电层204区域内的侧壁成倾斜状,如图8所示。In order to make the description of the present invention more detailed and complete, please refer to FIG. 8 to FIG. 15 . FIG. 8 to FIG. 15 are process cross-sectional views of a word line of a split-gate flash memory cell according to a preferred embodiment of the present invention. Firstly, a gate dielectric layer 202 is formed on the semiconductor substrate 200 by thermal oxidation, wherein the material of the gate dielectric layer 202 can be, for example, silicon oxide. The conductive layer 204 is then formed by chemical vapor deposition (CVD), wherein the material of the conductive layer 204 is preferably polysilicon. The above-mentioned gate dielectric layer 202 and conductive layer 204 are material layers for making the floating gate. Next, a nitride layer 206 is formed to cover the conductive layer 204 by means of, for example, chemical vapor deposition. After the nitride layer 206 is formed, a defined step is performed by using, for example, lithography and etching processes to remove part of the nitride layer 206 and part of the conductive layer 204, but the gate dielectric layer 202 is not exposed, so that the An opening 208 is formed in layer 206 and conductive layer 204 . The opening 208 is used to provide a region for forming part of the memory gate element, and the sidewall of the opening 208 in the region of the conductive layer 204 is inclined, as shown in FIG. 8 .

开口208形成后,先共形(Conformally)沉积一层介电薄膜(仅绘示其中的间隙壁210)覆盖在氮化层206与开口208所暴露的导电层204上,其中此介电薄膜的材料可例如为氮化硅。再利用例如回蚀刻的方式去除部分的介电薄膜,从而在开口208的侧壁上形成间隙壁210。接着,利用例如化学气相沉积的方式,并使用例如四乙基氧硅烷(TEOS)为原料,共形沉积另一介电薄膜(仅绘示其中的间隙壁212)覆盖在氮化层206、间隙壁210以及所暴露出的导电层204上。其中,此另一介电薄膜的材料可例如为氧化硅。再利用例如回蚀刻的方式去除此另一介电薄膜的一部分,从而在开口208中的间隙壁210上形成间隙壁212,如图9所示。After the opening 208 is formed, a dielectric film (only the spacer 210 is shown) is conformally deposited on the nitride layer 206 and the conductive layer 204 exposed by the opening 208, wherein the dielectric film The material can be, for example, silicon nitride. Part of the dielectric film is then removed by, for example, etching back, so as to form a spacer 210 on the sidewall of the opening 208 . Next, using chemical vapor deposition, and using tetraethyloxysilane (TEOS) as a raw material, another dielectric film (only the spacer 212 is shown) is conformally deposited on the nitride layer 206, the gap wall 210 and the exposed conductive layer 204 . Wherein, the material of the another dielectric film may be, for example, silicon oxide. A part of the other dielectric film is then removed by etching back, so that a spacer 212 is formed on the spacer 210 in the opening 208 , as shown in FIG. 9 .

间隙壁212形成后,利用例如微影以及蚀刻工艺去除开口208中暴露的导电层204,而暴露出底下的栅极介电层202。接下来,先利用例如化学气相沉积的方式共形沉积介电薄膜(仅绘示其中的间隙壁214)覆盖在氮化层206、间隙壁212以及开口208中暴露出的栅极介电层202上。其中,此介电薄膜的材料较佳为氧化硅。再利用回蚀刻的方式移除部分的介电薄膜,并同时去除开口208中暴露的栅极介电层202,从而在间隙壁212的部分侧壁上形成间隙壁214,而且暴露出部分的基材200。此时,对开口208中暴露的基材200进行离子布植步骤,从而在基材200中形成源极216,所形成的结构如图10所示。After the spacers 212 are formed, the conductive layer 204 exposed in the opening 208 is removed by using, for example, lithography and etching processes, so as to expose the underlying gate dielectric layer 202 . Next, a dielectric film (only the spacer 214 is shown) is conformally deposited by chemical vapor deposition to cover the gate dielectric layer 202 exposed in the nitride layer 206, the spacer 212 and the opening 208. superior. Wherein, the material of the dielectric film is preferably silicon oxide. Part of the dielectric film is removed by etching back, and the gate dielectric layer 202 exposed in the opening 208 is removed at the same time, so that a spacer 214 is formed on a part of the sidewall of the spacer 212, and part of the base is exposed. Material 200. At this time, an ion implantation step is performed on the substrate 200 exposed in the opening 208 , so as to form the source electrode 216 in the substrate 200 , and the formed structure is shown in FIG. 10 .

然后,利用例如化学气相沉积的方式形成导电材料层(仅绘示其中的导电层218)覆盖在部分的间隙壁212、间隙壁214以及开口208中暴露出的基材200上。其中,此导电材料层的材料较佳为多晶硅。再利用例如回蚀刻技术,移除部分的导电层218,并仅保留位于开口208内的导电材料层,从而在开口208中形成与源极216接触的导电层218,借以布植出闪存的源极216的内部连线。其中,导电层218覆盖暴露出的基材200、间隙壁214以及部分的间隙壁212。导电层218形成后,利用例如热氧化法使导电层218的表面产生氧化,从而在导电层218的表面上形成氧化层220。在导电层218表面上形成氧化层220后,去除剩余的氮化层206、部分的导电层204、部分的栅极介电层202以及间隙壁210,从而形成如图11所示的栅极结构222。Then, a conductive material layer (only the conductive layer 218 is shown) is formed to cover the part of the spacer 212 , the spacer 214 and the substrate 200 exposed in the opening 208 by means of, for example, chemical vapor deposition. Wherein, the material of the conductive material layer is preferably polysilicon. Using, for example, an etch-back technique, part of the conductive layer 218 is removed, and only the conductive material layer in the opening 208 remains, so that the conductive layer 218 in contact with the source 216 is formed in the opening 208, so as to implant the source of the flash memory The internal wiring of pole 216. Wherein, the conductive layer 218 covers the exposed substrate 200 , the spacer 214 and part of the spacer 212 . After the conductive layer 218 is formed, the surface of the conductive layer 218 is oxidized by, for example, a thermal oxidation method, so as to form an oxide layer 220 on the surface of the conductive layer 218 . After the oxide layer 220 is formed on the surface of the conductive layer 218, the remaining nitride layer 206, part of the conductive layer 204, part of the gate dielectric layer 202 and the spacer 210 are removed, thereby forming the gate structure as shown in FIG. 11 222.

完成栅极结构222后,利用例如化学气相沉积的方式形成一层薄薄的介电层224覆盖在栅极结构222以及基材200上,其中介电层224的材料较佳为氧化硅。再利用例如化学气相沉积法形成厚厚的一层导电层226覆盖在介电层224上,其中此导电层226的材料较佳为多晶硅。接着,利用例如化学气相沉积技术或低压化学气相沉积(LPCVD)技术,在导电层226上形成覆盖层228,以利于后续平坦化步骤的进行,所形成的结构如图12所示。其中,覆盖层228的材料较佳为氮化硅,而且覆盖层228的厚度较佳是控制在介于600至1800之间。After the gate structure 222 is completed, a thin dielectric layer 224 is formed to cover the gate structure 222 and the substrate 200 by means of chemical vapor deposition, wherein the material of the dielectric layer 224 is preferably silicon oxide. A thick conductive layer 226 is then formed to cover the dielectric layer 224 by, for example, chemical vapor deposition, wherein the material of the conductive layer 226 is preferably polysilicon. Next, a capping layer 228 is formed on the conductive layer 226 by using, for example, chemical vapor deposition or low pressure chemical vapor deposition (LPCVD) to facilitate subsequent planarization steps. The formed structure is shown in FIG. 12 . Wherein, the material of the covering layer 228 is preferably silicon nitride, and the thickness of the covering layer 228 is preferably controlled between 600 Ȧ and 1800 Ȧ.

覆盖层228形成后,利用例如化学机械研磨工艺平坦化图12的结构,直至暴露出间隙壁212为止。在上述的平坦化步骤中,去除部分的覆盖层228、部分的导电层226、部分的介电层224以及些许的间隙壁212,从而形成如图13所示的结构。其中,可能尚有部分的介电层224残留在氧化层220上。进行上述的化学机械研磨工艺时,较佳是使用硬研磨垫,而且较佳是将下压力(Down Force)控制在介于2磅/平方英时(psi)至5磅/平方英时(psi)之间,并将研磨平台的旋转速率控制在介于50转/分钟(rpm)至100转/分钟(rpm)之间,并且将研磨头的旋转速率控制在介于50rpm至100rpm之间。After the capping layer 228 is formed, the structure of FIG. 12 is planarized by using, for example, a chemical mechanical polishing process until the spacers 212 are exposed. In the above-mentioned planarization step, part of the cover layer 228 , part of the conductive layer 226 , part of the dielectric layer 224 and some spacers 212 are removed to form the structure shown in FIG. 13 . Wherein, there may still be a part of the dielectric layer 224 remaining on the oxide layer 220 . When carrying out the above-mentioned chemical mechanical polishing process, it is preferable to use a hard polishing pad, and it is preferable to control the down force (Down Force) between 2 pounds per square inch (psi) to 5 pounds per square inch (psi) ), and the rotation rate of the grinding platform is controlled between 50 revolutions per minute (rpm) to 100 revolutions per minute (rpm), and the rotation rate of the grinding head is controlled between 50 rpm to 100 rpm.

本发明的一特征就是借由控制化学机械研磨工艺的工艺参数,来增加化学机械研磨的机械应力,从而可有效调整具有不同图案的研磨结构(如图12所示的结构)的研磨速率。再搭配适当厚度的覆盖层228,可顺利在栅极结构222旁形成具有平坦表面的导电层226,以利于后续方型字符线的制作。A feature of the present invention is to increase the mechanical stress of the chemical mechanical polishing by controlling the process parameters of the chemical mechanical polishing process, thereby effectively adjusting the polishing rate of the polishing structure with different patterns (such as the structure shown in FIG. 12 ). Combined with a covering layer 228 of appropriate thickness, the conductive layer 226 with a flat surface can be smoothly formed next to the gate structure 222 to facilitate subsequent fabrication of square word lines.

接着,进行例如热处理步骤,借以在导电层226的暴露表面上形成氧化层230,从而形成如图14所示的结构。其中,氧化层230的厚度较佳是控制在大于200。此外,覆盖层228材料的选用须使其蚀刻速率不同于氧化层230的蚀刻速率。这样,等氧化层230形成后,就可利用例如蚀刻方式,并利用氧化层230与覆盖层228的蚀刻速率的不同,去除残余的覆盖层228及此覆盖层228底下的导电层226。于是,可在栅极结构222的侧壁旁形成具有方型结构的间隙壁232来作为分离栅极快闪内存单元234的字符线。其中,去除残余的覆盖层228及此覆盖层228底下的导电层226所采用的蚀刻技术较佳为非等向性蚀刻法(Anisotropic Etching)。Next, a step such as heat treatment is performed to form an oxide layer 230 on the exposed surface of the conductive layer 226 to form the structure shown in FIG. 14 . Wherein, the thickness of the oxide layer 230 is preferably controlled to be greater than 200 Ȧ. In addition, the material of the cap layer 228 must be selected such that its etch rate is different from the etch rate of the oxide layer 230 . In this way, after the oxide layer 230 is formed, the remaining cover layer 228 and the conductive layer 226 under the cover layer 228 can be removed by using, for example, an etching method and utilizing the difference in etching rates between the oxide layer 230 and the cover layer 228 . Therefore, a spacer 232 having a square structure can be formed beside the sidewall of the gate structure 222 as a word line separating the gate flash memory unit 234 . Wherein, the etching technique used to remove the remaining covering layer 228 and the conductive layer 226 under the covering layer 228 is preferably anisotropic etching.

由上述本发明较佳实施例可知,借由调控平坦化步骤的工艺参数,并搭配额外加入的覆盖层,可提供具有平坦表面的字符线结构。因此,应用本发明可避免字符线边缘上出现栅栏状结构,从而可防止因字符线边缘上的栅栏状结构的倒塌所引发的电性短路及微粒污染,达到提升工艺合格率与产品可靠度的目的。It can be seen from the above preferred embodiments of the present invention that by adjusting the process parameters of the planarization step and matching with an additional covering layer, a word line structure with a flat surface can be provided. Therefore, the application of the present invention can avoid the fence-like structure on the edge of the word line, thereby preventing electrical short circuit and particle pollution caused by the collapse of the fence-like structure on the edge of the word line, and achieving the goal of improving the process qualification rate and product reliability. Purpose.

由上述本发明较佳实施例可知,与现有利用蚀刻技术来制作字符线相比之下,应用本发明不仅可轻易获得具垂直侧壁的字符线结构,还可顺利获得具方型结构的字符线。因此,可轻易控制分离栅极快闪内存单元的关键尺寸,工艺可靠度更高。From the above preferred embodiments of the present invention, it can be known that, compared with the conventional etching technology used to make word lines, the application of the present invention can not only easily obtain a word line structure with vertical sidewalls, but also smoothly obtain a square structure. character line. Therefore, the critical dimension of the split gate flash memory cell can be easily controlled, and the process reliability is higher.

可以理解的是,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明所附的权利要求的保护范围。It can be understood that, for those of ordinary skill in the art, various other corresponding changes and modifications can be made according to the technical scheme and technical concept of the present invention, and all these changes and modifications should belong to the appended rights of the present invention. the scope of protection required.

Claims (15)

1.一种分离栅极快闪内存单元的字符线的制造方法,其特征在于,至少包括:1. A method for manufacturing a word line separating gate flash memory cells, characterized in that it at least includes: 提供一基材,其中部分该基材上至少已形成该分离栅极快闪内存单元的一栅极结构,而且该栅极结构的侧壁至少包括一间隙壁;A substrate is provided, wherein at least a gate structure of the split-gate flash memory unit has been formed on part of the substrate, and the sidewall of the gate structure includes at least one spacer; 形成一介电层位于该栅极结构与该基材上;forming a dielectric layer on the gate structure and the substrate; 形成一导电层位于该介电层上;forming a conductive layer on the dielectric layer; 形成一覆盖层位于该导电层上;forming a cover layer on the conductive layer; 进行一平坦化步骤直至暴露出该间隙壁为止,并暴露出部分的该导电层;performing a planarization step until the spacer is exposed, and part of the conductive layer is exposed; 形成一氧化层于该导电层的暴露部分上,其中该覆盖层的蚀刻速率不同于该间隙壁、该介电层与该氧化层的蚀刻速率;以及forming an oxide layer on the exposed portion of the conductive layer, wherein the capping layer has an etch rate different from the etch rates of the spacer, the dielectric layer, and the oxide layer; and 进行一蚀刻步骤,以利用该覆盖层的蚀刻速率不同于该间隙壁、该介电层与该氧化层的蚀刻速率的特性,来去除剩余的该覆盖层及该覆盖层下方的该导电层。An etching step is performed to remove the remaining capping layer and the conductive layer under the capping layer by utilizing the characteristic that the etching rate of the capping layer is different from that of the spacer, the dielectric layer and the oxide layer. 2.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该间隙壁的材料为氧化硅。2 . The method for manufacturing a word line of a split gate flash memory cell according to claim 1 , wherein the spacer is made of silicon oxide. 3 . 3.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该介电层的材料为氧化硅。3. The method for manufacturing a word line of a split gate flash memory cell according to claim 1, wherein the material of the dielectric layer is silicon oxide. 4.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该导电层的材料为多晶硅。4. The method for manufacturing a word line of a split-gate flash memory cell according to claim 1, wherein the material of the conductive layer is polysilicon. 5.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该覆盖层的厚度介于600至1800之间。5. The method for manufacturing a word line of a split gate flash memory cell according to claim 1, wherein the thickness of the covering layer is between 600 Ȧ and 1800 Ȧ. 6.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该覆盖层的材料为氮化硅。6 . The method for manufacturing a word line of a split-gate flash memory cell according to claim 1 , wherein the covering layer is made of silicon nitride. 7 . 7.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该平坦化步骤为一化学机械研磨步骤。7. The method for manufacturing word lines of split gate flash memory cells according to claim 1, wherein the planarization step is a chemical mechanical polishing step. 8.根据权利要求7所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该化学机械研磨步骤至少包括使用一硬研磨垫。8. The method for manufacturing word lines of split gate flash memory cells according to claim 7, wherein the chemical mechanical polishing step at least includes using a hard polishing pad. 9.根据权利要求7所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该化学机械研磨步骤至少包括控制一下压力介于2磅/平方英时至5磅/平方英时之间。9. The method of manufacturing a word line of a split-gate flash memory cell according to claim 7, wherein the chemical mechanical polishing step at least includes controlling a pressure between 2 lbs/square inch and 5 lbs/square between British hours. 10.根据权利要求7所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该化学机械研磨步骤至少包括控制一研磨平台的旋转速率介于50转/分钟至100转/分钟之间。10. The method for manufacturing word lines of split gate flash memory cells according to claim 7, wherein the chemical mechanical polishing step at least includes controlling the rotational speed of a polishing platform between 50 rpm and 100 rpm /min between. 11.根据权利要求7所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该化学机械研磨步骤至少包括控制一研磨头的旋转速率介于50转/分钟至100转/分钟之间。11. The manufacturing method of the word line of the split-gate flash memory unit according to claim 7, wherein the chemical mechanical polishing step at least includes controlling the rotational speed of a polishing head between 50 revolutions per minute and 100 revolutions /min between. 12.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,形成该氧化层是通过一热处理反应。12. The method for manufacturing the word line of the split gate flash memory cell according to claim 1, wherein the oxide layer is formed through a heat treatment reaction. 13.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,去除该导电层的步骤为利用一非等向性蚀刻法。13. The method for manufacturing word lines of split gate flash memory cells according to claim 1, wherein the step of removing the conductive layer is an anisotropic etching method. 14.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该氧化层的厚度大于200。14. The method for manufacturing a word line of a split-gate flash memory cell according to claim 1, wherein the thickness of the oxide layer is greater than 200 Ȧ. 15.根据权利要求1所述的分离栅极快闪内存单元的字符线的制造方法,其特征在于,该栅极结构至少包括:15. The method for manufacturing a word line of a split-gate flash memory cell according to claim 1, wherein the gate structure at least comprises: 一源极位于该基材中;a source is located in the substrate; 二栅极氧化层位于该基材上,而且每一这些栅极氧化层位于部分的该源极上;two gate oxide layers are on the substrate, and each of the gate oxide layers is on a portion of the source; 二第一导电薄膜分别位于部分的这些栅极氧化层上;Two first conductive films are respectively located on some of these gate oxide layers; 二第一氧化硅间隙壁分别位于这些第一导电薄膜上;Two first silicon oxide spacers are respectively located on the first conductive films; 二第二氧化硅间隙壁分别位于另一部分的这些栅极氧化层以及这些第一氧化硅间隙壁的侧壁上;Two second silicon oxide spacers are respectively located on the other part of the gate oxide layer and the sidewalls of the first silicon oxide spacers; 一第二导电薄膜位于另一部分的该源极、这些第一氧化硅间隙壁以及这些第二氧化硅间隙壁上;以及a second conductive film is located on another part of the source electrode, the first silicon oxide spacers and the second silicon oxide spacers; and 一氧化薄膜位于该第二导电薄膜上。An oxide film is located on the second conductive film.
CNB031530095A 2003-08-01 2003-08-01 Word line structure of split gate flash memory unit and manufacturing method thereof Expired - Lifetime CN100377334C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031530095A CN100377334C (en) 2003-08-01 2003-08-01 Word line structure of split gate flash memory unit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031530095A CN100377334C (en) 2003-08-01 2003-08-01 Word line structure of split gate flash memory unit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN1581463A CN1581463A (en) 2005-02-16
CN100377334C true CN100377334C (en) 2008-03-26

Family

ID=34579900

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031530095A Expired - Lifetime CN100377334C (en) 2003-08-01 2003-08-01 Word line structure of split gate flash memory unit and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN100377334C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800675B (en) * 2011-05-25 2015-08-26 中国科学院微电子研究所 Charge trapping non-volatile memory and manufacturing method thereof
US10056462B2 (en) * 2014-08-13 2018-08-21 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure and manufacturing method thereof
CN109903797B (en) * 2019-03-07 2021-04-23 上海华虹宏力半导体制造有限公司 Manufacturing method of split-gate flash memory and split-gate flash memory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405880A (en) * 2001-09-14 2003-03-26 精工爱普生株式会社 Semiconductor device manufacture method
US20030060011A1 (en) * 2001-09-25 2003-03-27 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
TW530379B (en) * 2002-02-01 2003-05-01 Taiwan Semiconductor Mfg Poly-silicon spacer manufacturing method of split gate flash memory cell
US6593187B1 (en) * 2001-08-27 2003-07-15 Taiwan Semiconductor Manufacturing Company Method to fabricate a square poly spacer in flash
CN2742533Y (en) * 2004-07-30 2005-11-23 台湾积体电路制造股份有限公司 Character Line Structure of Separated Gate Flash Memory Cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593187B1 (en) * 2001-08-27 2003-07-15 Taiwan Semiconductor Manufacturing Company Method to fabricate a square poly spacer in flash
CN1405880A (en) * 2001-09-14 2003-03-26 精工爱普生株式会社 Semiconductor device manufacture method
US20030060011A1 (en) * 2001-09-25 2003-03-27 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
TW530379B (en) * 2002-02-01 2003-05-01 Taiwan Semiconductor Mfg Poly-silicon spacer manufacturing method of split gate flash memory cell
CN2742533Y (en) * 2004-07-30 2005-11-23 台湾积体电路制造股份有限公司 Character Line Structure of Separated Gate Flash Memory Cell

Also Published As

Publication number Publication date
CN1581463A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US8035153B2 (en) Self-aligned patterning method by using non-conformal film and etch for flash memory and other semiconductor applications
US7018781B2 (en) Method for fabricating a contact hole plane in a memory module
CN107316808B (en) Semiconductor device, preparation method thereof and electronic device
CN100394586C (en) Split gate flash device and method for manufacturing the same
KR20120048791A (en) Method of manufacturing a vertical type semiconductor device
JPH1050962A (en) Manufacture of semiconductor device
JP6510678B2 (en) Method of fabricating ferroelectric random access memory on pre-patterned bottom electrode and oxidation barrier
JP2001210645A (en) Semiconductor device and its manufacturing method
JP2003124144A (en) Processing method for semiconductor chip
CN101114617B (en) Flash memory and manufacturing method thereof
CN100377334C (en) Word line structure of split gate flash memory unit and manufacturing method thereof
CN1378264A (en) A Self-Aligning Contact Method with Sacrificial Packed Columns
JP4417882B2 (en) Manufacturing method of semiconductor device
JP2007013171A (en) Manufacturing method of NAND flash memory device
CN110648916B (en) Semiconductor device, manufacturing method thereof and electronic device
US20020142542A1 (en) Method of fabricating a high-coupling ratio flash memory
CN109755247B (en) Semiconductor device and manufacturing method thereof
US6649474B1 (en) Method for fabricating a source line of a flash memory cell
CN100517657C (en) SONOS Flash memory manufacture method
CN101174576A (en) Method of manufacturing an isolation structure
CN100435282C (en) Method for manufacturing flash memory floating grid
CN110491836B (en) Semiconductor device, manufacturing method thereof and electronic device
TWI253146B (en) Structure of word line in split gate flash memory cell and method for manufacturing the same
TWI296837B (en) Method for manufacturing floating gate and non-volatile memory
JP2009152360A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080326