Displaying 1-4 of 4 results found.
page
1
e-numbers of free pure functions with one atom.
+10
5
1, 4, 36, 128, 2025, 21025, 279936, 4338889, 449482401, 78701569444, 373669453125, 18845583322500, 1347646586640625, 202054211912421649, 6193981883008128893161, 139629322539586311507076, 170147232533595290155627, 355156175404848064835984400
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). This sequence consists of all numbers n such that e(n) contains no non-unitary subexpressions f[x_1, ..., x_k] where k != 1.
FORMULA
a(1) = 1, and if a and b are in this sequence then so is rad(a)^prime(b). - Charlie Neder, Feb 23 2019
EXAMPLE
The sequence of all free pure functions with one atom together with their e-numbers begins:
1: o
4: o[o]
36: o[o][o]
128: o[o[o]]
2025: o[o][o][o]
21025: o[o[o]][o]
279936: o[o][o[o]]
4338889: o[o][o][o][o]
e-numbers of unlabeled rooted trees. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k > 0 and y_1, ..., y_k already in the sequence.
+10
4
1, 4, 16, 128, 256, 16384, 65536, 268435456, 4294967296, 562949953421312, 9007199254740992, 72057594037927936, 18446744073709551616, 316912650057057350374175801344, 81129638414606681695789005144064, 5192296858534827628530496329220096
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[] or subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.
EXAMPLE
The sequence contains 16384 = 2^14 = 2^(prime(1) * prime(4)) because 1 and 4 both already belong to the sequence.
The sequence of unlabeled rooted trees with e-numbers in the sequence begins:
1: o
4: (o)
16: (oo)
128: ((o))
256: (ooo)
16384: (o(o))
65536: (oooo)
. (oo(o))
. (ooooo)
. ((o)(o))
((oo))
(ooo(o))
(oooooo)
(o(o)(o))
(o(oo))
(oooo(o))
(ooooooo)
(oo(o)(o))
MATHEMATICA
baQ[n_]:=Or[n==1, MatchQ[FactorInteger[n], {{2, _?(And@@Cases[FactorInteger[#], {p_, k_}:>baQ[PrimePi[p]]]&)}}]];
Select[2^Range[0, 50], baQ]
Number of antichain covers of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
+10
4
1, 2, 3, 2, 4, 3, 5, 3, 3, 4, 6, 4, 4, 5, 7, 2, 5, 5, 6, 8, 3, 6, 6, 7, 4, 9, 5, 4, 7, 7, 8, 4, 5, 10, 6, 3, 5, 8, 8, 9, 5, 6, 11, 7, 4, 6, 9, 9, 5, 10, 6, 7, 12, 8, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 9, 6, 8, 11, 11, 7, 12, 8, 9, 14, 4, 10, 7, 9, 12, 12, 3, 8
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The a(n) is the number of ways to partition e(n) into disjoint subexpressions such that all leaves are covered by exactly one of them.
FORMULA
If n = rad(x)^(Product_i prime(y_i)^z_i) where rad = A007916 then a(n) = 1 + a(x) * Product_i a(y_i)^z_i.
EXAMPLE
441 is the e-number of o[o,o][o] which has antichain covers {o[o,o][o]}, {o[o,o], o}, {o, o, o, o}}, corresponding to the leaf-colorings 1[1,1][1], 1[1,1][2], 1[2,3][4], so a(441) = 3.
MATHEMATICA
nn=20000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
a[n_]:=If[n==1, 1, With[{g=GCD@@FactorInteger[n][[All, 2]]}, 1+a[radPi[n^(1/g)]]*Product[a[PrimePi[pr[[1]]]]^pr[[2]], {pr, If[g==1, {}, FactorInteger[g]]}]]];
Array[a, 100]
e-numbers of unlabeled rooted trees with empty leaves o[] allowed. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k >= 0 and y_1, ..., y_k already in the sequence.
+10
1
1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 16384, 65536, 262144, 524288, 2097152, 16777216, 134217728, 268435456, 4294967296, 68719476736, 274877906944, 4398046511104, 281474976710656, 562949953421312, 9007199254740992, 18014398509481984, 72057594037927936
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.
Search completed in 0.006 seconds
|