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ON AN ADDITIVE ARITHMETIC FUNCTION

K. ALLADI AND P. ERDOS

We discuss in this paper arithmetic properties of the
function A(n) = 2,a1,20. Asymptotic estimates of A(n)
reveal the connection between A(n) and large prime factors
of n. The distribution module 2 of A(n) turns out to be an
interesting study and congruences involving A(n) are con-
sidered. Moreover the very intimate connection between
A(n) and the partition of integers into primes provides a
natural motivation for its study.

0. Introduction. Let a positive integer » be expressed as a
product of distinet primes in the canonical fashion n = [[i., p¥i. Define
a function A(n) = 3, a,p,.

(i) The function A(n) is not injective. In fact for a fixed
integer m, the number of solutions in % to A(n) = m, is the number
of partitions of m into primes.

(ii) A(n) fluctuates in size appreciably. It is easily seen that
A(n) = n when n is a prime, while A(n) = O(log n) when 7 is a power
of a small prime. Actually the “average order” of A(n) turns out
(as a corollary to Theorem 1.1) to be #°n/6 log n. The term average
order is defined below.

(iii) The function A(n) is additive and one can expect it to take
odd and even values with equal frequency.

The term “average order” calls for some explanation. We follow
the usage in Hardy and Wright [6]. If f(n) is a function defined
on the positive integers we consider

F@) = 3 f(n) .

Usually F can be expressed in terms of well behaved functions like
polynomials or exponentials and the like. That is we seek an asymp-
totic estimate for F in terms of these functions. Then we seek a
similar well behaved function g so that

F@ =3, f(0) ~ 3 9(0) -

The function ¢ may be thought of as the average order of f. For
instance if @ is the Euler function then
2 6
F@) = S o) =22 + O@wlogs) ~ 5 2

nsw U

so the average order of o(n) is 6n/7".
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276 K. ALLADI AND P. ERDOS

It is surprising that the function A(n) with such nice arithmetic
properties has not been studied in detail. Besides the work of one
of us (KA; [1]) some of the other references are [4], [7], [8], [9] and
[10]. Of course the contents of this paper are different.

1. Average order estimates of A(r). Here and in what follows
the letter p (with or without subscript) shall always denote a prime.

So let n = [Ii-, p% and let 2(n) = >\, a,, ®(n) = r. It isa well
known result of Hardy and Ramanujan [6] that both 2(n) and w(n)
have average order log logn, which tells us that generally the
majority or prime factors occur only once. Applying this idea to
A(n) one expects it to have the same average order as A*(n) =
S ;. In this sum it is natural to believe that the largest prime
factor of n(P(n) say) dominates the others so that A(n) and P,(n)
have the same average order. In fact this can be deduced as a
corollary to Theorem 1.1 (where we prove much more) and the average
order of A(n) is 7*n/6 log n.

Let us assume without loss of generality that p, < p, <-:-< p,.
Then let P(n) = p,; P(n) = P,(n/P(n)); Pyn) = P,(n/P(n)Pyn)), etc.,
and in general

n
Py(n) = Pl(Pl (n) +-- Pk_l(n)) for k=< 2(n)

0 for k> 2(n).

Thus P,(n) is the kth largest prime factor of .
THEOREM 1.1. For all tntegers m = 1 we have

kmw1+(1/'rn)
22 Pul) ~ 3, {A(n) — P(0) — +++ = Py (0)} ~ (log )™

where k, > 0 1s a constant depending only on m, and is a rational
multiple of L1 + 1/m) where C is the Riemann Zeta function.

LEMMA 1.2. If s> 1 and 2 a large real number then

1 1 1
= = 0 .
2y~ G- Delogn <w*—‘(log x)2>

Proof. The proof of Lemma 1.2 is given by a simple direct
method of using Stieltjes integrals, integration by parts and the
prime number theorem in the form

(L.1) (w) — li(x)zO( o )

log? x
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for all 6 = 2. We have
Zi = g“’ ar(y) _ g“’ dy g‘” dr(y) — li(y)}
»zz P°

=y Y logy = Jam v’
1.2) - g“’ dy o( 1 )
—y* logy 2 logtx

I . 1
+ [ ) lwHo(— o
for ¢ = 2 because of (1.1). Now

[t . of e )

- O<x*'1 lt)g" x> )

(1.3)

So (1.3) and (1.2) give

1 S” dy 1
1.4 _—= + 0 .
(1.4) 55z P° = y*log y <m“1 1og2x)
But then
v dy 1 0 S‘” dy
Sx y* log y (s — Dz 'log + ( =y° log? y)

(1.5)

1 1
= o —————}.
(s — D)a*'log = * <x"1 log? x>

Clearly (1.5) and (1.4) prove Lemma (1.2)
The above lemma establishes the following result which will be
used often in the proof of Theorem 1.1.

LEMMA 1.8. Let m be a positive integer and s >1,r=1 be
given real numbers. Then for x and z sufficiently large real numbers
with £TW™ <z < 2*™ we have

1 1 log log =
ol + O .
xépélz/z p*log™ (z/p) (s — 1)a*~' log « log” (z/x) <x*’“1 log* x log’(z/x))

Proof. We break up the range of summation as
1 1
- =+ -
wgpgg‘ogf?x »° log” (z/p) zlogBa%gz/z 2’ log” (2/p)
= g, + 0, respectively

where B for the moment is a constant not specified. Now in o,
log (z/p) = log (z/x) + O(log log ) so that
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1 _ 1 0( log log « >
log” (2/p)  log’ (2/x) log z-log” (2/x)

because log (z/x) and log z are of the same order of magnitude. Now
the above estimate, together with Lemma 1.2 gives

_ 1 log log x
o, = O( .
(s — Da* ' log = log™ (z/x) * 2t log® x log™ (2/x) >

To estimate o, again apply Lemma 1.2 to get

% = O<xlogZB'x<p§1;> B O<x*—1 log cc%log“_“‘gw> '

Comparing o, and o, we note that by a suitable choice of B Lemma
1.3 is true.

The crucial point in Lemma 1.3 is that by choice of z, log (z/x)
and log x are of the same order of magnitude.

An argument similar to Lemma 1.2 yields the following:

LEMMA 1.4. If s, r» =0, then

ps _ x5+1 < xs-{-l
= + 0 .
g; (log p)" (s + L)(log z)™** log™* Zx)

We omit the proof of Lemma 1.4, since it is similar to Lemma
1.2. Here we have to consider
p S” y'dn(y)
75+ log” p e log" ¥y

and compute just as we did in Lemma 1.2.

We now move on to the proof of Theorem 1.1. The proof involves
complicated estimates in several places and we shall elaborate in detail
the more important ones.

Proof of Theorem 1.1. We are first going to estimate >, P.(n).
Let an integer n be written as n =kp, -+ P, D=0, S+ = Dy
P,(k) < p, and let

wloN n
e OIS AOR
We keep k = Pi(n) fixed and ask for those n < x for which P}(n) = k.
We sum P,(n) over these » and finally sum over k. Actually only
small values of %k will contribute to the principal term and large
values will be treated separately.
So let & be small. The word “small” will be explained below.
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Note that each p;, can range from P,(k) up to the minimum of p,,,
and z/kp, -+ »;;,. So we shall break up the range of p,.,, and
discuss several cases, and in each of them we shall be able to decide
without ambiguity which of p,., and «/kp,, -+ - .., is smaller, thereby
determining the range of p,.

Case 1. Let p, < ¥a/k. Here the range of p, is between P,(k)
and p,, for 1 =1,2, -+, m — 1.

Case 2. Now let ¥u/k < p, < »/k. We have now several choices.
First we make p,_, < " V#/kp,. Then the p, range from P,(k) to
Py for 1=1,2, ««+, m — 2.

Case 3. Here Wk < p, < x/k and "Va/kp,, < Pn_, < Pn. Here
we make p,_, < " Vz/kp.pn_, S0 that p, < p,, fori =1,2, «++, m — 3.

General case. We have ¥zjk < p, < a/k, " Vzlkpn < Dn-i < D
"Nk PuPnr < Dncs S Py 0 VKD e Pirs < Pipy S Piga  With
P Valkp, - Do so that p, < Py o S Diyy c0, ;S Py and
pi é pZ‘ ‘

.-+ ete.

So we have a total of m cases to consider. We sum these over
E<z,e=1/m(m + 1) and one can check that the contribution of
P,(k) to each summation is negligible and so we omit writing it. We
elaborate this below.

(Sn) IS VD VLD YD Vi
k<2t ppmSN/T/k Pm_1SPm PesSp3 P1=D2
(Sm—l) ZI n _Z Z__I 2 ce Z Z b,
k<zt R/e[k<pmSe/k Pm_1S" A/T/kPm Pm—2SPm—1 poEp3 P1=Py
PV 2 >, PYREREE
(Sm—z) k<zt N/z/k<pmSz/k m—{/"/kl’m<1’m—-1§?m Pm—zém_i/;—_—/kpmpm—z Pm—sSPm—2
PIYRDIE )

P2=P3 P1=D2

General term.

(S) > > > > e

k<ze R/T[k<pmSe/k m—,{/z/kpm<pm_1§pm m‘z/x/kpmpm_1<pm_2§pm_1
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24
5Tk Dt 2<Pi+15Di 42

. PYEEERED VDV )
PiSA/T/ kP PirL Pi—1SPi PSPy P1SP2
Last term.
S) k<z® N/Th<pmSe/k ™A/ TR m<pm—15Pm ™ A TP mEm—1<Pm—2SPm—1
1
> > D, .

Valkpm - p3<pes<p3 P1S3/kDyme D2

We shall first obtain upper bound estimates for each (S;). Our
process will indicate how the terms grow and establishing the upper
bound first makes explanation later simpler when we take up asymp-
totic estimates and need upper bound estimates for errors.

We know from Lemma 1.4 that 3, <,, ». = O(pi/log p,). Now
another application of Lemma 1.4 gives

S S p=0(2-).

PrEP3 P1=Py log?® p,

Thus taking the first ¢+ summations in (S;) gives a term

14+(1/%)
1.6 0 v
(1.6) ( (BDm *++ D) YL, 9, X/kDw + Dita) )
where L(i, j, ) = (logV 2 )’

We have to sum the term above over the variable p,., in the range
1.Jrﬂl/:v/kjo,,, coe vy < Diyy = Digee  This is certainly less than if it is
summed in the interval "V p, -+ D < Pitre

We are going to apply Lemma 1.8 with z = «/kp,, -+ Dy, and 2
in lemma replaced by % 2k, + -+ D+, which we will denote for the
moment by X. We can also assume 2z > Xlog? X, where 6 >0 is a
suitably chosen large positive constant so that Lemma 1.3 is applicable.
For if z < Xlog’ X then we infer that

p = n = i = O(log® x)
kpm <+ Diys ™ KDw e Dise
so that the sum of P,(n) for n < x over = satisfying the above
inequality is O(z log®' x) which is certainly of lower order of magnitude
compared to the leading term mentioned in the theorem. We shall
meet this situation as we move left along each summation and so
we assume that p, > log’ 2 for some é > 0, fixed and large, say > m®.
Now we apply Lemma 1.3 to infer from (1.6) that we get a term
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of size

x1+(1/2 +1)

1.7 0 - .
( ) <(kpm tcc pi+2)1+(1/1+1)L(i + 1, 1+ 1, x/kpm e pi+2)>

Note that the term in (1.7) is just the term in (1.8) with ¢ replaced
by ¢ + 1. Thus making the first m summations of (S;) gives

xH—(l/m)
(1.8) 0( e x/k)) .

Obviously (1.8) summed over k& gives O(z'*/™/log™ ).

Now we proceed to the asymptotic estimate. We shall see that
the leading terms we get are exactly those mentioned above. But
the error terms can be estimated just as we got upper bound estimates
but there will be an extra factor of log x in the denominator, giving
a sum of lower order compared to the leading term.

So by Lemma 1.4,

9 2
1.9 = o(B ).
(1.9) mzmp 2 log p, log® pz>

Summing the term in (1.9) up to p;, we have by Lemma 1.4

3 3
1.10 , = e o L),
( ) pzézps pézp 6 log? p, + <log3 p3>

So it is now clear that making the first 4+ summations as we did in
(1.9) and (1.10) above, by repeating application of Lemma 1.4 we get

xl-l—(l/i)
(1.11) (@ + 1) (kP ++ Dis) T YVL(E, 3y T/KD +** Disr)
) " O( 2+ log log >
(kD +*+ Dis) T OL(G, T + 1, %/kDp + * Disy)

Now the O-term in (1.11) has an extra factor of log in the denominator,
compared to the leading term. So summing this the way we did
(1.6) up to (1.8) we get a term or order O(zx'**™.log log x/log™"'x).
So we can forget the error term in (1.11).

Now each summation after the ith summation in (S;) is of the
form >.,<,;ss which we will interpret as >.,c,; — Xip<;;» There is no
harm in writing it in this way, for each sum is actually a finite one
because the p,’s occur in the denominator in the <th summation.
Now we apply Lemma 1.3 to estimate the sum of the leading term
in (1.11) over the (¢ + 1)th summation. We have



282 K. ALLADI AND P. ERDOS

x1+(1/i)

. > - o
SR R Pitg<Pi 415D b2 (@ + D! (kpm »++ 2is)TYOLS, 1, 2/kDy 0 - Divy)

,ix1+(1/‘i+1)

TG+ ) (kD D) LG+ L, 8+ L, afkpr - Divs)

1.12 .
( ) x1+(1/z+1) . log log T

+ o( : ! )
(BDm ++» Dix) T L(E 4+ 1, 0 + 2, 2/kDp +* Diss)
+ (?:)xl+(l/i)
(@ + 1) EDp +* Diss) T ODHFOLE+ 1, 0+ 1, /Py -+ Divs)

Equation (1.12) needs some explanation. The first two terms on the
right are obtained by considering >,.,,. As regards Dis<p; W€ dis-
tinguish two cases. The first is when B> Alog’ A (¢ sufficiently large,
say >m?). Now by Lemma 1.3 this sum is small compared to the
former and there is no harm in writing it in the form of the third
term on the right in (1.12). If A < B< Alog’ A4, then the log term
does not change appreciably and again Lemma 1.3 gives the third
term on the right of (1.12) as the leading term with the error being
absorbed in the O-term in (1.12). Note that the O-term in (1.12)
again has an extra factor of log in the denominator which as mentined
before is pulled through to give an error term O(z'**'™ log log x/log™*'x).
So what we are essentially saying is that we can forget the error
terms totally since (1.12) is the type of estimate we will meet as we
proceed left along (S;). As regards the leading terms, they will be
of the form of the first term in (1.12) or the last term, depending
whether we choose the left side bound which we call 4, or the right
side bound which we call B in each summation. However in the
summation involving p,, we have to take 3\m i<, <. because 3, /i<y, <o
is a summation over the null set since kp, -+ p, < 2. So in the
first j, summations from the ith one of (S,), we choose the left limit,
and in the next ¢, we choose the right one, and in the next j, we
choose the left one and so on. Then the sign of the total summation
is (—1)t2* Note that j, could be zero. We elaborate this below
and this is our final step. The vertical lines in (1.138) tell us where
the changes in limit takes place, and the arrow indicates the first
step where we change.

P
k<a® R/ T[k<ppy <oo Pitji+i,+1<Pit+j +i; <o Pitj +2<Pitj +1<00
(1.13) £+jl____.Z_ PIREE
. \/W/kl’m"'i"i+j1+1<pi+-7'1<°°

x1+(1/i)

. > - ——
HyTrmire<risi<eo (0 1)1 (EDy « ¢ ¢ 0i0) TVIL(, 1, B/kDy - Dity)

The first summation in (1.13) gives the first term on the right of
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(1.12). What we are summing in (1.13) is the term in (1.11). In
the process of going from (1.11) to (1.12) note that what has happened
is that 7 has been replaced by ¢ + 1 for the variables and there is
an extra factor of 7. So making the first j, summations we get a
term which is

(1.14) (i 4+ 1)+ (1 + g, = Datrivitw
@D EDa s D) T OL( 4 Gy T Ty B/ RDg D)

We have to sum the term in (1.14) over the variable p,.;., in the
summation indicated by the arrow above. Now by Lemma 1.3 we
get a term of the type of the third term in (1.12) with 7 replaced
by ¢ + j.. So we have

(1.15) i+ 1) -+ (i + GJaror
((i-+ DI (kP - Pevsgrs) T (Do s T )
XL('I' + j1 + 1, T+ .7.1 + 1; x/kpm ce pi+j1+2)
The only thing we have to observe in (1.15) is that the exponent
of Di4j+. 18 1+ (2/¢ + j,), and the exponent of « has not changed
from (1.14) to (1.15). This affects the nature of the constant to

appear in the numerator of (1.16) below. What we get after the
next summation is

(BEL)0)G + 1) - G dgaerss

(1.16) ((’L + D) (BDm <+ + Divigad T TPy 5 4) T ) )
XL+ 7, + 2,0+ 3, + 2, ®/kPp ++* Disjrrs)

Now (1.16) is the term in (1.15) with subscripts changed by 1 and
change of constants. So going to the end of j, + 7, summations we
get

((% -+ 1)' (kpm te pi+j,+il+2)1+WHjl)(pi-!-jl+1)1+(i1+1/i+h) )
XL(’L + jl + in T+ jl + iu x/kpm tet pi+j1+i1+1)

(1.17)

Now when we sum (1.17) we are doing it in the range A < p < oo,
where A is a left limit. If we show that this summation leads to
a term similar to the one with which we started in (1.13) we are
done. It is indeed remarkable that this happens. For again by
Lemma 1.3 if we observe that

1 i+ 1 14 1
t+J4 @+5)eE+5 4+ +1) i+ 3+, +1
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we find that the exponent of x which had remained constant for
these 4, summations changes suitably to give a term

(constant)- g+ i+iticth
<(kpm e Diggppige) T OHIRED )
XLt + 5, +4+ L4045+ % + 1, 0/kp, -+ Diviyrigeo)

(1.18)

Now the term in (1.18) is just the term in (1.13) with ¢ replaced by
1+ 7, + 1 + 1. So after 4, + 7, + 1 steps we are back in the same
situation. So everytime we choose a left bound in a summation, we
are back to the situation with which we started. But in the last
summation involuing 7p,, we have to choose the left bound. So
ultimately we get

cox1+(1/’m)

k'™ log™ (x/k)

where ¢, is rational. Summing this over k < 2, using a method
similar to ¢, and ¢, in Lemma 1.3, gives

oL+ (Lm))a+e/m
(log z)" )

Of course this is just one of the subcases of (S;). Considering all
the subcases of (S;) we get ¢} rational and

C;k c(l + %)x1+(1/m)
(log x)™

Since the summations involve positive quantities we infer ¢f >0. So
summing over all the ¢ from 1 up to m, gives a positive rational
€. S0 that the contribution from (S,) up to (S,) is

eat (1 + 1)

(log 2)™

(1.19)

So this is the contribution for k < 2%, ¢ > 0. 1f k > a° then

1.2 = =ey/m ) — ———wH_uﬁM .
20 3 P = 0( g ) = ()
So (1.20) and (1.19) yield
1
Cnlll + — Jattivm
(1.21) S Pon) = < m> + 0( &+ log log )
nga log™ z log™t' x
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as shown by our investigation of error terms. Our theorem will be
proved if we show that

S {A@) = Pn) = Pn) = -+ = P} = o 5 Pu(m)) .

Observe that {A(n) — P(n) — P,(n) — --- — P,(n)} = A(Pi(n)) = A(k)
and A(k) £ 2k)P(k) = 2(k)P,.(n) £ n"™.2(n). So

Py {A(n) — P(n) — Pyn) — --+ — P,(n)} = Exn‘“"‘“’.@(n)
= o= 3, 2(m))
= O+ log log )
(5 r.)

because of (1.21). The proof of Theorem 1.1 is complete.
COROLLARY. The average order of A(n) is 7w*n/6 log n.

Proof. Set m =1 in Theorem 1.1. Then there is only one case
to consider, namely (S,) = (S). So

A N Pl N et
gi (n) gﬁa () 12 log =

which gives the corollary.
It is clear that A(n) = A*(n) = P,(n) so that A*(n) also has
average order 7*n/6 log n.

THEOREM 1.5. The average order of A(n) — A*(n) is loglog n.
To be more precise

S {A(n) — A*(n)} = zloglogz + O(x) .

nse
Proof. It is not difficult to see that
2 {A(n) — A*(n)} = gl plz/p’] + > plz/p*] + ---.

nsz p3sz
For if we write A(n) — A*(n) = X0 .(@ — 1)p, then p is counted
[%/p*] more times, giving the first term. If (@ — 1)p = 2p we count
only [x/p°] more times and so on. Now

SeZ=32+0(50)

s2zs PP PSez P PE V%

= g log log z + O(x)
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and
pL =03 =0 3 p)
sise DL piss P Ve
So
33X v = 0@)

which proves Theorem 1.5.

THEOREM 1.6. We have

Z {A*(n) - Pl(n) — Pz(n) e eee — P'm.-—l(n)} ~ Z Pm(’l’b) - me1+1/: .
= P Og x)

Proof. The theorem follows by combining Theorems 1.1 and 1.5.

THEOREM 1.7. For any fixed integer M, the set of solutions to
A(n) — A*(n) = M has a natural density > 0. (Note: A sequence
{a,}2-, has a natural density o(4) if lim,_. n/a, = 6(4).)

Proof. Let us define an integer n to be powerful if n = [[., p%,

a,=2,1=1,2, ++-+-,7. - The set S, of integers of the form n-n’,
(n, n') = 1 and »n' squarefree has natural density

(1-1
(1-23)lH(1—l>-H(1~l)=_§_ \! p)=—6—rp[(1+_1_>_1

" »in P/ afn

Consider a partition of M into primes as M = S\7_, 8,p,. Any integer
n with A(n) — A*(n) = M is of the form IJi., p¥ II%-.¢q;, where
q; are primes different from p,. Consider a particular partition =;
of M, as M= 3,_,8.p, and the powerful integer m; = []i., pi**".
This partition generates a set of solutions which is the set of numbers
of the form m;-m/, (m;, m') = 1, m' square free. This set denoted
by S.; has natural density 6(S,;). Now the complete set of solutions
is given by
p{M)
mj

j=1

where p(M) is the number of partitions of M into primes. Thus
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as 8,, NS, = @ if 1+ j. In fact because of (1.23) and (1.24) the
density is a rational multiple of 1/{(2) = 6/z%

2. Congruences involving A(n). We now recall some results in
[1]. For any integer m, the number of solutions to A(n) = m is the
number of partitions of m into primes. Note that A(n) = » if and
only if » is a prime or » = 4, so that it would be of interest to
study the congruence

(2.1) n = 0(mod A(n)) .

Call a solution to (2.1) non-trivial if n # A(n) and let the nontrivial
solutions be called “special numbers”. It is worth noting that if m
is fixed then the number of solutions to

(2.2) n = 0(mod A(n)) , An)=m

is the number of partitions of m — A{m) into primes. So the number
of solutions to (2.2) is much less than the number of solutions to
A(n) = m, generally, and so one expects that special numbers are
rather rare. Let {l,} denote the sequence of special numbers. The
following can be proved (see [1]).

(1) The sequence {l,} is infinite.

(2) lim,..AQl)/l, =0

(3) For any pair of integers ¢ and b, the number of solutions
to 1, = a(mod b) is infinite.

(4) If =(x, 2) represents the number of twin primes =<z and
w(x, 2) ~ cx/log®z then lim,_.1,/l,.. = 1.

Denote by &~ (x) the number of [, < 2. We obtain bounds for
F(x).

THEOREM 2.1. There exists a contant ¢ >0 so that forall x = e

P(w) = o(__ﬁ___> .

ec Ylogx loglogax

Proof. As before P,(n) denotes the largest prime factor of =.
By a result of deBruijn (see [2], page 54, equation 1.6), if +(x, ¥)
is the number of solutions < x to P,(n) < ¥ then

(2.3) 'llf(x, y) < Clm logz ye—ulogu—loglogu+02u

where y = z*. Now if we set u = 1/log z/log log #, then y is seen to
be ¢'Tcgzloglogs  Algo
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¢,x log x log log «
’l//‘(x, y) < 161/2 vTog = log log x—cgn

(2.4)
¥

- O<61/2~/logmloglogap ) *

So we will restrict our attention to P,(n) > e¢"°¢*°e™¢% for the number
of n not satisfying this is given by (2.4). We also assume that if
7(n) is the number of divisors of n then

(2.5) 7(n) < ev2YToEsoeToEs
For the number of integers not satisfying (2.5) is easily seen to be

zlog x
(2.6) O(m)

because 3 7(n) = O(xlog z). So we confine ourselves to n < z satis-
fying (2.5) and P,(n) > e'°ev°g°sz, et these numbers be denoted by
the sequence {n,}. Denote by ¢ the following

N —
2.7 Pn) t A(n,) = Pin,) + A() .

Clearly as n; < « we have
2.8 t < e~ vioseTosloz
Let t for the moment be fixed. We have two possibilities arising

out of (2.7).

Case 1. A(t) = 0(mod P,(n,)).

Since ¢ is fixed and we are seeking solutions to (2.7) it is clear
that the P/n;) are distinct and divide A(t). Also as we require
special numbers, ¢ = 1 and so A(¢) = 0. Thus the number of solutions
to Case 1 is at most O(log ), since ¢t < z.

Case 2. A(t) = 0(mod P (n,)).
Since we are interested in special numbers we require

(2.9) n; = 0(mod A(n,;)) = o(mod P,(n;) + A({)) .
But Case 2 implies that (A(t), P(n,)) = 1 which means (2.9) gives

(2.10) P”;L.) =t = 0(mod P(n,) + A(®)) .

Again A(t) + P(n,) are distinct when ¢ is fixed, so that by our choice
of n,;, by (2.5) the number of solutions to (2.10) is less than
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1/2 \/loga: loglogz
€ .

Thus for fixed ¢, the number of solutions to (2.7) in special numbers
is at most

log z + 61/2 viogzloglogz — 0(61/2 vTogw Inglogx)

But by (2.8) we have an upper bound on the number of choices of
t. Thus the {l,} among the n, do not exceed

2.11) o<__w___ em«m) _ o( @ ) .

vlogzloglogz 1/2 v1ogzloglogz
€ €

But the number of integers not included among the {n,} is by (2.6)
and (2.4)

2.12) o(%) :

1/2V1ogxloglogs

So (2.12) and (2.11) prove the theorem with any ¢ < 1/2,
Now for a lower bound,

THEOREM 2.2. There exists a constant ¢’ > 0 so that

¢’ viogzlogloge

g(x)>>e d

Proof. Let z Dbe a large real number and define z and %k as
follows:

o PETHE L [ Jogw
(log z) ’ log log #

where ¢, > 0 is a constant to be determined soon. Consider the

number of k-tuples of primes <z which clearly is (ﬂ(lf)>. This can

be easily seen to be greater than

@) B G B (e )1
k! ghlosk (log z)+*V'logxloglogx/  e*'osk

T
6(c4+1+e) vlogalogloga

(2.14)

for sufficiently large x. Now let the product of these primes define
a sequence {u;}, all £ z* which is seen to be

T
604 vlogzloglogs

(2.15) 2k =
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Let us put ¢, =c¢,+1+¢,¢ >0 arbitrary. So we have at least
we~csYlogmlogloss  Jigtinet numbers < z* given in (2.15). Consider the
product of the first »-primes p, --- p, such that it is just greater
than zk*. We shall produce a number L so that

Alwip, =+ - P, L) = po - Dr
so that u;-p, --- p,-L is a special number. Clearly we need
(2.16) AL)y=p,++p, — (D, + Do + ++ + p,) — Au;) .

By our choice of u;, A(u;) < 2k and so the quantity in (2.16) is of
order zk*. If it is odd, use Vinogradov’s theorem, and partition it into
three primes, and take their product to get L. Otherwise subtract
L and partition the rest into three primes and L is the product of
these primes. In any case L = O((z%k%?) and so p, - - - p,-L = O((zK?)).
Now we want u;-p, «-- p,-L < 2. So choose ¢, > 5 so that by (2.15)
the product w%;-p,--- p,-L < x. Now the number of repetitions
among u;-p, -+ »,-L is at most (zk?'. So they are at least

x 1 x
c5v1ogzlozlogs 24 (10+¢) Yiogzloglogz
2 2k e

special numbers <=z, by our choice of ¢, and z. So Theorem 2.2
holds with any ¢” > 10 + e.

REMARK. The problem discussed in this section can be worded
differently. “How often can a sum of primes (not necessarily distinct)
divide their product?” That is we want >, @,p; to divide [] p% where
each p, has a, repetitions. This is precisely of the problem of special
numbers discussed above.

It might be true that &~ (x) is actually of the order

xe——c”(H—o(l)) vTogzloglogz

An asymptotic formula for #(x) seems very hard to obtain. The
constants in Theorems 2.1 and 2.2 can be sharpened with more ac-
curate computation, but our estimates indicate the method.

We conclude this section with a few interesting questions.
Does the product of consecutive primes infinitely often determine
special numbers? For instance 2:3.-5 = O(mod 2 + 8 + 5). Also n =
2-3-5:7-11-13-17-19 is special. A(n) is 77 = T-11. Another example
isw =2-3-5-7-11-13:17-19.23.29-31-37-41 where A(n) =238 =2.7-17.
We guess there are infinitely many such numbers!

It is easy to see that infinitely many special numbers are square
free. For, take a prime p, and partition »p — 2 into distinct primes
P, + 9, + -+ + p,. This is possible. Then 2-p:p,-p,- --- -p, is special
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for A2-p-p," D, +++ -D,) = 2p.

One can show that for sufficiently large composite numbers #,
there exists m with m = 0(mod A(m)), A(m) = n and m/n square free
and prime to n. This follows from Vinogradov’s theorem, and here
we partition » — A(n) into primes. It might be of interest to de-
termine (besides the primes), all the other # for which this is not
true.

3. Distribution modulo 2. First we shall show that A(n) is
uniformly distributed modulo 2, and the error is of the order of
the sum of the Mobius function M(x). Here we shall concentrate
on the function a(n) = (—1)4™, which is easily seen to obey a(m-n) =
a(m)-a(n)¥m, n. Thus for any complex number s, with Res > 1,
we have

& aln) _ a2+ 1 §(2s)
@.1) = n IpI<l p° > 2 —1 s)

Now as s—1%, the right side of (3.1) tends to zero, and so it is
natural to expect

n=1

(3.2) S e

n=1 n
We prove (3.2) in Theorem 3.2. But first we show that A(n) is uni-
formly distributed modulo 2. This is expressed in
THEOREM 3.1. There exists a constant ¢, > 0 so that

>, a(n) = O(xe“cs‘/m) .

1sngx

Proof. Consider the sum a(n) = >, a(d). If n =2%][L, px
where p, are odd, then

am) = (@ + DI (L + a(p) + a(p) + «-- + a(p)
3.3)

( 1)(al+1)pl — 1
= (@& + 11l T

We infer from (3.3) that if any one of the «, is odd, then a{n) = 0.
Thus a(n) is non-zero only over integers of the form 2%.m* where
m is odd. Also a(n) = 0. Clearly

(3-4) Sam) £ 3 (@ + DV2e = 0V w)

nsz 2%0< g

and
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(3.5) 520 _ g < o,
»=1 N

Now +if g is the Mobius function then
3 am) = 3 3 p@a(2)
= 2 ad) 3 pmd)+ 3 Md)_ a(d)

(3'6) 12ds Ve 1=d/gx/d 15d< vz vz <d’'sz’]d
= 3 a@M(L) + 3 00/a7d)
as v 15d< vz

=S (d)M( >+ O()

by using (3.4). It is known from the investigation of the error term
in the prime number theorem (see [3]) that there is a constant ¢; > 0
so that

3.7 M(x) = O(zers¥os7ToeTosz)

so that one inferes from (3.6), (3.7), and (3.5) that Theorem 3.1 is true.
Finally we prove

THEOREM 3.2. >, a(n)/n = 0.

Proof. As we have already remarked, a(n) is nonzero only at
values » = 2%.m? where m is odd, and a(n) here is @, + 1. Thus

sdn_5 5 @il

n>r N a0=0m> ¢m zao.mz
(3.8) m odd
=3 “021‘0 L. 00/3z) = 00V @)
ag=0

so that if we set

1) = o 3, 42)

St om
we infer from (3.8) that
(3.9) 1) = O(@'?) .
Also x is of bounded variation on finite intervals. It follows that
s52D 5, tomatn)
i< wm3z MR

_ 3 ) < alm)

m=z MM n=z/m N

(3.10)
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Now by (8.5), (8.10) is rewritten as

052D —oas MM 5 ) 2 5, 20
di=e m=z m n>z/m N
(3.11)

)

We can deduce Theorem 3.2 from (3.11), if we appeal to Axer’s
Theorem 267 in [5] stated below.

AXER’S THEOREM. If {b,} 7s a sequence of real mumbers with

2.,b, = o) and [b,|=0(Q)

n=T

and ¥ a function of bounded variation on finite intervals with
1) = O@x®) for some 0 < @ < 1, then

S ba(2) = o).

If we apply Axer’s Theorem with b, = ¢(n), and observe that
2x) = O(x*) with @ = 1/2 in (3.9) then because

v

(3.12) ﬁ, (

we infer from (3.11) that Theorem 8.2 is true. For a proof of (3.12)
see [5].

By glight variation of the proofs of the above theorems one can
show that for some fixed integer N

Z Cz(n) = O(xe‘cg‘/m)

and

REMARK. We would like to conclude by mentioning a few inter-
esting problems connected with A(n).

Let f(n) be the smallest integer m so that A(m) = n. Consider
a partition of n» into primes, n = p, + p, + --- where p, is the largest
prime =<u, p, # n — 1, p, the largest prime <n — p, 0, = n — p, — 1,
and so on, and denote by F(n) = p,-p,- -+- . It appears at first sight
that f(n) = F(n) but this need not be so. In fact this does not
happen quite often. For instance f(6) = 8, F(6) = 9. It would be of
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interest to consider the relative sizes of f(n) and F(n).
In this context we mention the following curious problem. Replace
the primes above by squares. That is

G(n) = min JJa} gn) =110 Sai=mn

where b? is the largest square <u, and so on. It might be true
that both G(n) and g(n) are both <c-n* where ¢ is a constant. In
G(n) above, we require that not more than three of the a, = 1, for
83=1+1+1 is the only decomposition of 3.

For more results on A(n), see a forthcoming paper of Erdos and
Pomerance where it is proved that the set of solutions to A(n) =
A(n + 1) is of density zero. One could also consider equations involv-
ing A(n) of similar type but these problems are in general difficult.
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