[go: up one dir, main page]

CN110648916B - Semiconductor device, manufacturing method thereof and electronic device - Google Patents

Semiconductor device, manufacturing method thereof and electronic device Download PDF

Info

Publication number
CN110648916B
CN110648916B CN201810682285.XA CN201810682285A CN110648916B CN 110648916 B CN110648916 B CN 110648916B CN 201810682285 A CN201810682285 A CN 201810682285A CN 110648916 B CN110648916 B CN 110648916B
Authority
CN
China
Prior art keywords
layer
fin
work function
fins
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810682285.XA
Other languages
Chinese (zh)
Other versions
CN110648916A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201810682285.XA priority Critical patent/CN110648916B/en
Publication of CN110648916A publication Critical patent/CN110648916A/en
Application granted granted Critical
Publication of CN110648916B publication Critical patent/CN110648916B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • H10D84/853Complementary IGFETs, e.g. CMOS comprising FinFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供了一种半导体器件及其制造方法、电子装置。所述方法包括:提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层;去除所述虚拟栅极,以形成凹槽并露出所述鳍片;去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分;在所述NMOS区域中的所述鳍片的基底部分上以及所述PMOS区域的所述鳍片的表面上形成第一功函数层;在所述NMOS区域和所述PMOS区域的所述鳍片的表面上形成第二功函数层;使用导电材料填充所述凹槽,以形成金属栅极。所述方法可以抑制漏电流的产生,进一步提高FinFET器件的性能和良率。

Figure 201810682285

The invention provides a semiconductor device, a manufacturing method thereof, and an electronic device. The method includes: providing a substrate including an NMOS region and a PMOS region on which fins and dummy gates surrounding the fins are formed, wherein the The fin includes fin material layers and sacrificial layers stacked alternately from bottom to top; removing the dummy gate to form a groove and exposing the fin; removing the sacrificial layer exposed in the groove to The interval between the fins is a suspended part and a base part; a first work function layer is formed on the base part of the fin in the NMOS region and on the surface of the fin in the PMOS region; forming a second work function layer on the surface of the fin in the NMOS region and the PMOS region; filling the groove with a conductive material to form a metal gate. The method can suppress the generation of leakage current, and further improve the performance and yield of the FinFET device.

Figure 201810682285

Description

一种半导体器件及其制造方法、电子装置A kind of semiconductor device and its manufacturing method, electronic device

技术领域technical field

本发明涉及半导体技术领域,具体而言涉及一种半导体器件及其制造方法、电子装置。The present invention relates to the technical field of semiconductors, in particular to a semiconductor device, a manufacturing method thereof, and an electronic device.

背景技术Background technique

随着半导体集成电路制造工艺的日益进步,过去数十年来,为了获得性能更高的电路,MOSFET的尺寸不断地变小,因为越小的MOSFET会使其沟道长度减少,让沟道的等效电阻也减少,可以让更多电流通过,MOSFET的尺寸变小也意味着栅极面积减少,进而可以降低等效的栅极电容。With the increasing progress of semiconductor integrated circuit manufacturing technology, in the past few decades, in order to obtain higher performance circuits, the size of MOSFET has been continuously reduced, because the smaller MOSFET will reduce the channel length, so that the channel etc. The effective resistance is also reduced, allowing more current to pass through, and the smaller size of the MOSFET also means that the gate area is reduced, which in turn can reduce the equivalent gate capacitance.

MOSFET尺寸缩小可以带来很多益处,但同时也造成了很多负面效应,例如在上述MOSFET器件的制备过程中,由于器件尺寸的缩小,所用的栅极介电层、栅材料层的尺寸也必然的减小,从而造成源极/漏极离子掺杂区域之间形成的沟道也进一步减小,不可避免的存在比较严重的短沟道效应,在源漏区形成较大的寄生电容,导致越来越大的漏电,功耗大幅度增加,且抗击穿能力下降。The size reduction of MOSFET can bring many benefits, but at the same time it also causes many negative effects. As a result, the channel formed between the source/drain ion-doped regions is further reduced, and there is inevitably a relatively serious short-channel effect, and a large parasitic capacitance is formed in the source-drain region, resulting in a more The larger the leakage, the greater the power consumption, and the lower the ability to resist breakdown.

相对于现有的平面晶体管,FinFET器件在沟道控制以及降低短沟道效应等方面具有更加优越的性能;平面栅极结构设置于所述沟道上方,而在FinFET中所述栅极环绕所述鳍片设置,因此能从三个面来控制静电,在静电控制方面的性能也更突出。Compared with the existing planar transistors, FinFET devices have superior performance in terms of channel control and reducing short channel effects; the planar gate structure is arranged above the channel, and in the FinFET the gate surrounds the The above-mentioned fins are set, so the static electricity can be controlled from three sides, and the performance in static electricity control is also more prominent.

随着CMOS技术的不断发展,半导体器件制备技术中已经出现多栅极结构,例如环绕栅极(gate all around,GAA),来增强器件的性能和集成度。但是在环绕栅极(gate allaround,GAA)中在鳍片的下方会出现寄生沟道,导致器件的漏电流和性能降低。With the continuous development of CMOS technology, a multi-gate structure, such as a gate all around (GAA), has appeared in the semiconductor device manufacturing technology to enhance the performance and integration of the device. However, parasitic channels appear under the fins in the gate allaround (GAA), resulting in leakage current and performance degradation of the device.

鉴于上述技术问题的存在,有必要提出一种新的半导体器件的制造方法。In view of the existence of the above technical problems, it is necessary to propose a new method for manufacturing semiconductor devices.

发明内容Contents of the invention

在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。A series of concepts in simplified form are introduced in the Summary of the Invention, which will be further detailed in the Detailed Description. The summary of the invention in the present invention does not mean to limit the key features and essential technical features of the claimed technical solution, nor does it mean to try to determine the protection scope of the claimed technical solution.

针对现有技术的不足,本发明提供了一种半导体器件的制造方法,所述方法包括:Aiming at the deficiencies in the prior art, the invention provides a method for manufacturing a semiconductor device, the method comprising:

提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层;A substrate is provided, the substrate includes an NMOS region and a PMOS region, fins and dummy gates surrounding the fins are formed on the NMOS region and the PMOS region, wherein the fins include Fin material layers and sacrificial layers stacked alternately upward;

去除所述虚拟栅极,以形成凹槽并露出所述鳍片;removing the dummy gate to form a groove and expose the fin;

去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分;removing the sacrificial layer exposed in the groove to separate the fins into a suspension portion and a base portion;

在所述NMOS区域中的所述鳍片的基底部分上以及所述PMOS区域的所述鳍片的表面上形成第一功函数层;forming a first work function layer on a base portion of the fin in the NMOS region and on a surface of the fin in the PMOS region;

在所述NMOS区域和所述PMOS区域的所述鳍片的表面上形成第二功函数层;forming a second work function layer on surfaces of the fins of the NMOS region and the PMOS region;

使用导电材料填充所述凹槽,以形成金属栅极。The groove is filled with a conductive material to form a metal gate.

可选地,形成所述第一功函数层的方法包括:Optionally, the method for forming the first work function layer includes:

在露出的所述鳍片的表面依次形成界面层、栅极介电层和第一功函数层;sequentially forming an interface layer, a gate dielectric layer and a first work function layer on the exposed surface of the fin;

去除所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层并保留所述NMOS区域中所述鳍片的基底部分表面的所述第一功函数层。removing the first work function layer on the surface of the floating part of the fin in the NMOS region and retaining the first work function layer on the surface of the base part of the fin in the NMOS region.

可选地,去除所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层的方法包括:Optionally, the method for removing the first work function layer on the surface of the suspended portion of the fin in the NMOS region includes:

沉积掩膜层,以覆盖所述NMOS区域和所述PMOS区域中的所述凹槽;depositing a mask layer to cover the grooves in the NMOS region and the PMOS region;

图案化所述掩膜层,以去除所述NMOS区域中的部分所述掩膜层并至少露出所述鳍片的悬空部分表面的所述第一功函数层;patterning the mask layer to remove part of the mask layer in the NMOS region and expose at least the first work function layer on the surface of the suspended part of the fin;

去除露出的所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层。removing the first work function layer on the surface of the suspended portion of the fin in the exposed NMOS region.

可选地,所述方法还进一步包括去除剩余的掩膜层的步骤。Optionally, the method further includes the step of removing the remaining mask layer.

可选地,在所述半导体衬底上还形成有填充所述鳍片之间间隙的隔离材料层,所述隔离材料层的顶部与所述鳍片的基底部分的顶部平齐。Optionally, an isolation material layer filling the gaps between the fins is further formed on the semiconductor substrate, and the top of the isolation material layer is flush with the top of the base portion of the fins.

可选地,所述第一功函数层形成于所述鳍片的基底部分的水平面上和所述隔离材料层上。Optionally, the first work function layer is formed on the level of the base portion of the fin and on the isolation material layer.

本发明还提供了一种半导体器件,所述半导体器件包括:The present invention also provides a semiconductor device, the semiconductor device comprising:

衬底,所述衬底包括NMOS区域和PMOS区域;a substrate comprising an NMOS region and a PMOS region;

鳍片,形成于所述NMOS区域和所述PMOS区域中,其中,在形成金属栅极的区域中所述鳍片包括相互间隔设置的悬浮部分和基底部分;Fins formed in the NMOS region and the PMOS region, wherein the fins include a floating portion and a base portion that are spaced apart from each other in the region where the metal gate is formed;

金属栅极结构,包括:Metal gate structures, including:

第一功函数层,位于所述NMOS区域和所述PMOS区域中所述基底部分的水平面上以及所述PMOS区域中所述悬浮部分的表面;a first work function layer located on the level of the base portion in the NMOS region and the PMOS region and on the surface of the floating portion in the PMOS region;

第二功函数层,位于所述第一功函数层上以及所述NMOS区域中的所述鳍片的悬浮部分的表面上;a second work function layer on the first work function layer and on the surface of the floating portion of the fin in the NMOS region;

导电材料,覆盖所述鳍片并填充所述悬浮部分和所述基底部分之间的间隔。A conductive material covers the fin and fills the space between the suspension portion and the base portion.

可选地,在所述鳍片的表面还形成有界面层和栅极介电层。Optionally, an interface layer and a gate dielectric layer are further formed on the surface of the fin.

可选地,在所述半导体衬底上还形成有填充所述鳍片之间间隙的隔离材料层,所述隔离材料层的顶部与所述鳍片的基底部分的顶部平齐。Optionally, an isolation material layer filling the gaps between the fins is further formed on the semiconductor substrate, and the top of the isolation material layer is flush with the top of the base portion of the fins.

可选地,所述第一功函数层形成于所述鳍片的基底部分上和所述隔离材料层上。Optionally, the first work function layer is formed on the base portion of the fin and on the isolation material layer.

本发明还提供了一种电子装置,所述电子装置包括上述的半导体器件。The present invention also provides an electronic device, which includes the above-mentioned semiconductor device.

根据本发明的所述半导体器件的制造方法,为了解决在FinFET器件出现寄生沟道的问题,在所述NMOS区域和所述PMOS区域中所述基底部分的水平面上形成有第一功函数层,特别是在NMOS区域的寄生器件上,并且对于NMOS寄生器件所述第一功函数层具有更高的阈值电压,从而抑制漏电流的产生,进一步提高FinFET器件的性能和良率。According to the manufacturing method of the semiconductor device of the present invention, in order to solve the problem of parasitic channels in the FinFET device, a first work function layer is formed on the horizontal plane of the base part in the NMOS region and the PMOS region, Especially on the parasitic device in the NMOS region, and for the NMOS parasitic device, the first work function layer has a higher threshold voltage, thereby suppressing the generation of leakage current and further improving the performance and yield of the FinFET device.

附图说明Description of drawings

本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。The following drawings of the invention are hereby included as part of the invention for understanding the invention. The accompanying drawings illustrate embodiments of the invention and description thereof to explain principles of the invention.

附图中:In the attached picture:

图1A至图1J示出了本发明一个实施方式的半导体器件的制造方法的相关步骤所获得的器件的结构示意图;FIG. 1A to FIG. 1J show a schematic structural view of a device obtained in the relevant steps of the manufacturing method of a semiconductor device according to an embodiment of the present invention;

图2示出了本发明一个实施方式的半导体器件的制造方法的工艺流程图;FIG. 2 shows a process flow diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention;

图3示出了本发明一实施例中的电子装置的示意图。FIG. 3 shows a schematic diagram of an electronic device in an embodiment of the present invention.

具体实施方式Detailed ways

在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。In the following description, numerous specific details are given in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, some technical features known in the art are not described in order to avoid confusion with the present invention.

应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。It should be understood that the invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like reference numerals refer to like elements throughout.

应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。It will be understood that when an element or layer is referred to as being "on," "adjacent," "connected to" or "coupled to" another element or layer, it can be directly on the other element or layer. A layer may be on, adjacent to, connected to, or coupled to other elements or layers, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly adjacent to," "directly connected to," or "directly coupled to" another element or layer, there are no intervening elements or layers present. layer. It will be understood that, although the terms first, second, third etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.

空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。Spatial terms such as "below", "below", "below", "under", "on", "above", etc., in This may be used for convenience of description to describe the relationship of one element or feature to other elements or features shown in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary terms "below" and "beneath" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.

在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the/the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the terms "consists of" and/or "comprising", when used in this specification, identify the presence of stated features, integers, steps, operations, elements and/or parts, but do not exclude one or more other Presence or addition of features, integers, steps, operations, elements, parts and/or groups. As used herein, the term "and/or" includes any and all combinations of the associated listed items.

这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例。这样,可以预期由于例如制造技术和/或容差导致的从所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的埋藏区可导致该埋藏区和注入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本发明的范围。Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes shown are to be expected due to, for example, manufacturing techniques and/or tolerances. Thus, embodiments of the invention should not be limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation was performed. Thus, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.

为了彻底理解本发明,将在下列的描述中提出详细的步骤,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。In order to thoroughly understand the present invention, detailed steps will be provided in the following description, so as to explain the technical solution proposed by the present invention. Preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments besides these detailed descriptions.

目前在制备FinFET器件的方法包括以下步骤:The current method for preparing FinFET devices includes the following steps:

提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层;A substrate is provided, the substrate includes an NMOS region and a PMOS region, fins and dummy gates surrounding the fins are formed on the NMOS region and the PMOS region, wherein the fins include Fin material layers and sacrificial layers stacked alternately upward;

去除所述虚拟栅极,以形成凹槽并露出所述鳍片;removing the dummy gate to form a groove and expose the fin;

去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分;removing the sacrificial layer exposed in the groove to separate the fins into a suspension portion and a base portion;

在所述鳍片的表面形成界面层和高K介电层Formation of interfacial layer and high-K dielectric layer on the surface of the fin

使用导电材料填充所述凹槽,以形成金属栅极。The groove is filled with a conductive material to form a metal gate.

通过所述方法制备得到的器件中由于所述金属栅极为环绕栅极(gate allaround,GAA),因此在环绕栅极和基底部分之间会形成寄生器件,该寄生器件会引起漏电流,从而FinFET器件的性能和可靠性降低。In the device prepared by the method, since the metal gate is a gate allaround (GAA), a parasitic device will be formed between the gate allaround and the base part, and the parasitic device will cause leakage current, so that the FinFET Device performance and reliability degrade.

为了解决该问题,本申请提供了一种半导体器件的制造方法,所述方法包括:In order to solve this problem, the present application provides a method for manufacturing a semiconductor device, the method comprising:

提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层;A substrate is provided, the substrate includes an NMOS region and a PMOS region, fins and dummy gates surrounding the fins are formed on the NMOS region and the PMOS region, wherein the fins include Fin material layers and sacrificial layers stacked alternately upward;

去除所述虚拟栅极,以形成凹槽并露出所述鳍片;removing the dummy gate to form a groove and expose the fin;

去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分;removing the sacrificial layer exposed in the groove to separate the fins into a suspension portion and a base portion;

在所述NMOS区域中的所述鳍片的基底部分的水平表面上形成第一功函数层;forming a first work function layer on a horizontal surface of the base portion of the fin in the NMOS region;

在所述NMOS区域和所述PMOS区域的所述鳍片的表面形成第二功函数层;forming a second work function layer on the surface of the fin in the NMOS region and the PMOS region;

使用导电材料填充所述凹槽,以形成金属栅极。The groove is filled with a conductive material to form a metal gate.

根据本发明的所述半导体器件的制造方法,为了解决在FinFET器件出现寄生沟道的问题,在所述NMOS区域和所述PMOS区域中所述基底部分的水平面上形成有第一功函数层,特别是在NMOS区域的寄生器件上,并且对于NMOS寄生器件所述第一功函数层具有更高的阈值电压,从而抑制漏电流的产生,进一步提高FinFET器件的性能和良率。According to the manufacturing method of the semiconductor device of the present invention, in order to solve the problem of parasitic channels in the FinFET device, a first work function layer is formed on the horizontal plane of the base part in the NMOS region and the PMOS region, Especially on the parasitic device in the NMOS region, and for the NMOS parasitic device, the first work function layer has a higher threshold voltage, thereby suppressing the generation of leakage current and further improving the performance and yield of the FinFET device.

实施例一Embodiment one

为了解决前述的技术问题,提高器件的性能,本发明实施例中提供一种半导体器件的制造方法,如图2所述,所述方法主要包括:In order to solve the foregoing technical problems and improve the performance of the device, an embodiment of the present invention provides a method for manufacturing a semiconductor device, as shown in FIG. 2 , the method mainly includes:

步骤S1:提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层;Step S1: providing a substrate, the substrate includes an NMOS region and a PMOS region, fins and dummy gates surrounding the fins are formed on the NMOS region and the PMOS region, wherein the fins Including fin material layers and sacrificial layers stacked alternately from bottom to top;

步骤S2:去除所述虚拟栅极,以形成凹槽并露出所述鳍片;Step S2: removing the dummy gate to form a groove and expose the fin;

步骤S3:去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分;Step S3: removing the sacrificial layer exposed in the groove, so as to separate the fin into a suspended part and a base part;

步骤S4:在所述NMOS区域中的所述鳍片的基底部分上以及所述PMOS区域的所述鳍片的表面上形成第一功函数层;Step S4: forming a first work function layer on the base portion of the fin in the NMOS region and on the surface of the fin in the PMOS region;

步骤S5:在所述NMOS区域和所述PMOS区域的所述鳍片的表面上形成第二功函数层;Step S5: forming a second work function layer on the surface of the fin in the NMOS region and the PMOS region;

步骤S6:使用导电材料填充所述凹槽,以形成金属栅极。Step S6: filling the groove with a conductive material to form a metal gate.

具体地,下面参考图1A-图1J对本发明的半导体器件的制造方法做详细描述,其中,图1A-图1J示出了本发明一个实施方式的半导体器件的制造方法的相关步骤所获得的器件的结构示意图。Specifically, the manufacturing method of the semiconductor device of the present invention will be described in detail below with reference to FIGS. Schematic diagram of the structure.

首先,执行步骤一,提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层。First, step 1 is performed to provide a substrate, the substrate includes an NMOS region and a PMOS region, fins and dummy gates surrounding the fins are formed on the NMOS region and the PMOS region, wherein the The fins include fin material layers and sacrificial layers stacked alternately from bottom to top.

具体地,形成所述鳍片的方法包括:Specifically, the method for forming the fins includes:

步骤1:提供半导体衬底,在所述半导体衬底上依次交替的沉积鳍片材料层和牺牲层,然后图案化交替的沉积鳍片材料层和牺牲层,以在所述半导体衬底上形成鳍片;Step 1: Provide a semiconductor substrate, alternately deposit fin material layers and sacrificial layers on the semiconductor substrate, and then pattern the alternately deposited fin material layers and sacrificial layers to form on the semiconductor substrate fins;

步骤2:沉积隔离材料层,以覆盖所述鳍片;Step 2: Depositing an isolation material layer to cover the fins;

步骤3:回蚀刻所述隔离材料层,以露出目标高度的鳍片;Step 3: Etching back the isolation material layer to expose the fins at the target height;

步骤4:在所述鳍片上形成虚拟栅极。Step 4: forming a dummy gate on the fin.

在所述步骤1中,如图1A所示,所述半导体衬底101可以是以下所提到的材料中的至少一种:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等。In the step 1, as shown in FIG. 1A, the semiconductor substrate 101 may be at least one of the materials mentioned below: silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), Silicon germanium on insulator (S-SiGeOI), silicon germanium on insulator (SiGeOI) and germanium on insulator (GeOI) are laminated.

其中所述半导体衬底包括NMOS区域和PMOS区域,以在后续的步骤中形成NMOS器件和PMOS器件。Wherein the semiconductor substrate includes an NMOS region and a PMOS region, so as to form NMOS devices and PMOS devices in subsequent steps.

在NMOS区域和PMOS区域的半导体衬底上形成多个鳍片102,例如,在有源区和周围区中均形成有若干高度相同的鳍片,所述鳍片的宽度全部相同,或者鳍片分为具有不同宽度的多个鳍片组。A plurality of fins 102 are formed on the semiconductor substrate in the NMOS region and the PMOS region, for example, several fins with the same height are formed in the active region and the surrounding region, and the widths of the fins are all the same, or the fins Divided into groups of fins with different widths.

其中,所述鳍片材料层选用多晶硅,所述牺牲层选用SiGe。Wherein, the fin material layer is selected from polysilicon, and the sacrificial layer is selected from SiGe.

具体地,所述鳍片的形成方法并不局限于某一种,下面给出一种示例性的形成方法:在交替沉积的鳍片材料层1021和牺牲层1022上形成硬掩膜层,形成所述硬掩膜层可以采用本领域技术人员所熟习的各种适宜的工艺,例如化学气相沉积工艺,所述硬掩膜层可以为自下而上层叠的氧化物层和氮化硅层,在该实施例中所述硬掩膜层选用氮化物;图案化所述硬掩膜层,形成用于交替的沉积鳍片材料层和牺牲层以在其上形成鳍片的多个彼此隔离的掩膜,在一个实施例中,采用自对准双图案(SADP)工艺实施所述图案化过程;蚀刻鳍片材料层1021和牺牲层1022至半导体衬底以下,以形成鳍片102。Specifically, the method of forming the fins is not limited to a certain method, and an exemplary method of forming is given below: a hard mask layer is formed on the alternately deposited fin material layers 1021 and sacrificial layers 1022, and the fins are formed. The hard mask layer can adopt various suitable processes familiar to those skilled in the art, such as chemical vapor deposition process, and the hard mask layer can be an oxide layer and a silicon nitride layer stacked from bottom to top, In this embodiment, the hard mask layer is selected from nitride; the hard mask layer is patterned to form a plurality of isolated fins for alternately depositing fin material layers and sacrificial layers to form fins thereon. In one embodiment, the patterning process is performed using a self-aligned double patterning (SADP) process; the fin material layer 1021 and the sacrificial layer 1022 are etched below the semiconductor substrate to form the fin 102 .

在本发明中若干所述鳍片包括若干行和若干列,以形成鳍片阵列,其中所述鳍片阵列的形状并不局限于某一种,例如所述鳍片阵列可以为正方形、长方形、圆形或多边形等。In the present invention, several fins include several rows and several columns to form a fin array, wherein the shape of the fin array is not limited to a certain one, for example, the fin array can be square, rectangular, circle or polygon etc.

可选地,所述方法还包括形成衬垫层的步骤,以覆盖半导体衬底的表面、鳍片的侧壁以及所述硬掩膜层的侧壁和顶部。Optionally, the method further includes the step of forming a liner layer to cover the surface of the semiconductor substrate, the sidewalls of the fins, and the sidewalls and top of the hard mask layer.

具体地,在一个实施例中,采用现场蒸汽生成工艺(ISSG)形成衬垫层。Specifically, in one embodiment, the liner layer is formed using an in-situ steam generation process (ISSG).

其中,通过调节所述衬垫层的厚度还可以调节所述鳍片的上部的阈值电压。Wherein, the threshold voltage of the upper part of the fin can also be adjusted by adjusting the thickness of the liner layer.

在所述步骤2中,沉积隔离材料层103,以完全填充鳍片之间的间隙,如图1A所示。在一个实施例中,采用具有可流动性的化学气相沉积工艺实施所述沉积。隔离材料层103的材料可以选择氧化物,例如高深宽比工艺(HARP)氧化物,具体可以为氧化硅。In the step 2, an isolation material layer 103 is deposited to completely fill the gaps between the fins, as shown in FIG. 1A . In one embodiment, the deposition is performed using a flowable chemical vapor deposition process. The material of the isolation material layer 103 may be oxide, such as high aspect ratio process (HARP) oxide, specifically, silicon oxide.

在所述步骤3中,回蚀刻所述隔离材料层103,至所述鳍片的目标高度,以形成隔离结构,所述隔离结构的顶面低于所述鳍片的顶面。具体地,回蚀刻所述隔离材料层103,以露出部分所述鳍片,进而形成具有特定高度的鳍片,如图1A所示。In the step 3, the isolation material layer 103 is etched back to the target height of the fin to form an isolation structure, the top surface of the isolation structure is lower than the top surface of the fin. Specifically, the isolation material layer 103 is etched back to expose part of the fins, thereby forming fins with a specific height, as shown in FIG. 1A .

在所述步骤4中,形成横跨所述鳍片的虚拟栅极。In the step 4, a dummy gate across the fin is formed.

需要指出的是,本发明中所使用的术语“横跨”,例如横跨鳍片的虚拟栅极,是指在鳍片的部分的上表面和侧面均形成有虚拟栅极结构,并且该虚拟栅极结构还形成在半导体衬底的部分表面上。It should be pointed out that the term "straddling" used in the present invention, such as the dummy gate across the fin, means that a dummy gate structure is formed on the upper surface and side surfaces of part of the fin, and the dummy gate structure A gate structure is also formed on a portion of the surface of the semiconductor substrate.

在一个示例中,可先在半导体衬底上依次沉积形成虚拟栅极介电层和虚拟栅极材料层。In one example, a dummy gate dielectric layer and a dummy gate material layer may be sequentially deposited on a semiconductor substrate first.

所述虚拟栅极材料层的沉积方法可以选用化学气相沉积或者原子层沉积等方法。The deposition method of the dummy gate material layer can be selected from methods such as chemical vapor deposition or atomic layer deposition.

然后图案化所述栅极材料层,以形成环绕所述鳍片的虚拟栅极。The layer of gate material is then patterned to form a dummy gate surrounding the fin.

在该步骤中图案化所述栅极结构材料层,以形成环绕的虚拟栅极,具体地,在所述栅极结构材料层上形成硬掩膜层,其中所述掩膜层包括氧化物层、金属硬掩膜层和氧化物硬掩膜层中的一种或多种,然后曝光显影,以形成开口,然后以所述掩膜叠层为掩膜蚀刻所述栅极结构材料层,以形成环绕的虚拟栅极。In this step, the gate structure material layer is patterned to form a surrounding dummy gate, specifically, a hard mask layer is formed on the gate structure material layer, wherein the mask layer includes an oxide layer One or more of the metal hard mask layer and the oxide hard mask layer, and then exposed and developed to form an opening, and then the gate structure material layer is etched using the mask stack as a mask to A surrounding dummy gate is formed.

之后,还可选择性地,在所述虚拟栅极的侧壁上形成偏移侧墙。Afterwards, optionally, an offset sidewall can also be formed on the sidewall of the dummy gate.

形成所述偏移侧墙的方法可以选用常规方法,并不局限于某一种,在此不再赘述。The method for forming the offset sidewall can be a conventional method, and is not limited to a certain one, so it will not be repeated here.

所述方法还包括:在所述半导体衬底上形成层间介电层,所述层间介电层与所述虚拟栅极的顶面齐平。The method further includes: forming an interlayer dielectric layer on the semiconductor substrate, the interlayer dielectric layer being flush with the top surface of the dummy gate.

在一个示例中,形成覆盖虚拟栅极的层间介电层,执行化学机械研磨步骤来研磨层间介电层,直至露出虚拟栅极的顶面。In one example, an interlayer dielectric layer covering the dummy gate is formed, and a chemical mechanical polishing step is performed to polish the interlayer dielectric layer until the top surface of the dummy gate is exposed.

形成层间介电层可以采用本领域技术人员所熟习的各种适宜的工艺,例如化学气相沉积工艺。层间介电层可为氧化硅层,包括利用热化学气相沉积(thermal CVD)制造工艺或高密度等离子体(HDP)制造工艺形成的有掺杂或未掺杂的氧化硅的材料层,例如未经掺杂的硅玻璃(USG)、磷硅玻璃(PSG)或硼磷硅玻璃(BPSG)。此外,层间介电层也可以是掺杂硼或掺杂磷的自旋涂布式玻璃(spin-on-glass,SOG)、掺杂磷的四乙氧基硅烷(PTEOS)或掺杂硼的四乙氧基硅烷(BTEOS)。其厚度并不局限于某一数值。Various suitable processes familiar to those skilled in the art can be used to form the interlayer dielectric layer, such as chemical vapor deposition process. The interlayer dielectric layer may be a silicon oxide layer, including a material layer of doped or undoped silicon oxide formed by a thermal chemical vapor deposition (thermal CVD) manufacturing process or a high-density plasma (HDP) manufacturing process, for example Undoped silica glass (USG), phosphosilicate glass (PSG) or borophosphosilicate glass (BPSG). In addition, the interlayer dielectric layer can also be boron-doped or phosphorus-doped spin-on-glass (SOG), phosphorus-doped tetraethoxysilane (PTEOS) or boron-doped Tetraethoxysilane (BTEOS). Its thickness is not limited to a certain value.

所述平坦化处理的非限制性实例包括机械平坦化方法和化学机械抛光平坦化方法。Non-limiting examples of the planarization process include a mechanical planarization method and a chemical mechanical polishing planarization method.

最终形成的层间介电层的顶面和虚拟栅极的顶面齐平。The top surface of the finally formed interlayer dielectric layer is flush with the top surface of the dummy gate.

执行步骤二,去除所述虚拟栅极,以形成凹槽并露出所述鳍片。Step 2 is performed to remove the dummy gate to form a groove and expose the fin.

具体地,在所述虚拟栅极上形成光刻胶层,并对所述光刻胶层进行曝光、显影,以形成图案化的光刻胶层。Specifically, a photoresist layer is formed on the dummy gate, and the photoresist layer is exposed and developed to form a patterned photoresist layer.

以所述图案化的光刻胶层为掩膜,蚀刻去除所述鳍片上的虚拟栅极,如图1A所示。Using the patterned photoresist layer as a mask, etch and remove the dummy gate on the fin, as shown in FIG. 1A .

其中,可以使用干法蚀刻或者湿法蚀刻的方法去除所述栅极材料层,较佳地,可以使用干法蚀刻,所述干法蚀刻的工艺参数包括:蚀刻气体HBr的流量为20-500sccm,压力为2-40mTorr,功率为100-2000W,其中mTorr代表毫毫米汞柱,sccm代表立方厘米/分钟。Wherein, the method of dry etching or wet etching can be used to remove the gate material layer, preferably, dry etching can be used, and the process parameters of the dry etching include: the flow rate of the etching gas HBr is 20-500 sccm , the pressure is 2-40mTorr, the power is 100-2000W, where mTorr stands for millimeters of mercury, and sccm stands for cubic centimeters per minute.

接着,去除所述图案化的光刻胶层。Next, the patterned photoresist layer is removed.

可以使用干法刻蚀或者湿法刻蚀或者它们的组合去除所述图案化的光刻胶层。The patterned photoresist layer may be removed using dry etching or wet etching or a combination thereof.

干法刻蚀可以是灰化的方法,灰化的方法是使用包含氧基或氧离子的等离子气体来去除光刻胶层,灰化过程一般在高温下进行,例如灰化温度可以为80~300℃。Dry etching can be an ashing method. The ashing method is to use a plasma gas containing oxygen or oxygen ions to remove the photoresist layer. The ashing process is generally carried out at a high temperature. For example, the ashing temperature can be 80~ 300°C.

湿法刻蚀可以使用包括SPM溶液的刻蚀剂,SPM溶液包括硫酸(H2SO4)和双氧水(H2O2)混合溶液。The wet etching may use an etchant including SPM solution, and the SPM solution includes a mixed solution of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ).

所述方法还可以进一步包括去除虚拟栅极介电层的步骤。The method may further include the step of removing the dummy gate dielectric layer.

可以使用对栅极介电层具有高的蚀刻选择性,以实现对栅极介电层的去除。A high etch selectivity to the gate dielectric layer may be used to achieve removal of the gate dielectric layer.

在一个示例中,在该步骤中以稀释的氢氟酸DHF(其中包含HF、H2O2以及H2O)湿法去除剩余的所述虚拟栅极介电层。其中,所述DHF的浓度并没严格限制,在本发明中优选HF:H2O2:H2O=0.1-1.5:1:5。In one example, in this step, the remaining dummy gate dielectric layer is removed by wet method with dilute hydrofluoric acid DHF (including HF, H 2 O 2 and H 2 O). Wherein, the concentration of DHF is not strictly limited, and HF:H 2 O 2 :H 2 O=0.1-1.5:1:5 is preferred in the present invention.

执行步骤三,去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分。Step 3 is performed, removing the sacrificial layer exposed in the groove, so as to separate the fins into a suspension part and a base part.

具体地,如图1B所示,在该步骤中去除露出的所述牺牲层,从而形成鳍片材料层和空腔交替设置的结构,以将所述鳍片间隔为悬空部分和基底部分。Specifically, as shown in FIG. 1B , in this step, the exposed sacrificial layer is removed, thereby forming a structure in which fin material layers and cavities are arranged alternately, so as to separate the fins into suspended portions and base portions.

其中,选用与所述鳍片材料层具有大的蚀刻选择比的方法去除所述牺牲层。例如可以选用干法蚀刻或者湿法蚀刻等。Wherein, the sacrificial layer is removed by a method having a large etching selectivity ratio to the fin material layer. For example, dry etching or wet etching can be selected.

执行步骤四,在所述NMOS区域中的所述鳍片的基底部分的水平表面上形成第一功函数层。Executing step 4, forming a first work function layer on the horizontal surface of the base portion of the fin in the NMOS region.

具体地,形成所述第一功函数层的方法包括:Specifically, the method for forming the first work function layer includes:

步骤1:在露出的所述鳍片的表面依次形成界面层、栅极介电层和第一功函数层;Step 1: sequentially forming an interface layer, a gate dielectric layer and a first work function layer on the exposed surface of the fin;

步骤2:沉积掩膜层,以覆盖所述NMOS区域和所述PMOS区域中的所述凹槽;Step 2: depositing a mask layer to cover the grooves in the NMOS region and the PMOS region;

步骤3:图案化所述掩膜层,以去除所述NMOS区域中的部分所述掩膜层并至少露出所述鳍片的悬空部分表面的所述第一功函数层;Step 3: patterning the mask layer to remove part of the mask layer in the NMOS region and expose at least the first work function layer on the surface of the suspended part of the fin;

步骤4:去除露出的所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层。Step 4: removing the first work function layer on the surface of the suspended portion of the fin in the exposed NMOS region.

在所述步骤1中在所述露出的所述鳍片的表面形成界面层104和高k介电层105。In the step 1, an interface layer 104 and a high-k dielectric layer 105 are formed on the exposed surface of the fin.

其中,所述界面层可以为热氧化层、氮的氧化物层、化学氧化层或者其他适合的薄膜层。Wherein, the interface layer may be a thermal oxide layer, a nitrogen oxide layer, a chemical oxide layer or other suitable thin film layers.

可以采用热氧化、化学氧化、化学气相沉积(CVD)、原子层沉积(ALD)或者物理气相沉积(PVD)等适合的工艺形成界面层。The interfacial layer can be formed by suitable processes such as thermal oxidation, chemical oxidation, chemical vapor deposition (CVD), atomic layer deposition (ALD) or physical vapor deposition (PVD).

界面层的厚度可根据实际工艺需要进行合理设定,例如,界面层的厚度范围可以为5埃至10埃。The thickness of the interface layer can be reasonably set according to actual process requirements, for example, the thickness of the interface layer can range from 5 angstroms to 10 angstroms.

示例性地,可以使用化学氧化的方法形成该界面层,形成的界面层的材料可以包括氧化硅。Exemplarily, the interface layer may be formed by using a chemical oxidation method, and the material of the formed interface layer may include silicon oxide.

特别的使用SC-1或臭氧(Ozone)处理液的方法来化学氧化形成该界面层。Especially use SC-1 or ozone (Ozone) treatment solution to chemically oxidize to form the interface layer.

在使用SC-1的实施例中,SC-1是由NH4OH-H2O2-H2O组成,其比例可以是(1:1:5)-(1:2:7),反应的温度可以是50-80摄氏度。In the example of using SC-1, SC-1 is composed of NH 4 OH-H 2 O 2 -H 2 O, and its ratio can be (1:1:5)-(1:2:7), the reaction The temperature can be 50-80 degrees Celsius.

在使用Ozone处理液的实施例中,反应条件包括使用O3和去离子水反应可以是在常温下进行。In the example of using Ozone treatment solution, the reaction conditions include using O 3 and deionized water, and the reaction can be carried out at normal temperature.

随后,形成高k介电层105,其中所述界面层和所述高k介电层均环绕所述悬浮部分并覆盖所述基底部分的水平面。Subsequently, a high-k dielectric layer 105 is formed, wherein both the interface layer and the high-k dielectric layer surround the suspension portion and cover the horizontal plane of the base portion.

高k介电层的k值(介电常数)通常为3.9以上,其构成材料包括氧化铪、氧化铪硅、氮氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化铝等,较佳地是氧化铪、氧化锆或氧化铝。可以采用化学气相沉积法(CVD)、原子层沉积法(ALD)或者物理气相沉积法(PVD)等适合的工艺形成高k介电层。The k value (dielectric constant) of the high-k dielectric layer is usually above 3.9, and its constituent materials include hafnium oxide, hafnium oxide silicon, hafnium silicon oxynitride, lanthanum oxide, zirconium oxide, zirconium oxide silicon, titanium oxide, tantalum oxide, Barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, aluminum oxide, etc., preferably hafnium oxide, zirconium oxide or aluminum oxide. A suitable process such as chemical vapor deposition (CVD), atomic layer deposition (ALD) or physical vapor deposition (PVD) can be used to form the high-k dielectric layer.

高k介电层的厚度范围为10埃至30埃,也可以为其他适合的厚度。The thickness of the high-k dielectric layer ranges from 10 angstroms to 30 angstroms, and other suitable thicknesses can also be used.

随后进行还包括在高k介电层上形成覆盖层、扩散阻挡层等。Subsequent steps also include forming a capping layer, a diffusion barrier layer, and the like on the high-k dielectric layer.

然后沉积第一功函数层106,其中所述第一功函数层为PMOS功函数层,例如TiN等。Then a first work function layer 106 is deposited, wherein the first work function layer is a PMOS work function layer such as TiN.

在所述步骤2中,涂覆掩膜层107,以覆盖所述NMOS区域和所述PMOS区域中的所述凹槽,如图1E所示。In the step 2, a mask layer 107 is applied to cover the grooves in the NMOS region and the PMOS region, as shown in FIG. 1E .

其中,所述掩膜层选用BARC层,以便于去除并避免对鳍片造成损坏。Wherein, the BARC layer is selected as the mask layer to facilitate removal and avoid damage to the fins.

在所述步骤3中,对所述掩膜层进行光刻,例如在所述掩膜层上形成光刻胶层,以覆盖所述PMOS区域,然后以所述光刻胶层为掩膜蚀刻所述掩膜层,以去除所述NMOS区域中的部分所述掩膜层并至少露出所述鳍片的悬空部分表面的所述第一功函数层,如图1E所示,但同时保留所述NMOS区域中所述鳍片的基底部分表面的所述第一功函数层,正由于保留的所述第一功函数层,对于NMOS寄生器件所述第一功函数层具有更高的阈值电压,从而抑制漏电流的产生,进一步提高FinFET器件的性能和良率。In the step 3, photolithography is performed on the mask layer, for example, a photoresist layer is formed on the mask layer to cover the PMOS region, and then the photoresist layer is used as a mask to etch the mask layer, so as to remove part of the mask layer in the NMOS region and expose at least the first work function layer on the surface of the suspended portion of the fin, as shown in FIG. 1E , while retaining all The first work function layer on the surface of the base portion of the fin in the NMOS region has a higher threshold voltage for the NMOS parasitic device due to the retained first work function layer , thereby suppressing the generation of leakage current, and further improving the performance and yield of the FinFET device.

可选地,在该步骤中去除NMOS区域的所述凹槽中第一功函数层以上的所述掩膜层,如图1F所示,或者保留所述第一功函数层上方的部分掩膜层至少全部露出所述鳍片的悬空部分。Optionally, in this step, the mask layer above the first work function layer in the groove of the NMOS region is removed, as shown in FIG. 1F , or part of the mask layer above the first work function layer is retained. The layer exposes at least all of the freestanding portions of the fins.

在所述步骤4中,去除露出的所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层,以露出所述NMOS区域中所述鳍片的悬空部分表面的高K介电层,如图1G所示。In the step 4, removing the exposed first work function layer on the surface of the suspended part of the fin in the NMOS region, so as to expose the high K of the surface of the suspended part of the fin in the NMOS region dielectric layer, as shown in Figure 1G.

可选地,所述方法还进一步包括去除所述光刻胶层和所述掩膜层的步骤,以露出所述凹槽,如图1H所示。Optionally, the method further includes a step of removing the photoresist layer and the mask layer to expose the groove, as shown in FIG. 1H .

可选地,选用灰化法去除所述光刻胶层和所述掩膜层。Optionally, an ashing method is used to remove the photoresist layer and the mask layer.

执行步骤五,在所述NMOS区域和所述PMOS区域的所述鳍片的表面形成第二功函数层。Step five is performed, forming a second work function layer on the surface of the fin in the NMOS region and the PMOS region.

具体地,在所述第一功函数层上以及所述NMOS区域中露出的所述高K介电层上形成所述第二功函数层108,如图1I所示。Specifically, the second work function layer 108 is formed on the first work function layer and on the high-K dielectric layer exposed in the NMOS region, as shown in FIG. 1I .

其中,所述第二功函数层108为NMOS功函数层,例如TiAl等。Wherein, the second work function layer 108 is an NMOS work function layer, such as TiAl.

执行步骤六,使用导电材料填充所述凹槽,以形成金属栅极。Step 6 is performed to fill the groove with a conductive material to form a metal gate.

具体地,如图1J所示,使用导电材料填充所述凹槽,其中所述导电材料可以选用本领域常用的各种金属材料,例如W等,并不局限于某一种。Specifically, as shown in FIG. 1J , the groove is filled with a conductive material, wherein the conductive material can be selected from various metal materials commonly used in the field, such as W, etc., and is not limited to a certain one.

至此完成了对本发明的半导体器件的制造方法的详细描述,对于完整的器件的制作还可能需要其他的工艺步骤,在此不做赘述。So far, the detailed description of the manufacturing method of the semiconductor device of the present invention has been completed, and other process steps may be required for the manufacture of a complete device, which will not be repeated here.

实施例二Embodiment two

本发明还提供了一种半导体器件,所述半导体器件选用实施例一所述的方法制备。The present invention also provides a semiconductor device, which is prepared by the method described in the first embodiment.

所述半导体器件包括:The semiconductor device includes:

衬底,所述衬底包括NMOS区域和PMOS区域;a substrate comprising an NMOS region and a PMOS region;

鳍片,形成于所述NMOS区域和所述PMOS区域中,其中,在形成金属栅极的区域中所述鳍片包括相互间隔设置的悬浮部分和基底部分;Fins formed in the NMOS region and the PMOS region, wherein the fins include a floating portion and a base portion that are spaced apart from each other in the region where the metal gate is formed;

金属栅极结构,包括:Metal gate structures, including:

第一功函数层,位于所述NMOS区域和所述PMOS区域中所述基底部分的水平面上以及所述PMOS区域中所述悬浮部分的表面;a first work function layer located on the level of the base portion in the NMOS region and the PMOS region and on the surface of the floating portion in the PMOS region;

第二功函数层,位于所述第一功函数层上以及所述NMOS区域中的中所述悬浮部分的表面;a second work function layer located on the first work function layer and on the surface of the floating portion in the NMOS region;

导电材料,覆盖所述鳍片并填充所述悬浮部分和所述基底部分之间的间隔。A conductive material covers the fin and fills the space between the suspension portion and the base portion.

其中,如图1H所示,所述半导体衬底101可以是以下所提到的材料中的至少一种:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等。Wherein, as shown in FIG. 1H, the semiconductor substrate 101 may be at least one of the materials mentioned below: silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), and germanium-on-insulator Silicon (S-SiGeOI), silicon germanium on insulator (SiGeOI) and germanium on insulator (GeOI), etc.

所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片。The substrate includes an NMOS area and a PMOS area on which fins are formed.

在半导体衬底上形成多个鳍片102,例如,在NOMS区域和PMOS区域中均形成有若干高度相同的鳍片,所述鳍片的宽度全部相同,或者鳍片分为具有不同宽度的多个鳍片组。A plurality of fins 102 are formed on the semiconductor substrate. For example, several fins with the same height are formed in the NOMS region and the PMOS region, and the widths of the fins are all the same, or the fins are divided into multiple fins with different widths. group of fins.

所述器件还形成有衬垫层,以覆盖半导体衬底的表面、鳍片的侧壁以及所述硬掩膜层的侧壁和顶部。The device is also formed with a liner layer to cover the surface of the semiconductor substrate, the sidewalls of the fins, and the sidewalls and top of the hard mask layer.

其中,通过调节所述衬垫层的厚度还可以调节所述鳍片的上部的阈值电压。Wherein, the threshold voltage of the upper part of the fin can also be adjusted by adjusting the thickness of the liner layer.

所述基底上还形成有沉积隔离材料层103至所述鳍片的目标高度,以形成隔离结构。An isolation material layer 103 is also deposited on the substrate to a target height of the fins to form an isolation structure.

在所述半导体衬底上形成有层间介电层,以填充所述金属栅极结构之间的间隙。An interlayer dielectric layer is formed on the semiconductor substrate to fill gaps between the metal gate structures.

形成层间介电层可以采用本领域技术人员所熟习的各种适宜的工艺,例如化学气相沉积工艺。层间介电层可为氧化硅层,包括利用热化学气相沉积(thermal CVD)制造工艺或高密度等离子体(HDP)制造工艺形成的有掺杂或未掺杂的氧化硅的材料层,例如未经掺杂的硅玻璃(USG)、磷硅玻璃(PSG)或硼磷硅玻璃(BPSG)。此外,层间介电层也可以是掺杂硼或掺杂磷的自旋涂布式玻璃(spin-on-glass,SOG)、掺杂磷的四乙氧基硅烷(PTEOS)或掺杂硼的四乙氧基硅烷(BTEOS)。其厚度并不局限于某一数值。Various suitable processes familiar to those skilled in the art can be used to form the interlayer dielectric layer, such as chemical vapor deposition process. The interlayer dielectric layer may be a silicon oxide layer, including a material layer of doped or undoped silicon oxide formed by a thermal chemical vapor deposition (thermal CVD) manufacturing process or a high-density plasma (HDP) manufacturing process, for example Undoped silica glass (USG), phosphosilicate glass (PSG) or borophosphosilicate glass (BPSG). In addition, the interlayer dielectric layer can also be boron-doped or phosphorus-doped spin-on-glass (SOG), phosphorus-doped tetraethoxysilane (PTEOS) or boron-doped Tetraethoxysilane (BTEOS). Its thickness is not limited to a certain value.

在所述鳍片的表面还先后形成有界面层104和高k介电层105。An interface layer 104 and a high-k dielectric layer 105 are successively formed on the surface of the fin.

其中,所述界面层可以为热氧化层、氮的氧化物层、化学氧化层或者其他适合的薄膜层。Wherein, the interface layer may be a thermal oxide layer, a nitrogen oxide layer, a chemical oxide layer or other suitable thin film layers.

界面层的厚度可根据实际工艺需要进行合理设定,例如,界面层的厚度范围可以为5埃至10埃。The thickness of the interface layer can be reasonably set according to actual process requirements, for example, the thickness of the interface layer can range from 5 angstroms to 10 angstroms.

其中所述界面层和所述高k介电层均环绕所述悬浮部分并覆盖所述基底部分的水平面。Wherein the interface layer and the high-k dielectric layer both surround the suspension part and cover the horizontal plane of the base part.

高k介电层的k值(介电常数)通常为3.9以上,其构成材料包括氧化铪、氧化铪硅、氮氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化铝等,较佳地是氧化铪、氧化锆或氧化铝。可以采用化学气相沉积法(CVD)、原子层沉积法(ALD)或者物理气相沉积法(PVD)等适合的工艺形成高k介电层。The k value (dielectric constant) of the high-k dielectric layer is usually above 3.9, and its constituent materials include hafnium oxide, hafnium oxide silicon, hafnium silicon oxynitride, lanthanum oxide, zirconium oxide, zirconium oxide silicon, titanium oxide, tantalum oxide, Barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, aluminum oxide, etc., preferably hafnium oxide, zirconium oxide or aluminum oxide. A suitable process such as chemical vapor deposition (CVD), atomic layer deposition (ALD) or physical vapor deposition (PVD) can be used to form the high-k dielectric layer.

高k介电层的厚度范围为10埃至30埃,也可以为其他适合的厚度。The thickness of the high-k dielectric layer ranges from 10 angstroms to 30 angstroms, and other suitable thicknesses can also be used.

其中所述第一功函数层为PMOS功函数层,例如TiN等。Wherein the first work function layer is a PMOS work function layer, such as TiN.

其中,所述第二功函数层108为NMOS功函数层,例如TiAl等。Wherein, the second work function layer 108 is an NMOS work function layer, such as TiAl.

所述导电材料可以选用本领域常用的各种金属材料,例如W等,并不局限于某一种。The conductive material can be selected from various metal materials commonly used in the field, such as W, etc., and is not limited to a certain one.

本发明的所述半导体器件中能够消除寄生沟道,提高器件的性能和良率。The parasitic channel can be eliminated in the semiconductor device of the present invention, and the performance and yield of the device can be improved.

实施例三Embodiment Three

本发明还提供了一种电子装置,包括实施例二所述的半导体器件,所述半导体器件根据实施例一所述方法制备得到。The present invention also provides an electronic device, including the semiconductor device described in Embodiment 2, and the semiconductor device is prepared according to the method described in Embodiment 1.

本实施例的电子装置,可以是手机、平板电脑、笔记本电脑、上网本、游戏机、电视机、VCD、DVD、导航仪、数码相框、照相机、摄像机、录音笔、MP3、MP4、PSP等任何电子产品或设备,也可为任何包括电路的中间产品。本发明实施例的电子装置,由于使用了上述的半导体器件,因而具有更好的性能。The electronic device of this embodiment can be any electronic device such as a mobile phone, a tablet computer, a notebook computer, a netbook, a game console, a TV set, a VCD, a DVD, a navigator, a digital photo frame, a camera, a video camera, a recording pen, MP3, MP4, PSP, etc. Product or equipment, but also any intermediate product including electrical circuits. The electronic device according to the embodiment of the present invention has better performance due to the use of the above-mentioned semiconductor device.

其中,图3示出移动电话手机的示例。移动电话手机300被设置有包括在外壳301中的显示部分302、操作按钮303、外部连接端口304、扬声器305、话筒306等。Among them, FIG. 3 shows an example of a mobile phone handset. The mobile phone handset 300 is provided with a display portion 302 included in a housing 301, operation buttons 303, an external connection port 304, a speaker 305, a microphone 306, and the like.

由于所述电子装置包括实施例二所述的半导体器件,所述半导体器件根据实施例一所述方法制备得到,因此能够消除寄生沟道,提高器件的性能。Since the electronic device includes the semiconductor device described in Embodiment 2, and the semiconductor device is prepared according to the method described in Embodiment 1, parasitic channels can be eliminated and the performance of the device can be improved.

本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。The present invention has been described through the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can be made according to the teachings of the present invention, and these variations and modifications all fall within the claimed scope of the present invention. within the range. The protection scope of the present invention is defined by the appended claims and their equivalent scope.

Claims (11)

1.一种半导体器件的制造方法,其特征在于,所述方法包括:1. A method for manufacturing a semiconductor device, characterized in that the method comprises: 提供衬底,所述衬底包括NMOS区域和PMOS区域,在所述NMOS区域和所述PMOS区域上形成有鳍片和环绕所述鳍片的虚拟栅极,其中,所述鳍片包括由下向上交替层叠的鳍片材料层和牺牲层;A substrate is provided, the substrate includes an NMOS region and a PMOS region, fins and dummy gates surrounding the fins are formed on the NMOS region and the PMOS region, wherein the fins include Fin material layers and sacrificial layers stacked alternately upward; 去除所述虚拟栅极,以形成凹槽并露出所述鳍片;removing the dummy gate to form a groove and expose the fin; 去除所述凹槽中露出的所述牺牲层,以将所述鳍片间隔为悬空部分和基底部分;removing the sacrificial layer exposed in the groove to separate the fins into a suspension portion and a base portion; 在所述NMOS区域中的所述鳍片的基底部分上以及所述PMOS区域的所述鳍片的表面上形成第一功函数层,其中,所述第一功函数层为PMOS功函数层;forming a first work function layer on a base portion of the fin in the NMOS region and on a surface of the fin in the PMOS region, wherein the first work function layer is a PMOS work function layer; 在所述NMOS区域和所述PMOS区域的所述鳍片的表面上形成第二功函数层;forming a second work function layer on surfaces of the fins of the NMOS region and the PMOS region; 使用导电材料填充所述凹槽,以形成金属栅极。The groove is filled with a conductive material to form a metal gate. 2.根据权利要求1所述的制造方法,其特征在于,形成所述第一功函数层的方法包括:2. The manufacturing method according to claim 1, wherein the method for forming the first work function layer comprises: 在露出的所述鳍片的表面依次形成界面层、栅极介电层和第一功函数层;sequentially forming an interface layer, a gate dielectric layer and a first work function layer on the exposed surface of the fin; 去除所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层并保留所述NMOS区域中所述鳍片的基底部分表面的所述第一功函数层。removing the first work function layer on the surface of the floating part of the fin in the NMOS region and retaining the first work function layer on the surface of the base part of the fin in the NMOS region. 3.根据权利要求2所述的制造方法,其特征在于,去除所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层的方法包括:3. The manufacturing method according to claim 2, wherein the method for removing the first work function layer on the surface of the suspended portion of the fin in the NMOS region comprises: 沉积掩膜层,以覆盖所述NMOS区域和所述PMOS区域中的所述凹槽;depositing a mask layer to cover the grooves in the NMOS region and the PMOS region; 图案化所述掩膜层,以去除所述NMOS区域中的部分所述掩膜层并至少露出所述鳍片的悬空部分表面的所述第一功函数层;patterning the mask layer to remove part of the mask layer in the NMOS region and expose at least the first work function layer on the surface of the suspended part of the fin; 去除露出的所述NMOS区域中所述鳍片的悬空部分表面的所述第一功函数层。removing the first work function layer on the surface of the suspended portion of the fin in the exposed NMOS region. 4.根据权利要求3所述的制造方法,其特征在于,所述方法还进一步包括去除剩余的掩膜层的步骤。4. The manufacturing method according to claim 3, further comprising the step of removing the remaining mask layer. 5.根据权利要求1所述的制造方法,其特征在于,在所述衬底上还形成有填充所述鳍片之间间隙的隔离材料层,所述隔离材料层的顶部与所述鳍片的基底部分的顶部平齐。5. The manufacturing method according to claim 1, wherein an isolation material layer filling the gaps between the fins is further formed on the substrate, and the top of the isolation material layer is in contact with the fins. flush with the top of the base portion. 6.根据权利要求5所述的制造方法,其特征在于,所述第一功函数层形成于所述鳍片的基底部分的水平面上和所述隔离材料层上。6 . The manufacturing method according to claim 5 , wherein the first work function layer is formed on a level plane of the base portion of the fin and on the isolation material layer. 7.一种半导体器件,其特征在于,所述半导体器件包括:7. A semiconductor device, characterized in that the semiconductor device comprises: 衬底,所述衬底包括NMOS区域和PMOS区域;a substrate comprising an NMOS region and a PMOS region; 鳍片,形成于所述NMOS区域和所述PMOS区域中,其中,在形成金属栅极的区域中所述鳍片包括相互间隔设置的悬浮部分和基底部分;Fins formed in the NMOS region and the PMOS region, wherein the fins include a floating portion and a base portion that are spaced apart from each other in the region where the metal gate is formed; 金属栅极结构,包括:Metal gate structures, including: 第一功函数层,位于所述NMOS区域和所述PMOS区域中所述基底部分的水平面上以及所述PMOS区域中所述悬浮部分的表面,其中,所述第一功函数层为PMOS功函数层;The first work function layer is located on the horizontal plane of the base part in the NMOS region and the PMOS region and on the surface of the suspension part in the PMOS region, wherein the first work function layer is a PMOS work function layer layer; 第二功函数层,位于所述第一功函数层上以及所述NMOS区域中的所述鳍片的悬浮部分的表面上;a second work function layer on the first work function layer and on the surface of the floating portion of the fin in the NMOS region; 导电材料,覆盖所述鳍片并填充所述悬浮部分和所述基底部分之间的间隔。A conductive material covers the fin and fills the space between the suspension portion and the base portion. 8.根据权利要求7所述的半导体器件,其特征在于,在所述鳍片的表面还形成有界面层和栅极介电层。8. The semiconductor device according to claim 7, wherein an interface layer and a gate dielectric layer are further formed on the surface of the fin. 9.根据权利要求7所述的半导体器件,其特征在于,在所述衬底上还形成有填充所述鳍片之间间隙的隔离材料层,所述隔离材料层的顶部与所述鳍片的基底部分的顶部平齐。9. The semiconductor device according to claim 7, characterized in that, an isolation material layer filling the gap between the fins is further formed on the substrate, and the top of the isolation material layer is in contact with the fins. flush with the top of the base portion. 10.根据权利要求9所述的半导体器件,其特征在于,所述第一功函数层形成于所述鳍片的基底部分上和所述隔离材料层上。10. The semiconductor device according to claim 9, wherein the first work function layer is formed on the base portion of the fin and on the isolation material layer. 11.一种电子装置,其特征在于,所述电子装置包括权利要求7-10之一所述的半导体器件。11. An electronic device, characterized in that the electronic device comprises the semiconductor device according to any one of claims 7-10.
CN201810682285.XA 2018-06-27 2018-06-27 Semiconductor device, manufacturing method thereof and electronic device Active CN110648916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810682285.XA CN110648916B (en) 2018-06-27 2018-06-27 Semiconductor device, manufacturing method thereof and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810682285.XA CN110648916B (en) 2018-06-27 2018-06-27 Semiconductor device, manufacturing method thereof and electronic device

Publications (2)

Publication Number Publication Date
CN110648916A CN110648916A (en) 2020-01-03
CN110648916B true CN110648916B (en) 2023-03-28

Family

ID=68988875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810682285.XA Active CN110648916B (en) 2018-06-27 2018-06-27 Semiconductor device, manufacturing method thereof and electronic device

Country Status (1)

Country Link
CN (1) CN110648916B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687626B (en) * 2020-12-24 2023-01-03 中国科学院微电子研究所 CFET structure, preparation method thereof and semiconductor device applying CFET structure
CN113130489A (en) * 2021-03-12 2021-07-16 中国科学院微电子研究所 Method for manufacturing semiconductor device
CN118414704A (en) 2022-11-28 2024-07-30 京东方科技集团股份有限公司 Display substrate and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090416A1 (en) * 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
CN102969360A (en) * 2012-12-14 2013-03-13 中国科学院微电子研究所 III-V group semiconductor nanowire array field effect transistor
CN116825818A (en) * 2015-11-12 2023-09-29 蓝枪半导体有限责任公司 Grid full-cladding nanowire field effect transistor device
US10177226B2 (en) * 2016-11-03 2019-01-08 International Business Machines Corporation Preventing threshold voltage variability in stacked nanosheets

Also Published As

Publication number Publication date
CN110648916A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110648916B (en) Semiconductor device, manufacturing method thereof and electronic device
TW202145217A (en) Memory cell, memory device and method of forming the same
CN106601685B (en) A kind of semiconductor device and its preparation method, electronic device
CN108735670B (en) A semiconductor device and its manufacturing method and electronic device
CN108122840B (en) A kind of semiconductor device and preparation method, electronic device
CN107799471B (en) Semiconductor device, manufacturing method thereof and electronic device
CN107919282B (en) Semiconductor device, manufacturing method thereof and electronic device
CN106972020B (en) A kind of semiconductor device and its manufacturing method, electronic device
CN109037154B (en) A method of manufacturing a semiconductor device
CN108447826B (en) A semiconductor device and its manufacturing method and electronic device
CN107978563B (en) Semiconductor device, preparation method and electronic device
CN106601741A (en) Semiconductor device, preparation method thereof and electronic device
CN109087890B (en) Semiconductor device, manufacturing method thereof and electronic device
CN111180450B (en) A kind of semiconductor device and its manufacturing method, electronic device
CN103219366B (en) Fin-shaped field effect transistor structure and manufacturing method thereof
CN110047755B (en) A method of manufacturing a semiconductor device
CN110491836B (en) Semiconductor device, manufacturing method thereof and electronic device
TWI517392B (en) Finfet structure and method for making the same
CN109309048B (en) Semiconductor structure and method of forming the same
CN109037213A (en) A kind of semiconductor devices and preparation method thereof and electronic device
CN110047927B (en) Semiconductor device, manufacturing method thereof and electronic device
CN106952813B (en) Semiconductor device, manufacturing method thereof and electronic device
CN106910686B (en) Semiconductor device, preparation method thereof and electronic device
CN106601684B (en) Semiconductor device, preparation method thereof and electronic device
CN107527814A (en) A kind of semiconductor devices and preparation method, electronic installation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant