[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a277996 -id:a277996
Displaying 1-10 of 32 results found. page 1 2 3 4
     Sort: relevance | references | number | modified | created      Format: long | short | data
A052893 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification. +0
23
1, 1, 3, 10, 37, 144, 589, 2483, 10746, 47420, 212668, 966324, 4439540, 20587286, 96237484, 453012296, 2145478716, 10215922013, 48877938369, 234862013473, 1132902329028, 5483947191651, 26630419098206, 129696204701807, 633339363924611, 3100369991303297 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of free pure symmetric multifunctions with n + 1 unlabeled leaves. A free pure symmetric multifunction f in PSM is either (case 1) f = the leaf symbol "o", or (case 2) f = an expression of the form h[g_1, ..., g_k] where k > 0, h is in PSM, each of the g_i for i = 1, ..., k is in PSM, and for i < j we have g_i <= g_j under a canonical total ordering of PSM, such as the Mathematica ordering of expressions. - Gus Wiseman, Aug 02 2018
LINKS
Mathematica Reference, Orderless.
FORMULA
G.f.: 1/(1 - g(x)) where g(x) is the g.f. of A052891. - Andrew Howroyd, Aug 09 2020
EXAMPLE
From Gus Wiseman, Aug 02 2018: (Start)
The a(3) = 10 free pure symmetric multifunctions with 4 unlabeled leaves:
o[o[o[o]]]
o[o[o][o]]
o[o][o[o]]
o[o[o]][o]
o[o][o][o]
o[o[o,o]]
o[o,o[o]]
o[o][o,o]
o[o,o][o]
o[o,o,o]
(End)
MAPLE
spec := [S, {C = Set(B, 1 <= card), B=Prod(Z, S), S=Sequence(C)}, unlabeled]:
seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
multing[t_, n_]:=Array[(t+#-1)/#&, n, 1, Times];
a[n_]:=a[n]=If[n==1, 1, Sum[a[k]*Sum[Product[multing[a[First[s]], Length[s]], {s, Split[p]}], {p, IntegerPartitions[n-k]}], {k, 1, n-1}]];
Array[a, 30] (* Gus Wiseman, Aug 02 2018 *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=1, n, v=Vec(1/(1-x*Ser(EulerT(v))))); v} \\ Andrew Howroyd, Aug 09 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Gus Wiseman, Aug 02 2018
STATUS
approved
A317658 Number of positions in the n-th free pure symmetric multifunction (with empty expressions allowed) with one atom. +0
16
1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Also the number of positions in the orderless Mathematica expression with e-number n.
LINKS
Mathematica Reference, Orderless
FORMULA
a(rad(x)^(prime(y_1) * ... * prime(y_k)) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].
EXAMPLE
The first twenty Mathematica expressions:
1: o
2: o[]
3: o[][]
4: o[o]
5: o[][][]
6: o[o][]
7: o[][][][]
8: o[o[]]
9: o[][o]
10: o[o][][]
11: o[][][][][]
12: o[o[]][]
13: o[][o][]
14: o[o][][][]
15: o[][][][][][]
16: o[o,o]
17: o[o[]][][]
18: o[][o][][]
19: o[o][][][][]
20: o[][][][][][][]
MATHEMATICA
nn=100;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, x, With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[exp[n], {n, 1, nn}]
CROSSREFS
First differs from A277615 at a(128) = 5, A277615(128) = 6.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved
A279944 Number of positions in the free pure symmetric multifunction in one symbol with j-number n. +0
15
1, 3, 5, 5, 7, 7, 9, 4, 7, 9, 11, 6, 9, 11, 13, 7, 8, 11, 13, 15, 9, 10, 13, 15, 9, 17, 6, 11, 12, 15, 17, 6, 11, 19, 8, 9, 13, 14, 17, 19, 8, 13, 21, 10, 11, 15, 16, 19, 11, 21, 10, 15, 23, 12, 13, 17, 18, 21, 13, 23, 12, 17, 25, 7, 14, 15, 19, 20, 23, 15, 25, 14, 19, 27, 9, 16, 17, 21, 22, 25, 9, 17, 27, 16, 21, 29, 11, 18, 19, 23, 24, 27, 11, 19, 29, 18, 23, 31, 13, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A free pure symmetric multifunction in one symbol f in PSM(x) is either (case 1) f = the symbol x, or (case 2) f = an expression of the form h[g_1,...,g_k] where h is in PSM(x), each of the g_i for i=1..(k>0) is in PSM(x), and for i < j we have g_i <= g_j under a canonical total ordering of PSM(x), such as the Mathematica ordering of expressions. For a positive integer n we define a free pure symmetric multifunction j(n) by: j(1)=x; j(n>1) = j(h)[j(g_1),...,j(g_k)] where n = r(h)^(p(g_1)*...*p(g_k)-1). Here r(n) is the n-th number that is not a perfect power (A007916) and p(n) is the n-th prime number (A000040). See example. Then a(n) is the number of brackets [...] plus the number of x's in j(n).
LINKS
FORMULA
a(A007916(h)^(A000040(g_1)*...*A000040(g_k)-1)) = 1 + a(h) + a(g_1) + ... + a(g_k).
EXAMPLE
The first 20 free pure symmetric multifunctions in x are:
j(1) = j(1) = x
j(2) = j(1)[j(1)] = x[x]
j(3) = j(2)[j(1)] = x[x][x]
j(4) = j(1)[j(2)] = x[x[x]]
j(5) = j(3)[j(1)] = x[x][x][x]
j(6) = j(4)[j(1)] = x[x[x]][x]
j(7) = j(5)[j(1)] = x[x][x][x][x]
j(8) = j(1)[j(1),j(1)] = x[x,x]
j(9) = j(2)[j(2)] = x[x][x[x]]
j(10) = j(6)[j(1)] = x[x[x]][x][x]
j(11) = j(7)[j(1)] = x[x][x][x][x][x]
j(12) = j(8)[j(1)] = x[x,x][x]
j(13) = j(9)[j(1)] = x[x][x[x]][x]
j(14) = j(10)[j(1)] = x[x[x]][x][x][x]
j(15) = j(11)[j(1)] = x[x][x][x][x][x][x]
j(16) = j(1)[j(3)] = x[x[x][x]]
j(17) = j(12)[j(1)] = x[x,x][x][x]
j(18) = j(13)[j(1)] = x[x][x[x]][x][x]
j(19) = j(14)[j(1)] = x[x[x]][x][x][x][x]
j(20) = j(15)[j(1)] = x[x][x][x][x][x][x][x].
MATHEMATICA
nn=100;
radQ[n_]:=If[n===1, False, SameQ[GCD@@FactorInteger[n][[All, 2]], 1]];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Set@@@Array[radPi[rad[#]]==#&, nn];
jfac[n_]:=With[{g=GCD@@FactorInteger[n+1][[All, 2]]}, JIX[radPi[Power[n+1, 1/g]], Flatten[Cases[FactorInteger[g+1], {p_, k_}:>ConstantArray[PrimePi[p], k]]]]];
diwt[n_]:=If[n===1, 1, Apply[1+diwt[#1]+Total[diwt/@#2]&, jfac[n-1]]];
Array[diwt, nn]
CROSSREFS
Cf. A279984 (numbers j(n)[x]=j(prime(n))), A277576 (numbers j(n)=x[x][x][x]...), A058891 (numbers j(n)=x[x,...,x]), A279969 (numbers j(n)=x[x[...[x]]]).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 24 2016
STATUS
approved
A317875 Number of achiral free pure multifunctions with n unlabeled leaves. +0
13
1, 1, 3, 9, 30, 102, 369, 1362, 5181, 20064, 79035, 315366, 1272789, 5185080, 21296196, 88083993, 366584253, 1533953100, 6449904138, 27238006971, 115475933202, 491293053093, 2096930378415, 8976370298886, 38528771056425, 165784567505325 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
An achiral free pure multifunction is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g], where h and g are both achiral free pure multifunctions.
LINKS
FORMULA
a(1) = 1; a(n > 1) = Sum_{0 < k < n} a(n - k) * Sum_{d|k} a(d).
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x + A(x) * Sum_{k>=1} A(x^k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{n>=1} a(n)*x^n/(1 - x^n)). (End)
EXAMPLE
The first 4 terms count the following multifunctions.
o,
o[o],
o[o,o], o[o[o]], o[o][o],
o[o,o,o], o[o[o][o]], o[o[o[o]]], o[o[o,o]], o[o][o,o], o[o][o[o]], o[o][o][o], o[o,o][o], o[o[o]][o].
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[a[n-k]*Sum[a[d], {d, Divisors[k]}], {k, n-1}]];
Array[a, 12]
PROG
(PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*(sum(k=1, n-1, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-1, v[i]*sumdiv(n-i, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
STATUS
approved
A317654 Number of free pure symmetric multifunctions whose leaves are a strongly normal multiset of size n. +0
10
1, 3, 26, 375, 6696, 159837, 4389226, 144915350, 5377002075, 227624621051, 10632808475596, 550932945236121, 31062550998284221, 1907051034025848314, 126052420069459211076, 8956882232940915920404, 679298518935625486287703, 54868537321267493152151502, 4696952405203792017289469056 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
LINKS
EXAMPLE
The a(3) = 26 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];
Table[Sum[Length[exprUsing[got[y]]], {y, IntegerPartitions[n]}], {n, 6}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + p*(sExp(p)-1)); p}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021
STATUS
approved
A316112 Number of leaves in the free pure symmetric multifunction (with empty expressions allowed) with e-number n. +0
9
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
LINKS
FORMULA
a(rad(x)^(prime(y_1) * ... * prime(y_k)) = a(x) + a(y_1) + ... + a(y_k) where rad = A007916.
EXAMPLE
e(21025) = o[o[o]][o] has 4 leaves so a(21025) = 4.
MATHEMATICA
nn=1000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
a[n_]:=If[n==1, 1, With[{g=GCD@@FactorInteger[n][[All, 2]]}, a[radPi[Power[n, 1/g]]]+Sum[a[PrimePi[pr[[1]]]]*pr[[2]], {pr, If[g==1, {}, FactorInteger[g]]}]]];
Table[a[n], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
A317056 Depth of the free pure symmetric multifunction (with empty expressions allowed) with e-number n. +0
9
0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 3, 4, 6, 1, 4, 4, 5, 7, 2, 5, 5, 6, 3, 8, 2, 3, 6, 6, 7, 3, 4, 9, 3, 2, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 4, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 2, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 2, 7, 12 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
LINKS
EXAMPLE
e(21025) = o[o[o]][o] has depth 3 so a(21025) = 3.
MATHEMATICA
nn=1000;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[Max@@Length/@Position[exp[n], _], {n, 200}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n. +0
9
1, 1, 2, 6, 22, 93, 421, 2010, 9926, 50357, 260728, 1372436, 7321982, 39504181, 215168221, 1181540841, 6534058589, 36357935615, 203414689462, 1143589234086, 6457159029573, 36602333187792, 208214459462774, 1188252476400972, 6801133579291811, 39032172166792887 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
LINKS
EXAMPLE
The a(4) = 22 free pure symmetric multifunctions:
1[1[1[1]]] 1[1[2]] 1[3] 2[2] 4
1[1[1][1]] 1[2[1]] 3[1]
1[1][1[1]] 2[1[1]]
1[1[1]][1] 1[1][2]
1[1][1][1] 1[2][1]
1[1[1,1]] 2[1][1]
1[1,1[1]] 1[1,2]
1[1][1,1] 2[1,1]
1[1,1][1]
1[1,1,1]
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {{}}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
Table[Sum[Length[exprUsing[y]], {y, IntegerPartitions[n]}], {n, 0, 6}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1], v)} \\ Andrew Howroyd, Aug 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Aug 28 2018
STATUS
approved
A317653 Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n. +0
9
1, 3, 34, 602, 14872, 472138, 18323359, 840503724, 44489123726, 2668985463839, 178960530393633, 13263068003965046, 1076580864432281157, 94987639225399100006, 9051397653144246683937, 926407121115738135640677, 101357200280211387377806719, 11804887470887800839909147484 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A multiset is normal if it spans an initial interval of positive integers. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
LINKS
EXAMPLE
The a(3) = 34 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[2[2]], 1[2,2], 2[1[2]], 2[2[1]], 2[1,2], 1[2][2], 2[1][2], 2[2][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];
Table[Sum[Length[exprUsing[got[y]]], {y, Join@@Permutations/@IntegerPartitions[n]}], {n, 6}]
PROG
(PARI) \\ here R(n, 1) is A052893.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-1, v[k]*t[n-k]))); v}
seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Sep 14 2018
STATUS
approved
A317994 Number of inequivalent leaf-colorings of the free pure symmetric multifunction with e-number n. +0
9
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 2, 1, 2, 5, 4, 2, 2, 2, 2, 2, 1, 2, 5, 4, 2, 2, 2, 2, 2, 2, 1, 2, 5, 4, 2, 2, 2, 2, 2, 2, 1, 5, 2, 5, 4, 2, 2, 2, 2, 2, 2, 1, 5, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
LINKS
EXAMPLE
Inequivalent representatives of the a(441) = 11 colorings of the expression e(441) = o[o,o][o] are the following.
1[1,1][1]
1[1,1][2]
1[1,2][1]
1[1,2][2]
1[1,2][3]
1[2,2][1]
1[2,2][2]
1[2,2][3]
1[2,3][1]
1[2,3][2]
1[2,3][4]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
page 1 2 3 4

Search completed in 0.017 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)