[go: up one dir, main page]

login
Search: a318153 -id:a318153
     Sort: relevance | references | number | modified | created      Format: long | short | data
e-numbers of free pure symmetric multifunctions with one atom.
+10
5
1, 4, 16, 36, 128, 256, 441, 1296, 2025, 16384, 21025, 65536, 77841, 194481, 220900, 279936, 1679616, 1803649, 4100625, 4338889, 268435456, 273571600, 442050625, 449482401, 1801088541, 4294967296, 4334247225, 6059221281
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[].
EXAMPLE
The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins:
1: o
4: o[o]
16: o[o,o]
36: o[o][o]
128: o[o[o]]
256: o[o,o,o]
441: o[o,o][o]
1296: o[o][o,o]
2025: o[o][o][o]
16384: o[o,o[o]]
21025: o[o[o]][o]
65536: o[o,o,o,o]
77841: o[o,o,o][o]
194481: o[o,o][o,o]
220900: o[o,o][o][o]
279936: o[o][o[o]]
MATHEMATICA
nn=1000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n==1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Select[Range[nn], FreeQ[exp[#], _[]]&]
PROG
(Python) See Neder link.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
EXTENSIONS
a(16)-a(27) from Charlie Neder, Sep 01 2018
STATUS
approved
e-numbers of free pure functions with one atom.
+10
5
1, 4, 36, 128, 2025, 21025, 279936, 4338889, 449482401, 78701569444, 373669453125, 18845583322500, 1347646586640625, 202054211912421649, 6193981883008128893161, 139629322539586311507076, 170147232533595290155627, 355156175404848064835984400
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). This sequence consists of all numbers n such that e(n) contains no non-unitary subexpressions f[x_1, ..., x_k] where k != 1.
LINKS
FORMULA
a(1) = 1, and if a and b are in this sequence then so is rad(a)^prime(b). - Charlie Neder, Feb 23 2019
EXAMPLE
The sequence of all free pure functions with one atom together with their e-numbers begins:
1: o
4: o[o]
36: o[o][o]
128: o[o[o]]
2025: o[o][o][o]
21025: o[o[o]][o]
279936: o[o][o[o]]
4338889: o[o][o][o][o]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
EXTENSIONS
More terms from Charlie Neder, Feb 23 2019
STATUS
approved
e-numbers of unlabeled rooted trees. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k > 0 and y_1, ..., y_k already in the sequence.
+10
4
1, 4, 16, 128, 256, 16384, 65536, 268435456, 4294967296, 562949953421312, 9007199254740992, 72057594037927936, 18446744073709551616, 316912650057057350374175801344, 81129638414606681695789005144064, 5192296858534827628530496329220096
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[] or subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.
EXAMPLE
The sequence contains 16384 = 2^14 = 2^(prime(1) * prime(4)) because 1 and 4 both already belong to the sequence.
The sequence of unlabeled rooted trees with e-numbers in the sequence begins:
1: o
4: (o)
16: (oo)
128: ((o))
256: (ooo)
16384: (o(o))
65536: (oooo)
. (oo(o))
. (ooooo)
. ((o)(o))
((oo))
(ooo(o))
(oooooo)
(o(o)(o))
(o(oo))
(oooo(o))
(ooooooo)
(oo(o)(o))
MATHEMATICA
baQ[n_]:=Or[n==1, MatchQ[FactorInteger[n], {{2, _?(And@@Cases[FactorInteger[#], {p_, k_}:>baQ[PrimePi[p]]]&)}}]];
Select[2^Range[0, 50], baQ]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
STATUS
approved
e-numbers of unlabeled rooted trees with empty leaves o[] allowed. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k >= 0 and y_1, ..., y_k already in the sequence.
+10
1
1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 16384, 65536, 262144, 524288, 2097152, 16777216, 134217728, 268435456, 4294967296, 68719476736, 274877906944, 4398046511104, 281474976710656, 562949953421312, 9007199254740992, 18014398509481984, 72057594037927936
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
STATUS
approved

Search completed in 0.006 seconds