OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[].
LINKS
Charlie Neder, Table of n, a(n) for n = 1..310
Charlie Neder, Python program for calculating this sequence
EXAMPLE
The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins:
1: o
4: o[o]
16: o[o,o]
36: o[o][o]
128: o[o[o]]
256: o[o,o,o]
441: o[o,o][o]
1296: o[o][o,o]
2025: o[o][o][o]
16384: o[o,o[o]]
21025: o[o[o]][o]
65536: o[o,o,o,o]
77841: o[o,o,o][o]
194481: o[o,o][o,o]
220900: o[o,o][o][o]
279936: o[o][o[o]]
MATHEMATICA
nn=1000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n==1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Select[Range[nn], FreeQ[exp[#], _[]]&]
PROG
(Python) See Neder link.
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
EXTENSIONS
a(16)-a(27) from Charlie Neder, Sep 01 2018
STATUS
approved