%I #5 Jan 15 2020 18:39:36
%S 1,1,1,2,2,3,3,7,7,11,11,22,15,30,42,77,42,101,56,176,176,231,135,490,
%T 490,490,792,1002,490,1575,627,3010,2436,2436,3718,5604,1958,4565,
%U 6842,12310,3718,14883,4565,21637,26015,17977,8349,53174,44583,63261
%N Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.
%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e The a(1) = 1 through a(10) = 11 partitions:
%e 1 11 21 211 32 321 43 5111 522 631
%e 1111 311 2211 421 32111 3222 3331
%e 21111 4111 41111 4221 4321
%e 221111 22221 5311
%e 311111 32211 32221
%e 2111111 222111 33211
%e 11111111 2211111 43111
%e 322111
%e 331111
%e 3211111
%e 31111111
%e For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5).
%t Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,n]&]],{n,20}]
%Y The Heinz numbers of these partitions are given by A324851.
%Y Partitions whose product is divisible by their sum are A057568.
%Y Partitions whose Heinz number is divisible by all parts are A330952.
%Y Partitions whose Heinz number is divisible by their product are A324925.
%Y Cf. A056239, A112798, A196050, A324850, A324924, A330953, A330954, A331379, A331381, A331383, A331384.
%K nonn
%O 1,4
%A _Gus Wiseman_, Jan 15 2020