[go: up one dir, main page]

login
Search: a331379 -id:a331379
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into prime parts.
(Formerly M0265 N0093)
+10
172
1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 413, 456, 504, 557, 614, 677, 744, 819, 899, 987, 1083, 1186, 1298, 1420, 1552, 1695, 1850, 2018, 2198, 2394, 2605, 2833, 3079, 3344
OFFSET
0,6
COMMENTS
a(n) gives the number of values of k such that A001414(k) = n. - Howard A. Landman, Sep 25 2001
Let W(n) = {prime p: There is at least one number m whose spf is p, and sopfr(m) = n}. Let V(n,p) = {m: sopfr(m) = n, p belongs to W(n)}. Then a(n) = sigma(|V(n,p)|). E.g.: W(10) = {2,3,5}, V(10,2) = {30,32,36}, V(10,3) = {21}, V(10,5) = {25}, so a(10) = 3+1+1 = 5. - David James Sycamore, Apr 14 2018
From Gus Wiseman, Jan 18 2020: (Start)
Also the number of integer partitions such that the sum of primes indexed by the parts is n. For example, the sum of primes indexed by the parts of the partition (3,2,1,1) is prime(3)+prime(2)+prime(1)+prime(1) = 12, so (3,2,1,1) is counted under a(12). The a(2) = 1 through a(14) = 10 partitions are:
1 2 11 3 22 4 32 41 33 5 43 6 44
21 111 31 221 222 42 322 331 51 52
211 1111 311 321 411 421 332 431
2111 2211 2221 2222 422 3222
11111 3111 3211 3221 3311
21111 22111 4111 4211
111111 22211 22221
31111 32111
211111 221111
1111111
(End)
REFERENCES
R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 203.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
D. M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hans Havermann, Table of n, a(n) for n = 0..50000 (first 1000 terms from T. D. Noe, terms 1001-20000 from Vaclav Kotesovec, terms 20001-50000 extracted from files by Hans Havermann)
K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294.
George E. Andrews, Arnold Knopfmacher, and John Knopfmacher, Engel expansions and the Rogers-Ramanujan identities, J. Number Theory 80 (2000), 273-290. See Eq. 2.1.
George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, On the Number of Distinct Multinomial Coefficients, Journal of Number Theory, Volume 118, Issue 1, May 2006, pp. 15-30.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Johann Bartel, R. K. Bhaduri, Matthias Brack, and M. V. N. Murthy, Asymptotic prime partitions of integers, Phys. Rev. E, 95 (2017), 052108, arXiv:1609.06497 [math-ph], 2016-2017.
P. T. Bateman and P. Erdős, Partitions into primes, Publ. Math. Debrecen 4 (1956), 198-200.
J. Browkin, Sur les décompositions des nombres naturels en sommes de nombres premiers, Colloquium Mathematicum 5 (1958), 205-207.
Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), no. 4, p. 509.
L. M. Chawla and S. A. Shad, Review of "On a trio-set of partition functions and their tables", Mathematics of Computation, Vol. 24, No. 110 (Apr., 1970), pp. 490-491.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see Section VIII.6, pp. 576ff.
H. Gupta, Partitions into distinct primes, Proc. Nat. Acad. Sci. India, 21 (1955), 185-187.
O. P. Gupta and S. Luthra, Partitions into primes, Proc. Nat. Inst. Sci. India. Part A. 21 (1955), 181-184.
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12. (annotated scanned copy)
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
BongJu Kim, Partition number identities which are true for all set of parts, arXiv:1803.08095 [math.CO], 2018.
Vaclav Kotesovec, Wrong asymptotics of OEIS A000607? (MathOverflow). Includes discussion of the contradiction between the results for the next-to-leading term in the asymptotic formulas by Vaughan and by Bartel et al.
John F. Loase (splurge(AT)aol.com), David Lansing, Cassie Hryczaniuk and Jamie Cahoon, A Variant of the Partition Function, College Mathematics Journal, Vol. 36, No. 4 (Sep 2005), pp. 320-321.
Ljuben Mutafchiev, A Note on Goldbach Partitions of Large Even Integers, arXiv:1407.4688 [math.NT], 2014-2015.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
N. J. A. Sloane, Transforms.
R. C. Vaughan, On the number of partitions into primes, Ramanujan J. vol. 15, no. 1 (2008) 109-121.
Eric Weisstein's World of Mathematics, Prime Partition.
Roger Woodford, Bounds for the Eventual Positivity of Difference Functions of Partitions, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.3.
FORMULA
Asymptotically a(n) ~ exp(2 Pi sqrt(n/log n) / sqrt(3)) (Ayoub).
a(n) = (1/n)*Sum_{k=1..n} A008472(k)*a(n-k). - Vladeta Jovovic, Aug 27 2002
G.f.: 1/Product_{k>=1} (1-x^prime(k)).
See the partition arrays A116864 and A116865.
From Vaclav Kotesovec, Sep 15 2014 [Corrected by Andrey Zabolotskiy, May 26 2017]: (Start)
It is surprising that the ratio of the formula for log(a(n)) to the approximation 2 * Pi * sqrt(n/(3*log(n))) exceeds 1. For n=20000 the ratio is 1.00953, and for n=50000 (using the value from Havermann's tables) the ratio is 1.02458, so the ratio is increasing. See graph above.
A more refined asymptotic formula is found by Vaughan in Ramanujan J. 15 (2008), pp. 109-121, and corrected by Bartel et al. (2017): log(a(n)) = 2*Pi*sqrt(n/(3*log(n))) * (1 - log(log(n))/(2*log(n)) + O(1/log(n))).
See Bartel, Bhaduri, Brack, Murthy (2017) for a more complete asymptotic expansion. (End)
G.f.: 1 + Sum_{i>=1} x^prime(i) / Product_{j=1..i} (1 - x^prime(j)). - Ilya Gutkovskiy, May 07 2017
a(n) = A184198(n) + A184199(n). - Vaclav Kotesovec, Jan 11 2021
EXAMPLE
n = 10 has a(10) = 5 partitions into prime parts: 10 = 2 + 2 + 2 + 2 + 2 = 2 + 2 + 3 + 3 = 2 + 3 + 5 = 3 + 7 = 5 + 5.
n = 15 has a(15) = 12 partitions into prime parts: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 3 + 3 + 3 = 2 + 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 5 = 2 + 3 + 5 + 5 = 2 + 3 + 3 + 7 = 2 + 2 + 11 = 2 + 13 = 3 + 3 + 3 + 3 + 3 = 3 + 5 + 7 = 5 + 5 + 5.
MAPLE
with(gfun):
t1:=mul(1/(1-q^ithprime(n)), n=1..51):
t2:=series(t1, q, 50):
t3:=seriestolist(t2); # fixed by Vaclav Kotesovec, Sep 14 2014
MATHEMATICA
CoefficientList[ Series[1/Product[1 - x^Prime[i], {i, 1, 50}], {x, 0, 50}], x]
f[n_] := Length@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]; Array[f, 57] (* Robert G. Wilson v, Jul 23 2010 *)
Table[Length[Select[IntegerPartitions[n], And@@PrimeQ/@#&]], {n, 0, 60}] (* Harvey P. Dale, Apr 22 2012 *)
a[n_] := a[n] = If[PrimeQ[n], 1, 0]; c[n_] := c[n] = Plus @@ Map[# a[#] &, Divisors[n]]; b[n_] := b[n] = (c[n] + Sum[c[k] b[n - k], {k, 1, n - 1}])/n; Table[b[n], {n, 1, 20}] (* Thomas Vogler, Dec 10 2015: Uses Euler transform, caches computed values, faster than IntegerPartitions[] function. *)
nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j + 1]] -= poly[[j + 1 - p]], {j, nmax, p, -1}]; , {k, 2, pmax}]; s = Sum[poly[[k + 1]]*x^k, {k, 0, Length[poly] - 1}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^prime(k))) \\ Joerg Arndt, Sep 04 2014
(Haskell)
a000607 = p a000040_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 05 2012
(Sage) [Partitions(n, parts_in=prime_range(n + 1)).cardinality() for n in range(100)] # Giuseppe Coppoletta, Jul 11 2016
(Python)
from sympy import primefactors
l = [1, 0]
for n in range(2, 101):
l.append(sum(sum(primefactors(k)) * l[n - k] for k in range(1, n + 1)) / n)
l # Indranil Ghosh, Jul 13 2017
(Magma) [1] cat [#RestrictedPartitions(n, {p:p in PrimesUpTo(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
CROSSREFS
G.f. = 1 / g.f. for A046675. See A046113 for the ordered (compositions) version.
Row sums of array A116865 and of triangle A261013.
Column sums of A331416.
Partitions whose Heinz number is divisible by their sum of primes are A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.
KEYWORD
easy,nonn,nice
STATUS
approved
Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.
+10
27
1, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 22, 15, 30, 42, 77, 42, 101, 56, 176, 176, 231, 135, 490, 490, 490, 792, 1002, 490, 1575, 627, 3010, 2436, 2436, 3718, 5604, 1958, 4565, 6842, 12310, 3718, 14883, 4565, 21637, 26015, 17977, 8349, 53174, 44583, 63261
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The a(1) = 1 through a(10) = 11 partitions:
1 11 21 211 32 321 43 5111 522 631
1111 311 2211 421 32111 3222 3331
21111 4111 41111 4221 4321
221111 22221 5311
311111 32211 32221
2111111 222111 33211
11111111 2211111 43111
322111
331111
3211111
31111111
For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Divisible[Times@@Prime/@#, n]&]], {n, 20}]
CROSSREFS
The Heinz numbers of these partitions are given by A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2020
STATUS
approved
Numbers k such that k / sopfr(k) is an integer, where sopfr = sum-of-prime-factors, A001414.
+10
26
2, 3, 4, 5, 7, 11, 13, 16, 17, 19, 23, 27, 29, 30, 31, 37, 41, 43, 47, 53, 59, 60, 61, 67, 70, 71, 72, 73, 79, 83, 84, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 149, 150, 151, 157, 163, 167, 173, 179, 180, 181, 191, 193, 197, 199, 211, 220, 223
OFFSET
1,1
COMMENTS
Union of A046346 and the primes. - T. D. Noe, Feb 20 2007
These are the Heinz numbers of the partitions counted by A330953. - Gus Wiseman, Jan 17 2020
Alladi and Erdős (1977) noted that sopfr(k) = k if k is a prime or k = 4. They called the terms for which k/sopfr(k) > 1 "special numbers", and proved that there are infinitely many such terms that are squarefree. - Amiram Eldar, Nov 02 2020
REFERENCES
Amarnath Murthy, Generalization of Partition function and introducing Smarandache Factor Partition, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring-2000.
Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 89.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Krishnaswami Alladi and Paul Erdős, On an additive arithmetic function, Pacific Journal of Mathematics, Vol. 71, No. 2 (1977), pp. 275-294, alternative link.
Mohan Lal, Iterates of a number-theoretic function, Math. Comp., Vol. 23, No. 105 (1969), pp. 181-183.
FORMULA
A238525(a(n)) = 0. - Reinhard Zumkeller, Jul 21 2014
EXAMPLE
a(12) = 27 because sopfr(27) = 3 + 3 + 3 = 9 and 27 is divisible by 9.
MATHEMATICA
Select[Range[2, 224], Divisible[#, Plus @@ Times @@@ FactorInteger[#]] &] (* Jayanta Basu, Aug 13 2013 *)
PROG
(PARI) is_A036844(n)=n>1 && !(n%A001414(n)) \\ M. F. Hasler, Mar 01 2014
(Haskell)
a036844 n = a036844_list !! (n-1)
a036844_list = filter ((== 0). a238525) [2..]
-- Reinhard Zumkeller, Jul 21 2014
CROSSREFS
sopfr(n) is defined in A001414.
The version for prime indices instead of prime factors is A324851.
Partitions whose Heinz number is divisible by their sum: A330950.
Partitions whose Heinz number is divisible by their sum of primes: A330953.
Partitions whose product is divisible by their sum of primes: A330954.
Partitions whose product divides their sum of primes: A331381.
Product of prime indices is divisible by sum of prime factors: A331378.
Sum of prime factors is divisible by sum of prime indices: A331380.
Product of prime indices equals sum of prime factors: A331384.
KEYWORD
nonn
AUTHOR
Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 09 2002
STATUS
approved
Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by their sum of primes of parts.
+10
19
1, 2, 1, 2, 1, 3, 3, 4, 6, 3, 12, 10, 12, 14, 27, 38, 44, 52, 48, 77, 101, 106, 127, 206, 268, 377, 392, 496, 602, 671, 821, 1090, 1318, 1568, 1926, 2260, 2703, 3258, 3942, 4858, 5923, 6891, 8286, 9728, 11676, 13775, 16314, 19749, 23474, 27793, 32989, 38775
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The a(1) = 1 through a(11) = 12 partitions: (A = 10, B = 11):
1 2 3 4 5 6 7 8 9 A B
11 1111 222 3211 431 432 5311 542
321 22111 4211 3321 22111111 5411
11111111 32211 33221
321111 42221
2211111 53111
322211
431111
521111
2222111
3311111
32111111
For example, the partition (3,3,2,2,1) is counted under a(11) because 5*5*3*3*2 = 450 is divisible by 5+5+3+3+2 = 18.
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Divisible[Times@@Prime/@#, Plus@@Prime/@#]&]], {n, 30}]
CROSSREFS
The Heinz numbers of these partitions are given by A036844.
Numbers divisible by the sum of their prime indices are A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product is divisible by their sum of primes are A330954.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2020
STATUS
approved
Irregular triangle read by rows where T(n,k) is the number of integer partitions y of n such that Sum_i prime(y_i) = k.
+10
18
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 3, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 3, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 4, 2
OFFSET
0,15
EXAMPLE
Triangle begins:
1
0 0 1
0 0 0 1 1
0 0 0 0 0 2 1
0 0 0 0 0 0 1 3 1
0 0 0 0 0 0 0 0 2 3 1 1
0 0 0 0 0 0 0 0 0 1 4 3 1 2
0 0 0 0 0 0 0 0 0 0 0 2 5 3 2 2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 3 4 2 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 6 4 6 2 1 2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 8 6 6 7 2 4 2 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 9 7 9 7 3 7 2 1 1 0 0 0 2
Row n = 8 counts the following partitions (empty column not shown):
(2222) (332) (44) (41111) (53) (611) (8)
(422) (431) (311111) (62) (5111) (71)
(3221) (3311) (2111111) (521)
(22211) (4211) (11111111)
(32111)
(221111)
Column k = 19 counts the following partitions:
(8) (6111) (532) (443) (33222)
(71) (51111) (622) (4331) (42222)
(5221) (4421) (322221)
(4111111) (33311) (2222211)
(31111111) (43211)
(211111111) (332111)
(422111)
(3221111)
(22211111)
MATHEMATICA
maxm[n_]:=Max@@Table[Total[Prime/@y], {y, IntegerPartitions[n]}];
Table[Length[Select[IntegerPartitions[n], Total[Prime/@#]==k&]], {n, 0, 10}, {k, 0, maxm[n]}]
CROSSREFS
Row lengths are A331417.
Row sums are A000041.
Column sums are A000607.
Shifting row n to the left n times gives A331385.
Partitions whose Heinz number is divisible by their sum of primes: A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.
Partitions whose product divides their sum of primes are A331381.
Partitions whose product equals their sum of primes are A331383.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jan 17 2020
STATUS
approved
Number of integer partitions of n whose sum of primes of parts is equal to their product of parts.
+10
17
0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 1, 4, 2, 2, 2, 4, 2, 3, 4, 1, 3, 4, 5, 0, 3, 3, 1, 6, 2, 1, 5, 4, 2, 3, 4, 2, 2, 3, 1, 5, 2, 3, 4, 6, 5, 2, 7, 1, 3, 5, 3, 4, 2, 5, 5, 4, 7, 3, 6, 4, 4, 2, 4, 4, 3, 9, 4, 3, 5, 3, 5, 4, 4, 4, 3, 7, 4, 2, 8, 2, 3
OFFSET
1,9
EXAMPLE
The a(n) partitions for n = 7, 9, 18, 24:
(4,3) (6,3) (12,4,1,1) (19,4,1)
(4,4,1) (11,4,1,1,1) (18,4,1,1)
(8,5,1,1,1,1,1) (9,6,1,1,1,1,1,1,1,1,1)
(4,2,2,2,1,1,1,1,1,1,1,1)
For example, (4,4,1) has sum of primes of parts 7+7+2 = 16 and product of parts 4*4*1 = 16, so is counted under a(9).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Times@@#==Plus@@Prime/@#&]], {n, 30}]
CROSSREFS
The Heinz numbers of these partitions are given by A331384.
Numbers divisible by the sum of their prime factors are A036844.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Product of prime indices is divisible by sum of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose Heinz number is divisible by their sum of primes: A330953.
Sum of prime factors is divisible by sum of prime indices: A331380
Partitions whose product divides their sum of primes are A331381.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 16 2020
EXTENSIONS
a(71)-a(87) from Robert Price, Apr 10 2020
STATUS
approved
Number of integer partitions of n whose product is divisible by the sum of primes of their parts.
+10
16
0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 4, 2, 3, 9, 8, 18, 15, 25, 35, 44, 50, 70, 71, 93, 141, 158, 226, 286, 337, 439, 532, 648, 789, 1013, 1261, 1454, 1776, 2176, 2701, 3258, 3823, 4606, 5521, 6613, 7810, 9202, 11074, 13145, 15498, 18413, 21818, 25774, 30481, 35718
OFFSET
1,9
EXAMPLE
The a(7) = 1 through a(15) = 8 partitions (empty column not shown):
43 63 541 83 552 6322 4433 5532
441 4222 3332 6411 7411 7322 6522
222211 5222 62221 44321 84111
33221 63311 333222
65111 432222
72221 3322221
433211 32222211
4322111 333111111
322211111
For example, the partition (3,3,2,2,1) has product 3 * 3 * 2 * 2 * 1 = 36 and sum of primes 5 + 5 + 3 + 3 + 2 = 18, and 36 is divisible by 18, so (3,3,2,2,1) is counted under a(11).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Divisible[Times@@#, Plus@@Prime/@#]&]], {n, 30}]
CROSSREFS
The Heinz numbers of these partitions are given by A331378.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Partitions whose sum of primes divides their product of primes are A330953.
Partitions whose sum of primes divides of their product are A331381.
Partitions whose product equals their sum of primes are A331383.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2020
STATUS
approved
Number of integer partitions of n whose sum of primes of parts is divisible by their product of parts.
+10
16
1, 1, 1, 1, 1, 3, 1, 5, 2, 6, 6, 5, 5, 7, 4, 7, 7, 7, 10, 8, 9, 6, 10, 9, 9, 15, 7, 12, 10, 14, 10, 10, 8, 8, 15, 10, 7, 16, 13, 9, 10, 14, 12, 10, 8, 14, 11, 13, 11, 16, 15, 14, 15, 15, 10, 14, 18, 11, 12, 13, 13, 18, 21, 15, 16, 19, 16, 15, 8, 17, 17
OFFSET
0,6
EXAMPLE
The a(n) partitions for n = 1, 5, 7, 8, 9, 13, 14:
1 221 43 311111 63 7411 65111
311 511 11111111 441 721111 322211111
11111 3211 711 43111111 311111111111
22111 42111 421111111 11111111111111
1111111 2211111 3211111111
111111111 22111111111
1111111111111
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Divisible[Plus@@Prime/@#, Times@@#]&]], {n, 0, 30}]
CROSSREFS
The Heinz numbers of these partitions are given by A331382.
Numbers divisible by the sum of their prime factors are A036844.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Product of prime indices is divisible by sum of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Sum of prime factors is divisible by sum of prime indices: A331380
Partitions whose product is equal to their sum of primes are A331383.
Product of prime indices equals sum of prime factors: A331384.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 16 2020
STATUS
approved
Numbers whose product of prime indices is divisible by their sum of prime factors.
+10
15
35, 65, 95, 98, 154, 189, 297, 324, 363, 364, 375, 450, 476, 585, 623, 702, 763, 765, 791, 812, 826, 918, 938, 994, 1036, 1064, 1106, 1144, 1148, 1162, 1197, 1225, 1287, 1288, 1300, 1305, 1309, 1449, 1470, 1484, 1517, 1566, 1593, 1665, 1708, 1710, 1736, 1769
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
35: {3,4}
65: {3,6}
95: {3,8}
98: {1,4,4}
154: {1,4,5}
189: {2,2,2,4}
297: {2,2,2,5}
324: {1,1,2,2,2,2}
363: {2,5,5}
364: {1,1,4,6}
375: {2,3,3,3}
450: {1,2,2,3,3}
476: {1,1,4,7}
585: {2,2,3,6}
623: {4,24}
702: {1,2,2,2,6}
763: {4,29}
765: {2,2,3,7}
791: {4,30}
812: {1,1,4,10}
For example, 450 = prime(1)*prime(2)*prime(2)*prime(3)*prime(3) has prime indices {1,2,2,3,3} and prime factors {2,3,3,5,5}, and since 36 is divisible by 18, 450 is in the sequence.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 1000], Divisible[Times@@primeMS[#], Total[Prime/@primeMS[#]]]&]
CROSSREFS
These are the Heinz numbers of the partitions counted by A330954.
Numbers divisible by the sum of their prime factors are A036844.
Numbers divisible by the sum of their prime indices are A324851.
Sum of prime indices divides product of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product divides their sum of primes are A331381.
Product of prime indices equals sum of prime factors: A331384.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2020
STATUS
approved
Sum of prime factors minus sum of prime indices of n.
+10
13
0, 1, 1, 2, 2, 2, 3, 3, 2, 3, 6, 3, 7, 4, 3, 4, 10, 3, 11, 4, 4, 7, 14, 4, 4, 8, 3, 5, 19, 4, 20, 5, 7, 11, 5, 4, 25, 12, 8, 5, 28, 5, 29, 8, 4, 15, 32, 5, 6, 5, 11, 9, 37, 4, 8, 6, 12, 20, 42, 5, 43, 21, 5, 6, 9, 8, 48, 12, 15, 6, 51, 5, 52, 26, 5, 13, 9, 9
OFFSET
1,4
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
Totally additive with a(prime(k)) = prime(k) - k = A014689(k).
a(n) = A001414(n) - A056239(n).
EXAMPLE
The prime factors of 12 are {2,2,3}, while the prime indices are {1,1,2}, so a(12) = 7 - 4 = 3.
MATHEMATICA
Table[Total[Cases[If[n==1, {}, FactorInteger[n]], {p_, k_}:>k*(p-PrimePi[p])]], {n, 30}]
CROSSREFS
The number of k's is A331387(k) = sum of k-th column of A331385.
The sum of prime factors of n is A001414(n).
The sum of prime indices of n is A056239(n).
Numbers divisible by the sum of their prime factors are A036844.
Sum of prime factors is divisible by sum of prime indices: A331380
Product of prime indices equals sum of prime factors: A331384.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 17 2020
STATUS
approved

Search completed in 0.014 seconds