[go: up one dir, main page]

login
A324924
Irregular triangle read by rows giving the factorization of n into factors q(i) = prime(i)/i, i > 0.
28
1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 4, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 4, 7, 1, 1, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 2, 9
OFFSET
1,3
COMMENTS
Row n is the multiset of Matula-Goebel numbers of all proper terminal subtrees of the rooted tree with Matula-Goebel number n. For example, the rooted tree with Matula-Goebel number 1362 is (o(o)((oo)(oo))), with proper terminal subtrees {o,o,o,o,o,o,(o),(oo),(oo),((oo)(oo))}, which have Matula-Goebel numbers {1,1,1,1,1,1,2,4,4,49}, which is row 1362, as required.
EXAMPLE
Triangle begins:
{}
1
1 2
1 1
1 2 3
1 1 2
1 1 4
1 1 1
1 1 2 2
1 1 2 3
1 2 3 5
1 1 1 2
1 1 2 6
1 1 1 4
1 1 2 2 3
1 1 1 1
1 1 4 7
1 1 1 2 2
1 1 1 8
1 1 1 2 3
1 1 1 2 4
1 1 2 3 5
1 1 2 2 9
For example, row 65 is {1,1,1,2,2,3,6} because 65 = q(1)^3 q(2)^2 q(3) q(6).
MATHEMATICA
difac[n_]:=If[n==1, {}, With[{i=PrimePi[FactorInteger[n][[1, 1]]]}, Sort[Prepend[difac[n*i/Prime[i]], i]]]];
Table[difac[n], {n, 30}]
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Mar 20 2019
STATUS
approved