[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a052893 -id:a052893
Displaying 1-10 of 22 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A277996 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions. +10
33
1, 1, 2, 5, 13, 36, 102, 299, 892, 2713, 8364, 26108, 82310, 261804, 838961, 2706336, 8780725, 28636157, 93818641, 308641277, 1019140129, 3376604826, 11221805968, 37399728251, 124967677989, 418564867751, 1405030366113, 4726036692421, 15927027834163, 53770343259613 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Also the number of distinct orderless Mathematica expressions with one atom and n positions.
LINKS
Mathematica Reference, Orderless.
FORMULA
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} 1/(1 - x^n)^a(n)). (End)
EXAMPLE
The a(5)=13 Mathematica expressions are:
x[x,x,x]
x[x,x][] x[x][x] x[][x,x] x[x,x[]] x[x[x]]
x[x][][] x[][x][] x[][][x] x[x[]][] x[][x[]] x[x[][]]
x[][][][]
MATHEMATICA
multing[t_, n_]:=Array[(t+#-1)/#&, n, 1, Times];
a[n_]:=a[n]=If[n===1, 1, Sum[a[k]*Sum[Product[multing[a[First[s]], Length[s]], {s, Split[p]}], {p, IntegerPartitions[n-k-1]}], {k, 1, n-1}]];
Array[a, 30]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 24 2016
STATUS
approved
A317658 Number of positions in the n-th free pure symmetric multifunction (with empty expressions allowed) with one atom. +10
16
1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Also the number of positions in the orderless Mathematica expression with e-number n.
LINKS
Mathematica Reference, Orderless
FORMULA
a(rad(x)^(prime(y_1) * ... * prime(y_k)) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].
EXAMPLE
The first twenty Mathematica expressions:
1: o
2: o[]
3: o[][]
4: o[o]
5: o[][][]
6: o[o][]
7: o[][][][]
8: o[o[]]
9: o[][o]
10: o[o][][]
11: o[][][][][]
12: o[o[]][]
13: o[][o][]
14: o[o][][][]
15: o[][][][][][]
16: o[o,o]
17: o[o[]][][]
18: o[][o][][]
19: o[o][][][][]
20: o[][][][][][][]
MATHEMATICA
nn=100;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, x, With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[exp[n], {n, 1, nn}]
CROSSREFS
First differs from A277615 at a(128) = 5, A277615(128) = 6.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved
A317875 Number of achiral free pure multifunctions with n unlabeled leaves. +10
13
1, 1, 3, 9, 30, 102, 369, 1362, 5181, 20064, 79035, 315366, 1272789, 5185080, 21296196, 88083993, 366584253, 1533953100, 6449904138, 27238006971, 115475933202, 491293053093, 2096930378415, 8976370298886, 38528771056425, 165784567505325 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
An achiral free pure multifunction is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g], where h and g are both achiral free pure multifunctions.
LINKS
FORMULA
a(1) = 1; a(n > 1) = Sum_{0 < k < n} a(n - k) * Sum_{d|k} a(d).
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x + A(x) * Sum_{k>=1} A(x^k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{n>=1} a(n)*x^n/(1 - x^n)). (End)
EXAMPLE
The first 4 terms count the following multifunctions.
o,
o[o],
o[o,o], o[o[o]], o[o][o],
o[o,o,o], o[o[o][o]], o[o[o[o]]], o[o[o,o]], o[o][o,o], o[o][o[o]], o[o][o][o], o[o,o][o], o[o[o]][o].
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[a[n-k]*Sum[a[d], {d, Divisors[k]}], {k, n-1}]];
Array[a, 12]
PROG
(PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*(sum(k=1, n-1, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-1, v[i]*sumdiv(n-i, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
STATUS
approved
A317654 Number of free pure symmetric multifunctions whose leaves are a strongly normal multiset of size n. +10
10
1, 3, 26, 375, 6696, 159837, 4389226, 144915350, 5377002075, 227624621051, 10632808475596, 550932945236121, 31062550998284221, 1907051034025848314, 126052420069459211076, 8956882232940915920404, 679298518935625486287703, 54868537321267493152151502, 4696952405203792017289469056 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
LINKS
EXAMPLE
The a(3) = 26 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];
Table[Sum[Length[exprUsing[got[y]]], {y, IntegerPartitions[n]}], {n, 6}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + p*(sExp(p)-1)); p}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021
STATUS
approved
A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n. +10
9
1, 1, 2, 6, 22, 93, 421, 2010, 9926, 50357, 260728, 1372436, 7321982, 39504181, 215168221, 1181540841, 6534058589, 36357935615, 203414689462, 1143589234086, 6457159029573, 36602333187792, 208214459462774, 1188252476400972, 6801133579291811, 39032172166792887 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
LINKS
EXAMPLE
The a(4) = 22 free pure symmetric multifunctions:
1[1[1[1]]] 1[1[2]] 1[3] 2[2] 4
1[1[1][1]] 1[2[1]] 3[1]
1[1][1[1]] 2[1[1]]
1[1[1]][1] 1[1][2]
1[1][1][1] 1[2][1]
1[1[1,1]] 2[1][1]
1[1,1[1]] 1[1,2]
1[1][1,1] 2[1,1]
1[1,1][1]
1[1,1,1]
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {{}}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
Table[Sum[Length[exprUsing[y]], {y, IntegerPartitions[n]}], {n, 0, 6}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1], v)} \\ Andrew Howroyd, Aug 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Aug 28 2018
STATUS
approved
A317653 Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n. +10
9
1, 3, 34, 602, 14872, 472138, 18323359, 840503724, 44489123726, 2668985463839, 178960530393633, 13263068003965046, 1076580864432281157, 94987639225399100006, 9051397653144246683937, 926407121115738135640677, 101357200280211387377806719, 11804887470887800839909147484 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A multiset is normal if it spans an initial interval of positive integers. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
LINKS
EXAMPLE
The a(3) = 34 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[2[2]], 1[2,2], 2[1[2]], 2[2[1]], 2[1,2], 1[2][2], 2[1][2], 2[2][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];
Table[Sum[Length[exprUsing[got[y]]], {y, Join@@Permutations/@IntegerPartitions[n]}], {n, 6}]
PROG
(PARI) \\ here R(n, 1) is A052893.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-1, v[k]*t[n-k]))); v}
seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Sep 14 2018
STATUS
approved
A317876 Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions. +10
8
1, 1, 2, 4, 10, 25, 67, 184, 519, 1489, 4342, 12812, 38207, 114934, 348397, 1063050, 3262588, 10064645, 31190985, 97061431, 303165207, 950115502, 2986817742, 9415920424, 29760442192, 94286758293, 299377379027, 952521579944, 3036380284111, 9696325863803 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
A free pure symmetric identity multifunction (with empty expressions allowed) (FOI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an FOI, each of the g_i for i = 1, ..., k >= 0 is an FOI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an FOI is the number of brackets [...] plus the number of o's.
Also the number of free orderless identity Mathematica expressions with one atom and n positions.
LINKS
FORMULA
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} (-1)^(k+1)*A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} (1 + x^n)^a(n)). (End)
EXAMPLE
The a(5) = 10 FOIs:
o[o[o]]
o[o][o]
o[o[][]]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
MATHEMATICA
allIdExpr[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h], Select[Union[Sort/@Tuples[allIdExpr/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved
A317877 Number of free pure identity multifunctions with one atom and n positions. +10
8
1, 0, 1, 0, 2, 2, 5, 10, 18, 46, 94, 212, 476, 1058, 2441, 5564, 12880, 29920, 69620, 163220, 383376, 904114, 2139592, 5074784, 12074152, 28789112, 68803148, 164779064, 395373108, 950416330, 2288438591, 5518864858, 13329183894, 32237132814, 78069124640 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
A free pure identity multifunction (PIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a PIM, each of the g_i for i = 1, ..., k > 0 is a PIM, and for i != j we have g_i != g_j. The number of positions in a PIM is the number of brackets [...] plus the number of o's.
LINKS
EXAMPLE
The a(8) = 10 PIMs:
o[o[o[o],o]]
o[o[o,o[o]]]
o[o[o[o]],o]
o[o[o][o],o]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o[o],o]
o[o][o,o[o]]
o[o[o],o][o]
o[o,o[o]][o]
MATHEMATICA
allIdPMF[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMF[h], Select[Tuples[allIdPMF/@p], UnsameQ@@#&]}], {p, Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdPMF[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved
A317878 Number of free pure symmetric identity multifunctions with one atom and n positions. +10
8
1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
A free pure symmetric identity multifunction (SIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a SIM, each of the g_i for i = 1, ..., k > 0 is a SIM, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in a SIM is the number of brackets [...] plus the number of o's.
LINKS
EXAMPLE
The a(8) = 5 SIMs:
o[o[o,o[o]]]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o,o[o]]
o[o,o[o]][o]
MATHEMATICA
allIdPMFOL[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h], Select[Union[Sort/@Tuples[allIdPMFOL/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdPMFOL[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved
A317880 Number of series-reduced free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions. +10
8
1, 1, 1, 1, 2, 4, 8, 16, 33, 70, 152, 333, 735, 1635, 3668, 8285, 18823, 42970, 98535, 226870, 524290, 1215641, 2827203, 6593432, 15416197, 36129894, 84860282, 199719932, 470930802, 1112388190, 2631903295, 6236669381, 14800078408, 35169529363, 83680908692 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
A series-reduced free pure symmetric identity multifunction (with empty expressions allowed) (SROI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an SROI, k is an integer greater than or equal to 0 but not equal to 1, each of the g_i for i = 1, ..., k is an SROI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an SROI is the number of brackets [...] plus the number of o's.
Also the number of series-reduced orderless identity Mathematica expressions with one atom and n positions.
LINKS
EXAMPLE
The a(7) = 8 SROIs:
o[o,o[][][]]
o[o[],o[][]]
o[][o,o[][]]
o[][][o,o[]]
o[o,o[][]][]
o[][o,o[]][]
o[o,o[]][][]
o[][][][][][]
MATHEMATICA
allIdExprSR[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h], Select[Union[Sort/@Tuples[allIdExprSR/@p]], UnsameQ@@#&]}], {p, If[g==0, {{}}, Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved
page 1 2 3

Search completed in 0.015 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)