CN100339970C - Method for testing chip synchronous clock and chip capable of synchronously testing clock function - Google Patents
Method for testing chip synchronous clock and chip capable of synchronously testing clock function Download PDFInfo
- Publication number
- CN100339970C CN100339970C CNB2004100904888A CN200410090488A CN100339970C CN 100339970 C CN100339970 C CN 100339970C CN B2004100904888 A CNB2004100904888 A CN B2004100904888A CN 200410090488 A CN200410090488 A CN 200410090488A CN 100339970 C CN100339970 C CN 100339970C
- Authority
- CN
- China
- Prior art keywords
- clock signal
- clock
- chip
- signal
- testing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 8
- 238000010998 test method Methods 0.000 claims abstract description 4
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 21
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 21
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 19
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 19
- 102100040856 Dual specificity protein kinase CLK3 Human genes 0.000 description 14
- 101000749304 Homo sapiens Dual specificity protein kinase CLK3 Proteins 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000005070 sampling Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Tests Of Electronic Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种芯片测试方法,特别是涉及可避开异步效应所产生的取样误差的芯片测试方法。The invention relates to a chip testing method, in particular to a chip testing method capable of avoiding sampling errors produced by asynchronous effects.
背景技术Background technique
一般在芯片的制造过程中,最后必须通过芯片测试流程,以确认芯片的制造品质。在芯片测试过程中,首先以计算机仿真芯片在特定输入信号时的理想输出信号,并予以记录;接着,再以相同的特定输入信号提供至欲测试的芯片,再将被测试芯片的输出信号与理想输出信号比较,以判断是否吻合,并藉以判断芯片制造过程是否出现瑕疵。Generally, in the chip manufacturing process, the chip testing process must be passed at the end to confirm the manufacturing quality of the chip. In the process of chip testing, the computer simulates the ideal output signal of the chip at a specific input signal and records it; then, the same specific input signal is provided to the chip to be tested, and then the output signal of the chip under test is compared with the The ideal output signal is compared to determine whether it is consistent, and to determine whether there is a defect in the chip manufacturing process.
为了适应电子产品的不同需求,每一种芯片规格所要求的工作频率并不相同,例如,具有两种不同工作频率的芯片等。然而,若欲对具有两种不同工作频率的芯片进行测试时,将可能因为异步效应,而使得芯片测试变得相对的困难。In order to meet different requirements of electronic products, the operating frequencies required by each chip specification are different, for example, chips with two different operating frequencies. However, if a chip with two different operating frequencies is to be tested, the chip test may become relatively difficult due to the asynchronous effect.
以下将结合图1与图2,来说明异步效应对芯片测试所造成的影响。图1所示为为典型的触发器逻辑电路,此触发器逻辑电路可包含于芯片中。The impact of the asynchronous effect on the chip test will be described below with reference to FIG. 1 and FIG. 2 . Figure 1 shows a typical flip-flop logic circuit, which can be included in a chip.
如图1所示,若输入信号D2于第二触发器2,则第二触发器2依据第一时钟信号CLK2对输入信号D2进行取样,以输出信号Q2于逻辑电路Lg,并经由逻辑电路Lg输出信号D1。当第一触发器1接收到信号D1时,则依据第一时钟信号CLK1对信号D1进行取样,以输出信号Q1。其中,信号Q2与信号D1的延迟时间,会受到逻辑电路Lg的制造差异而影响。例如,此延迟时间为1.7~2.3ns。As shown in FIG. 1, if the input signal D2 is in the second flip-
如图2所示,图2示出了图1的第一时钟CLK1以及第二时钟CLK2的波形图。其中,第一时钟信号CLK1的工作频率高于第二时钟信号CLK2的工作频率,且第一时钟信号CLK1的工作频率不为第二时钟信号CLK2的工作频率的整数倍。第一时钟信号CLK1,例如,为250MHz,且第二时钟信号CLK2,例如,为66MHz。当信号D2于30ns时被取样,则由第二触发器2输出信号Q2于逻辑电路Lg。若经由逻辑电路Lg输出的信号D1与信号Q2的延迟时间为1.7ns~2.3ns,意即,逻辑电路Lg于30ns接收到信号Q2后,可能于31.7ns~32.3ns时送出信号D1。因此,依据第一时钟信号CLK1的脉冲正缘触发,第一触发器1将可能于32ns时对信号D1进行取样,亦可能于36ns时,才对信号D1进行取样。由上述可知,在同一取样时钟中,第一触发器1却具有两个取样时间,因此,容易造成第一触发器1的取样误差,此即为异步效应。As shown in FIG. 2 , FIG. 2 shows waveform diagrams of the first clock CLK1 and the second clock CLK2 in FIG. 1 . Wherein, the operating frequency of the first clock signal CLK1 is higher than the operating frequency of the second clock signal CLK2, and the operating frequency of the first clock signal CLK1 is not an integer multiple of the operating frequency of the second clock signal CLK2. The first clock signal CLK1 is, for example, 250 MHz, and the second clock signal CLK2 is, for example, 66 MHz. When the signal D2 is sampled at 30 ns, the second flip-
同理,当逻辑电路Lg于15ns接收到信号Q2,若逻辑电路Lg输出的信号D1与信号Q2的延迟时间为0.8ns~1.2ns,则第一触发器1将可能于16ns或20ns时进行信号取样,因此,将会产生异步效应;另外,当逻辑电路Lg于45ns接收到信号Q2,若逻辑电路Lg输出的信号D1与信号Q2的延迟时间为2.8ns~3.2ns,则第一触发器2将可能于48ns或52ns时进行信号取样,亦会产生异步效应。Similarly, when the logic circuit Lg receives the signal Q2 at 15ns, if the delay time between the signal D1 output by the logic circuit Lg and the signal Q2 is 0.8ns~1.2ns, then the first flip-
异步效应并不会影响芯片的正常操作。不过,于进行芯片测试时,由于必须将芯片的输出信号与理想信号进行比对,且当输出信号与理想信号完全吻合,才得以确认芯片的制造品质无瑕疵,因此,异步效应所产生的取样误差将会影响测试的结果。Asynchronous effects do not affect the normal operation of the chip. However, when performing chip testing, since the output signal of the chip must be compared with the ideal signal, and when the output signal is completely consistent with the ideal signal, the manufacturing quality of the chip can be confirmed to be flawless. Therefore, the sampling caused by the asynchronous effect Errors will affect the results of the test.
由上述可知,为了避免异步效应而影响芯片测试结果,逻辑电路Lg的延迟时间不能跨越1ns(0.8ns~1.2ns)、2ns(1.7~3.2ns)以及3ns(2.8ns~3.2ns),因此,在触发器逻辑电路的设计上,必须对逻辑电路Lg的延迟时间加以限制,而导致芯片设计上的困难。It can be seen from the above that in order to avoid the asynchronous effect from affecting the chip test results, the delay time of the logic circuit Lg cannot exceed 1ns (0.8ns~1.2ns), 2ns (1.7~3.2ns) and 3ns (2.8ns~3.2ns). Therefore, In the design of the flip-flop logic circuit, the delay time of the logic circuit Lg must be limited, which leads to difficulties in chip design.
发明内容Contents of the invention
有鉴于此,本发明提出一种芯片同步时钟的测试方法,用以避免异步效应所产生的问题,用以提高芯片测试的准确性。In view of this, the present invention proposes a method for testing a chip synchronous clock to avoid problems caused by asynchronous effects and improve the accuracy of chip testing.
本发明提出了一种芯片同步时钟测试的方法,其中,该芯片包括由一第一时钟信号驱动的一第一逻辑部,以及一第二时钟信号驱动的一第二逻辑部,该测试方法包括:根据该第二时钟信号产生一第三时钟信号;根据该第三时钟信号用以测试该第一逻辑部;以及依据该第二时钟信号,用以测试该第二逻辑部;其中该第一时钟信号的工作频率高于该第二时钟信号的工作频率且不为该第二时钟信号工作频率的整数倍,且其中该第三时钟信号的工作频率大于该第一时钟信号的工作频率且为该第二时钟信号工作频率的整数倍。The present invention proposes a method for chip synchronous clock testing, wherein the chip includes a first logic part driven by a first clock signal and a second logic part driven by a second clock signal, and the test method includes : generating a third clock signal according to the second clock signal; testing the first logic part according to the third clock signal; and testing the second logic part according to the second clock signal; wherein the first The operating frequency of the clock signal is higher than the operating frequency of the second clock signal and is not an integer multiple of the operating frequency of the second clock signal, and wherein the operating frequency of the third clock signal is greater than the operating frequency of the first clock signal and is Integer multiples of the operating frequency of the second clock signal.
本发明还提出了一种可同步测试时钟功能的芯片,该芯片包括:一第一时钟生成装置,用以产生一第一时钟信号;一第二时钟生成装置,用以产生一第二时钟信号以及一第三时钟信号;一选择装置,接收该第一时钟信号以及该第三时钟信号,用以选择输出该第一时钟信号或该第三时钟信号其中之一;一第一逻辑部,连接至该选择装置,用以接受该选择装置所选择的时钟信号对该第一逻辑部进行测试;以及一第二逻辑部,连接至该第二时钟生成装置,用以接收该第二时钟信号;其中,该第一时钟信号的工作频率高于该第二时钟信号的工作频率且不为该第二时钟信号工作频率的整数倍,且该第三时钟信号的工作频率大于该第一时钟信号且为该第二时钟信号工作频率的整数倍。The present invention also proposes a chip capable of synchronously testing the clock function, the chip comprising: a first clock generating device for generating a first clock signal; a second clock generating device for generating a second clock signal and a third clock signal; a selection device, receiving the first clock signal and the third clock signal, for selecting and outputting one of the first clock signal or the third clock signal; a first logic unit connected to To the selection device, used to receive the clock signal selected by the selection device to test the first logic part; and a second logic part, connected to the second clock generation device, to receive the second clock signal; Wherein, the operating frequency of the first clock signal is higher than the operating frequency of the second clock signal and is not an integral multiple of the operating frequency of the second clock signal, and the operating frequency of the third clock signal is greater than the operating frequency of the first clock signal and is an integer multiple of the operating frequency of the second clock signal.
由于第三时钟信号的工作频率为第二时钟信号的工作频率的整数倍,因此,以第三时钟信号来替代第一信号来测试上述芯片的方式,可有效地避免异步效应,并可提高芯片测试的准确性。Since the operating frequency of the third clock signal is an integral multiple of the operating frequency of the second clock signal, the method of testing the above-mentioned chip with the third clock signal instead of the first signal can effectively avoid asynchronous effects and improve chip performance. The accuracy of the test.
为使本发明的上述目的、特征和优点能更明显易懂,下文特举一较佳实施例,并结合附图详细说明如下。In order to make the above-mentioned purpose, features and advantages of the present invention more comprehensible, a preferred embodiment is specifically cited below and described in detail with reference to the accompanying drawings.
附图说明:Description of drawings:
图1示出了典型的触发器逻辑电路。Figure 1 shows a typical flip-flop logic circuit.
图2示出了图1的第一时钟CLK1以及第二时钟CLK2的波形图。FIG. 2 shows a waveform diagram of the first clock CLK1 and the second clock CLK2 in FIG. 1 .
图3示出了应用本发明的芯片测试方法的芯片。Fig. 3 shows a chip to which the chip testing method of the present invention is applied.
图4是用以说明用于测试芯片3的第二时钟信号CLK2与第三时钟信号CLK3的波形图。FIG. 4 is a waveform diagram illustrating the second clock signal CLK2 and the third clock signal CLK3 for testing the chip 3 .
图5示出了本发明的芯片测试方法流程图。Fig. 5 shows a flow chart of the chip testing method of the present invention.
附图符号说明:Explanation of reference symbols:
1、2~触发器;Lg~逻辑电路;D2~芯片输入信号;Q2、D1~逻辑信号;Q1~芯片输出信号;CLK1、CLK2、CLK3~时钟信号;3~芯片;30~时钟生成装置;31~选择装置;32~第一逻辑部;33~第二逻辑部;40~第一时钟生成装置;41~第二时钟生成装置;Vo~输出信号。1, 2~trigger; Lg~logic circuit; D2~chip input signal; Q2, D1~logic signal; Q1~chip output signal; CLK1, CLK2, CLK3~clock signal; 3~chip; 30~clock generating device; 31~selection device; 32~first logic unit; 33~second logic unit; 40~first clock generation device; 41~second clock generation device; Vo~output signal.
具体实施方式Detailed ways
本发明提出一种芯片测试方法,可避免异步效应所产生的问题,用以提高芯片测试的准确性。The invention provides a chip testing method, which can avoid problems caused by asynchronous effects and improve the accuracy of chip testing.
图3示出了应用本发明的芯片测试方法的芯片。其中,芯片3包括一时钟生成装置30、一选择装置31、一第一逻辑部32以及一第二逻辑部33。在正常操作时,第一逻辑部32由第一时钟信号CLK1所驱动,第二逻辑部33由第二时钟信号CLK2所驱动,而第一时钟CLK1的工作频率高于第二时钟CLK2且不为第二时钟信号CLK2工作频率的整数倍。时钟生成装置30包括一第一时钟生成装置40以及一第二时钟生成装置41;第一时钟生成装置40用以产生第一时钟信号CLK1,而第二时钟生成装置41用以产生第二时钟信号CLK2以及第三时钟信号CLK3。选择装置31用以选择输出第一时钟信号CLK1或第三时钟信号CLK3,以提供芯片3的正常操作信号或测试信号。Fig. 3 shows a chip to which the chip testing method of the present invention is applied. Wherein, the chip 3 includes a
在此实施例中,芯片3,例如,为一图形处理芯片。芯片3可利用第一逻辑部32来处理中央处理器(未显示)的指令信号,并利用第二逻辑部33来控制计算机图形接口装置(computer graphics interface)(未显示)。若假设第一时钟信号CLK1的工作频率为250MHz,且第二时钟信号CLK2的工作频率为66MHz,但测试时,由于第一时钟信号CLK1的工作频率不为第二时钟信号CLK2的工作频率的整数倍,因此,若以第一时钟信号CLK1与第二时钟信号CLK2来供应芯片3时,明显地,将会导致异步效应,而导致测试误差。In this embodiment, the chip 3 is, for example, a graphics processing chip. The chip 3 can use the
因此,当测试芯片3时,由选择装置31选择输出第三时钟信号CLK3来取代第一时钟信号CLK1,藉以利用第二时钟信号CLK2与第三时钟信号CLK3来测试图形处理芯片3。其中,第三时钟信号CLK3的工作频率f3需满足f3=f2*k,且f2*(k-1)<f1<f3,k为整数。Therefore, when testing the chip 3 , the
当第一逻辑部32接收到第三时钟信号CLK3,且第二逻辑部33接收到第二时钟信号CLK2时,则第一与二逻辑部32可通过逻辑信号Sc的交流而执行对应的动作。因此,当第一逻辑部32接收到第三时钟信号CLK3以及逻辑信号Sc时,则可依据第三时钟信号CLK3与逻辑信号Sc来对芯片的输入信号进行取样,藉以输出测试信号。When the
图4是用以说明用于测试芯片3的第二时钟信号CLK2与第三时钟信号CLK3的波形图。其中,在此实施例中,第二时钟信号CLK2的工作频率f2,例如,为66MHz,而第三时钟信号CLK3的工作频率f3,例如,为266MHz。FIG. 4 is a waveform diagram illustrating the second clock signal CLK2 and the third clock signal CLK3 for testing the chip 3 . Wherein, in this embodiment, the working frequency f2 of the second clock signal CLK2 is, for example, 66 MHz, and the working frequency f3 of the third clock signal CLK3 is, for example, 266 MHz.
如图4所示,若第二逻辑部33于15ns输出逻辑信号Sc时,则第一逻辑部32可于18.75ns或22.5ns对芯片的输入信号进行取样并输出测试信号,因此,第一逻辑部32的取样时间差为3.75ns(18.75ns-15ns=3.75ns)或7.5ns(22.5ns-15ns=7.5ns);同样地,若第二逻辑部33于30ns输出逻辑信号Sc时,第一逻辑部32的取样时间差亦为3.75ns(33.75ns-30ns=3.75ns)或7.5ns(37.5ns-30ns=7.5ns);同样地,若第二逻辑部33于45ns输出逻辑信号Sc时,第一逻辑部32的取样时间差亦为3.75ns(48.75ns-45ns=3.75ns)或7.5ns(47.5ns-45ns=7.5ns)。由此可知,当测试芯片3时,若以第三时钟信号CLK3取代第一时钟信号CLK1,则每个取样周期中的取样时间差为相同,因此,当逻辑电路Lg的延迟时间不跨越3.75ns,则第一逻辑部32即可依据相同的取样时间差而取得正确的取样信号。相对于图3,逻辑电路Lg的延迟要求不能跨越1ns、2ns以及3ns,图4仅要求不能跨越3.75ns。由上述可知,本发明的芯片测试方法可有效地避免异步效应所导致的取样误差,而增加芯片测试结果的正确性。As shown in Figure 4, if the
当利用第二时钟信号测试第二逻辑部时,可利用第二逻辑部的输出信号判断第二时钟生成装置是否正确的产生第二时钟信号。同时当利用第三时钟信号测试第一逻辑部时,可利用第一逻辑部的输出信号判断第二时钟生成装置是否正确的产生第三时钟信号。When using the second clock signal to test the second logic part, the output signal of the second logic part can be used to judge whether the second clock generating device correctly generates the second clock signal. At the same time, when the third clock signal is used to test the first logic part, the output signal of the first logic part can be used to judge whether the second clock generating device correctly generates the third clock signal.
另外,本发明的芯片测试方法,还可对第一时钟生成装置40的第一时钟信号CLK1进行测试。由于测试时是以第三时钟信号CLK3取代第一时钟信号CLK1,因此第一时钟生成装置40将无法被测试到,为了测试第一时钟生成装置,首先使第一逻辑部32的操作独立于第二逻辑部33,亦即使得第一逻辑部32与第二逻辑部逻辑33之间没有信号Sc的交流,再提供第一时钟信号CLK1于第一逻辑部32,藉以由第一逻辑部32的输出信号Vo来判断第一时钟生成装置40是否正常输出第一时钟信号CLK1。In addition, the chip testing method of the present invention can also test the first clock signal CLK1 of the first
在本实施例中,选择开关31,例如,为一多任务器,且第一时钟生成装置40以及第二时钟生成装置41,例如,为锁相电路。In this embodiment, the
图5示出了本发明的芯片测试方法流程图。首先,根据一第二时钟信号产生一第三时钟信号,其工作频率大于第一时钟信号且为第二时钟信号工作频率的整数倍(S501);接着,以第三时钟信号取代第一时钟信号(S502);再分别利用第二时钟信号以及第三时钟信号,测试芯片3除了第一时钟生成装置外其它的部份(S503);最后,将芯片中的第一逻辑部独立于第二逻辑部进行操作,利用第一时钟信号测试第一逻辑部,根据第一逻辑部的输出信号判断第一时钟生成装置是否正确读产生第一时钟信号(S504)。Fig. 5 shows a flow chart of the chip testing method of the present invention. First, a third clock signal is generated according to a second clock signal, and its operating frequency is greater than the first clock signal and is an integer multiple of the operating frequency of the second clock signal (S501); then, the third clock signal is used to replace the first clock signal (S502); Utilize the second clock signal and the third clock signal respectively again, test chip 3 other parts except the first clock generating device (S503); Finally, the first logic part in the chip is independent from the second logic The first logic part is tested by using the first clock signal, and it is judged according to the output signal of the first logic part whether the first clock generating device correctly reads and generates the first clock signal (S504).
其中,第一、第二以及第三时钟的工作频率分别为f1、f2、f3,且f3=f2*k,f2*(k-1)<f1<f3,k为整数。Wherein, the operating frequencies of the first, second and third clocks are respectively f1, f2 and f3, and f3=f2*k, f2*(k-1)<f1<f3, k is an integer.
如上披露的本发明的较佳实施例,仅用于帮助了解本发明的实施,并非用以限定本发明的精神,本领域的技术人员在领悟本发明的精神后,在不脱离本发明的精神范围的前提下可作若干的更动润饰及等同的变化替换,其专利保护范围以本发明的权利要求为准。The preferred embodiments of the present invention disclosed above are only used to help understand the implementation of the present invention, and are not intended to limit the spirit of the present invention. Those skilled in the art will not depart from the spirit of the present invention after comprehending the spirit of the present invention. Under the premise of the scope, some modifications and equivalent changes can be made, and the scope of patent protection is based on the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100904888A CN100339970C (en) | 2004-11-10 | 2004-11-10 | Method for testing chip synchronous clock and chip capable of synchronously testing clock function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100904888A CN100339970C (en) | 2004-11-10 | 2004-11-10 | Method for testing chip synchronous clock and chip capable of synchronously testing clock function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1632935A CN1632935A (en) | 2005-06-29 |
CN100339970C true CN100339970C (en) | 2007-09-26 |
Family
ID=34847598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100904888A Expired - Lifetime CN100339970C (en) | 2004-11-10 | 2004-11-10 | Method for testing chip synchronous clock and chip capable of synchronously testing clock function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100339970C (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1032593A (en) * | 1987-10-16 | 1989-04-26 | 德国Itt工业公司 | Digit chip with the input data sync |
JPH03204951A (en) * | 1989-10-13 | 1991-09-06 | Fujitsu Ltd | Semiconductor device with burn-in circuit |
KR960013758B1 (en) * | 1994-08-26 | 1996-10-10 | 엘지전자 주식회사 | External synchronous circuit for chip test |
JPH11145213A (en) * | 1997-11-07 | 1999-05-28 | Matsushita Electric Ind Co Ltd | Semiconductor device and inspection method thereof |
CN1303032A (en) * | 2000-01-05 | 2001-07-11 | 威盛电子股份有限公司 | Chip set with clock signal conversion |
CN1464980A (en) * | 2001-06-07 | 2003-12-31 | 株式会社艾德温特斯特 | Method for calibrating semiconductor test instrument |
-
2004
- 2004-11-10 CN CNB2004100904888A patent/CN100339970C/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1032593A (en) * | 1987-10-16 | 1989-04-26 | 德国Itt工业公司 | Digit chip with the input data sync |
JPH03204951A (en) * | 1989-10-13 | 1991-09-06 | Fujitsu Ltd | Semiconductor device with burn-in circuit |
KR960013758B1 (en) * | 1994-08-26 | 1996-10-10 | 엘지전자 주식회사 | External synchronous circuit for chip test |
JPH11145213A (en) * | 1997-11-07 | 1999-05-28 | Matsushita Electric Ind Co Ltd | Semiconductor device and inspection method thereof |
CN1303032A (en) * | 2000-01-05 | 2001-07-11 | 威盛电子股份有限公司 | Chip set with clock signal conversion |
CN1464980A (en) * | 2001-06-07 | 2003-12-31 | 株式会社艾德温特斯特 | Method for calibrating semiconductor test instrument |
Also Published As
Publication number | Publication date |
---|---|
CN1632935A (en) | 2005-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1927004B1 (en) | Scan testing methods | |
CN115238619B (en) | Post-module simulation method and system for digital chip | |
JP5389357B2 (en) | Time measurement using a phase-shifted periodic waveform | |
CN112526326A (en) | Time sequence testing method, system, device and storage medium | |
Lamech et al. | REBEL and TDC: Two embedded test structures for on-chip measurements of within-die path delay variations | |
JPH09318713A (en) | Semiconductor testing apparatus | |
US6564360B2 (en) | Static timing analysis method for a circuit using generated clock | |
US20090105970A1 (en) | Semiconductor tester | |
US7504857B2 (en) | Functional cells for automated I/O timing characterization of an integrated circuit | |
CN100339970C (en) | Method for testing chip synchronous clock and chip capable of synchronously testing clock function | |
TWI252321B (en) | Debug circuit | |
US7802214B2 (en) | Methods and apparatuses for timing analysis of electronics circuits | |
WO2007122990A1 (en) | Signal output device, signal detection device, tester, electron device, and program | |
US7246286B2 (en) | Testing methods and chips for preventing asnchronous sampling errors | |
JP5408052B2 (en) | Integrated circuit, simulation apparatus, and simulation method | |
JP5145167B2 (en) | Clock domain check method, clock domain check program, and recording medium | |
CN1244820C (en) | Semiconductor test system based on event | |
CN1399136A (en) | Clock signal frequency verification device and method | |
US20050240846A1 (en) | Accurate Generation of Scan Enable Signal when Testing Integrated Circuits Using Sequential Scanning Techniques | |
TWI698088B (en) | Circuit having a plurality of operation modes | |
JP4657825B2 (en) | Interface circuit of semiconductor device and measuring method | |
WO2001096893A1 (en) | Apparatus for controlling semiconductor chip characteristics | |
JP2003294812A (en) | Semiconductor device | |
JP2008275337A (en) | Testing device and method | |
JPH117461A (en) | Logic simulation method and test pattern generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20070926 |
|
CX01 | Expiry of patent term |