OFFSET
1,3
COMMENTS
Also the number of distinct proper terminal subtrees of the rooted tree with Matula-Goebel number n. See illustrations in A061773.
LINKS
FORMULA
a(n) = A317713(n) - 1.
EXAMPLE
The factorization 22 = q(1)^2 q(2) q(3) q(5) has four distinct factors, so a(22) = 4.
MATHEMATICA
difac[n_]:=If[n==1, {}, With[{i=PrimePi[FactorInteger[n][[1, 1]]]}, Sort[Prepend[difac[n*i/Prime[i]], i]]]];
Table[Length[Union[difac[n]]], {n, 100}]
PROG
(PARI)
A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
A324923(n) = { my(lista = List([]), gpf, i); while(n > 1, gpf=A006530(n); i = primepi(gpf); n /= gpf; n *= i; listput(lista, i)); #Set(lista); }; \\ Antti Karttunen, Oct 23 2023
CROSSREFS
One less than A317713.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 20 2019
EXTENSIONS
Data section extended up to a(108) by Antti Karttunen, Oct 23 2023
STATUS
approved