[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a316112 -id:a316112
Displaying 1-8 of 8 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A317056 Depth of the free pure symmetric multifunction (with empty expressions allowed) with e-number n. +10
9
0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 3, 4, 6, 1, 4, 4, 5, 7, 2, 5, 5, 6, 3, 8, 2, 3, 6, 6, 7, 3, 4, 9, 3, 2, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 4, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 2, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 2, 7, 12 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
LINKS
EXAMPLE
e(21025) = o[o[o]][o] has depth 3 so a(21025) = 3.
MATHEMATICA
nn=1000;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[Max@@Length/@Position[exp[n], _], {n, 200}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
A317994 Number of inequivalent leaf-colorings of the free pure symmetric multifunction with e-number n. +10
9
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 1, 4, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 2, 1, 2, 5, 4, 2, 2, 2, 2, 2, 1, 2, 5, 4, 2, 2, 2, 2, 2, 2, 1, 2, 5, 4, 2, 2, 2, 2, 2, 2, 1, 5, 2, 5, 4, 2, 2, 2, 2, 2, 2, 1, 5, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
LINKS
EXAMPLE
Inequivalent representatives of the a(441) = 11 colorings of the expression e(441) = o[o,o][o] are the following.
1[1,1][1]
1[1,1][2]
1[1,2][1]
1[1,2][2]
1[1,2][3]
1[2,2][1]
1[2,2][2]
1[2,2][3]
1[2,3][1]
1[2,3][2]
1[2,3][4]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
A317765 Number of distinct subexpressions of the free pure symmetric multifunction (with empty expressions allowed) with e-number n. +10
8
1, 2, 3, 2, 4, 3, 5, 3, 3, 4, 6, 4, 4, 5, 7, 2, 5, 5, 6, 8, 3, 6, 6, 7, 4, 9, 3, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 7, 12, 8, 9, 14, 4, 8, 7, 9, 12, 12, 3, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
LINKS
EXAMPLE
The a(12) = 4 subexpressions of o[o[]][] are {o, o[], o[o[]], o[o[]][]}.
MATHEMATICA
nn=1000;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[Length[Union[Cases[exp[n], _, {0, Infinity}, Heads->True]]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
A318149 e-numbers of free pure symmetric multifunctions with one atom. +10
5
1, 4, 16, 36, 128, 256, 441, 1296, 2025, 16384, 21025, 65536, 77841, 194481, 220900, 279936, 1679616, 1803649, 4100625, 4338889, 268435456, 273571600, 442050625, 449482401, 1801088541, 4294967296, 4334247225, 6059221281 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[].
LINKS
EXAMPLE
The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins:
1: o
4: o[o]
16: o[o,o]
36: o[o][o]
128: o[o[o]]
256: o[o,o,o]
441: o[o,o][o]
1296: o[o][o,o]
2025: o[o][o][o]
16384: o[o,o[o]]
21025: o[o[o]][o]
65536: o[o,o,o,o]
77841: o[o,o,o][o]
194481: o[o,o][o,o]
220900: o[o,o][o][o]
279936: o[o][o[o]]
MATHEMATICA
nn=1000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n==1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Select[Range[nn], FreeQ[exp[#], _[]]&]
PROG
(Python) See Neder link.
CROSSREFS
A subsequence of A001597.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
EXTENSIONS
a(16)-a(27) from Charlie Neder, Sep 01 2018
STATUS
approved
A318150 e-numbers of free pure functions with one atom. +10
5
1, 4, 36, 128, 2025, 21025, 279936, 4338889, 449482401, 78701569444, 373669453125, 18845583322500, 1347646586640625, 202054211912421649, 6193981883008128893161, 139629322539586311507076, 170147232533595290155627, 355156175404848064835984400 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). This sequence consists of all numbers n such that e(n) contains no non-unitary subexpressions f[x_1, ..., x_k] where k != 1.
LINKS
FORMULA
a(1) = 1, and if a and b are in this sequence then so is rad(a)^prime(b). - Charlie Neder, Feb 23 2019
EXAMPLE
The sequence of all free pure functions with one atom together with their e-numbers begins:
1: o
4: o[o]
36: o[o][o]
128: o[o[o]]
2025: o[o][o][o]
21025: o[o[o]][o]
279936: o[o][o[o]]
4338889: o[o][o][o][o]
CROSSREFS
A subsequence of A001597.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
EXTENSIONS
More terms from Charlie Neder, Feb 23 2019
STATUS
approved
A318152 e-numbers of unlabeled rooted trees. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k > 0 and y_1, ..., y_k already in the sequence. +10
4
1, 4, 16, 128, 256, 16384, 65536, 268435456, 4294967296, 562949953421312, 9007199254740992, 72057594037927936, 18446744073709551616, 316912650057057350374175801344, 81129638414606681695789005144064, 5192296858534827628530496329220096 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[] or subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.
LINKS
EXAMPLE
The sequence contains 16384 = 2^14 = 2^(prime(1) * prime(4)) because 1 and 4 both already belong to the sequence.
The sequence of unlabeled rooted trees with e-numbers in the sequence begins:
1: o
4: (o)
16: (oo)
128: ((o))
256: (ooo)
16384: (o(o))
65536: (oooo)
. (oo(o))
. (ooooo)
. ((o)(o))
((oo))
(ooo(o))
(oooooo)
(o(o)(o))
(o(oo))
(oooo(o))
(ooooooo)
(oo(o)(o))
MATHEMATICA
baQ[n_]:=Or[n==1, MatchQ[FactorInteger[n], {{2, _?(And@@Cases[FactorInteger[#], {p_, k_}:>baQ[PrimePi[p]]]&)}}]];
Select[2^Range[0, 50], baQ]
CROSSREFS
A subsequence of A000079 and A318151.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
STATUS
approved
A318153 Number of antichain covers of the free pure symmetric multifunction (with empty expressions allowed) with e-number n. +10
4
1, 2, 3, 2, 4, 3, 5, 3, 3, 4, 6, 4, 4, 5, 7, 2, 5, 5, 6, 8, 3, 6, 6, 7, 4, 9, 5, 4, 7, 7, 8, 4, 5, 10, 6, 3, 5, 8, 8, 9, 5, 6, 11, 7, 4, 6, 9, 9, 5, 10, 6, 7, 12, 8, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 9, 6, 8, 11, 11, 7, 12, 8, 9, 14, 4, 10, 7, 9, 12, 12, 3, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The a(n) is the number of ways to partition e(n) into disjoint subexpressions such that all leaves are covered by exactly one of them.
LINKS
FORMULA
If n = rad(x)^(Product_i prime(y_i)^z_i) where rad = A007916 then a(n) = 1 + a(x) * Product_i a(y_i)^z_i.
EXAMPLE
441 is the e-number of o[o,o][o] which has antichain covers {o[o,o][o]}, {o[o,o], o}, {o, o, o, o}}, corresponding to the leaf-colorings 1[1,1][1], 1[1,1][2], 1[2,3][4], so a(441) = 3.
MATHEMATICA
nn=20000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
a[n_]:=If[n==1, 1, With[{g=GCD@@FactorInteger[n][[All, 2]]}, 1+a[radPi[n^(1/g)]]*Product[a[PrimePi[pr[[1]]]]^pr[[2]], {pr, If[g==1, {}, FactorInteger[g]]}]]];
Array[a, 100]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
STATUS
approved
A318151 e-numbers of unlabeled rooted trees with empty leaves o[] allowed. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k >= 0 and y_1, ..., y_k already in the sequence. +10
1
1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 16384, 65536, 262144, 524288, 2097152, 16777216, 134217728, 268435456, 4294967296, 68719476736, 274877906944, 4398046511104, 281474976710656, 562949953421312, 9007199254740992, 18014398509481984, 72057594037927936 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.
LINKS
CROSSREFS
A subsequence of A000079.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
STATUS
approved
page 1

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)