Displaying 11-20 of 32 results found.
Number of distinct subexpressions of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
+0
8
1, 2, 3, 2, 4, 3, 5, 3, 3, 4, 6, 4, 4, 5, 7, 2, 5, 5, 6, 8, 3, 6, 6, 7, 4, 9, 3, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 7, 12, 8, 9, 14, 4, 8, 7, 9, 12, 12, 3, 8
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
EXAMPLE
The a(12) = 4 subexpressions of o[o[]][] are {o, o[], o[o[]], o[o[]][]}.
MATHEMATICA
nn=1000;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[Length[Union[Cases[exp[n], _, {0, Infinity}, Heads->True]]], {n, 100}]
CROSSREFS
Cf. A007916, A052409, A052410, A277576, A277996, A300626, A316112, A317056, A317658, A317713, A317994.
Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 2, 4, 10, 25, 67, 184, 519, 1489, 4342, 12812, 38207, 114934, 348397, 1063050, 3262588, 10064645, 31190985, 97061431, 303165207, 950115502, 2986817742, 9415920424, 29760442192, 94286758293, 299377379027, 952521579944, 3036380284111, 9696325863803
COMMENTS
A free pure symmetric identity multifunction (with empty expressions allowed) (FOI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an FOI, each of the g_i for i = 1, ..., k >= 0 is an FOI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an FOI is the number of brackets [...] plus the number of o's.
Also the number of free orderless identity Mathematica expressions with one atom and n positions.
FORMULA
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} (-1)^(k+1)*A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} (1 + x^n)^a(n)). (End)
EXAMPLE
The a(5) = 10 FOIs:
o[o[o]]
o[o][o]
o[o[][]]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
MATHEMATICA
allIdExpr[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h], Select[Union[Sort/@Tuples[allIdExpr/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Number of free pure identity multifunctions with one atom and n positions.
+0
8
1, 0, 1, 0, 2, 2, 5, 10, 18, 46, 94, 212, 476, 1058, 2441, 5564, 12880, 29920, 69620, 163220, 383376, 904114, 2139592, 5074784, 12074152, 28789112, 68803148, 164779064, 395373108, 950416330, 2288438591, 5518864858, 13329183894, 32237132814, 78069124640
COMMENTS
A free pure identity multifunction (PIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a PIM, each of the g_i for i = 1, ..., k > 0 is a PIM, and for i != j we have g_i != g_j. The number of positions in a PIM is the number of brackets [...] plus the number of o's.
EXAMPLE
The a(8) = 10 PIMs:
o[o[o[o],o]]
o[o[o,o[o]]]
o[o[o[o]],o]
o[o[o][o],o]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o[o],o]
o[o][o,o[o]]
o[o[o],o][o]
o[o,o[o]][o]
MATHEMATICA
allIdPMF[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMF[h], Select[Tuples[allIdPMF/@p], UnsameQ@@#&]}], {p, Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdPMF[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
Number of free pure symmetric identity multifunctions with one atom and n positions.
+0
8
1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811
COMMENTS
A free pure symmetric identity multifunction (SIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a SIM, each of the g_i for i = 1, ..., k > 0 is a SIM, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in a SIM is the number of brackets [...] plus the number of o's.
EXAMPLE
The a(8) = 5 SIMs:
o[o[o,o[o]]]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o,o[o]]
o[o,o[o]][o]
MATHEMATICA
allIdPMFOL[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h], Select[Union[Sort/@Tuples[allIdPMFOL/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdPMFOL[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Number of free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 2, 4, 11, 29, 83, 251, 767, 2403, 7652, 24758, 80875, 266803, 887330, 2972108, 10016981, 33942461, 115572864, 395226810, 1356840007, 4674552089, 16156355357, 56003840659, 194651585875, 678220460687, 2368505647624, 8288873657180, 29064904732911
COMMENTS
A free pure identity multifunction (with empty expressions allowed) (IME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an IME, each of the g_i for i = 1, ..., k >= 0 is an IME, and for i != j we have g_i != g_j. The number of positions in an IME is the number of brackets [...] plus the number of o's.
Also the number of identity Mathematica expressions with one atom and n positions.
EXAMPLE
The a(5) = 11 IMEs:
o[o[o]]
o[o][o]
o[o[][]]
o[o[],o]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
MATHEMATICA
allIdExpr[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h], Select[Tuples[allIdExpr/@p], UnsameQ@@#&]}], {p, Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
Number of series-reduced free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 1, 1, 2, 4, 8, 16, 33, 70, 152, 333, 735, 1635, 3668, 8285, 18823, 42970, 98535, 226870, 524290, 1215641, 2827203, 6593432, 15416197, 36129894, 84860282, 199719932, 470930802, 1112388190, 2631903295, 6236669381, 14800078408, 35169529363, 83680908692
COMMENTS
A series-reduced free pure symmetric identity multifunction (with empty expressions allowed) (SROI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an SROI, k is an integer greater than or equal to 0 but not equal to 1, each of the g_i for i = 1, ..., k is an SROI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an SROI is the number of brackets [...] plus the number of o's.
Also the number of series-reduced orderless identity Mathematica expressions with one atom and n positions.
EXAMPLE
The a(7) = 8 SROIs:
o[o,o[][][]]
o[o[],o[][]]
o[][o,o[][]]
o[][][o,o[]]
o[o,o[][]][]
o[][o,o[]][]
o[o,o[]][][]
o[][][][][][]
MATHEMATICA
allIdExprSR[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h], Select[Union[Sort/@Tuples[allIdExprSR/@p]], UnsameQ@@#&]}], {p, If[g==0, {{}}, Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Number of series-reduced free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 1, 1, 3, 7, 15, 37, 91, 231, 593, 1557, 4111, 10941, 29295, 79087, 215015, 587463, 1611985, 4441473, 12284513, 34095797, 94931525, 265061363, 742029431, 2082310665, 5856540305, 16505796865, 46608877763, 131850193107, 373612733107, 1060339387939, 3013758348317
COMMENTS
A series-reduced series-reduced free pure identity multifunction (with empty expressions allowed) (SRIM) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an SRIM, k is an integer greater than or equal to 0 but not equal to 1, each of the g_i for i = 1, ..., k >= 0 is an SRIM, and for i != j we have g_i != g_j. The number of positions in an SRIM is the number of brackets [...] plus the number of o's.
Also the number of series-reduced identity Mathematica expressions with one atom and n positions.
EXAMPLE
The a(6) = 7 SRIMs:
o[o[][],o]
o[o,o[][]]
o[][o[],o]
o[][o,o[]]
o[o[],o][]
o[o,o[]][]
o[][][][][]
MATHEMATICA
allIdExprSR[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h], Select[Tuples[allIdExprSR/@p], UnsameQ@@#&]}], {p, If[g==0, {{}}, Join@@Permutations/@Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*(subst(serlaplace(y^0*polcoef(p, k)), y, 1)-v[k]))); v} \\ Andrew Howroyd, Sep 01 2018
Number of free pure symmetric multifunctions with leaves a multiset whose multiplicities are the integer partition with Heinz number n.
+0
7
0, 1, 1, 2, 3, 8, 10, 15, 50, 35, 37, 96, 144, 160, 299, 184, 589, 840, 2483, 578, 1729, 750, 10746, 1627, 2246, 3578, 9357, 3367, 47420, 6397, 212668, 3155, 9818, 17280, 15666, 18250, 966324, 84232, 54990, 12471, 4439540, 45015
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
EXAMPLE
The a(6) = 8 free pure symmetric multifunctions:
1[1[2]]
1[2[1]]
2[1[1]]
1[1][2]
1[2][1]
2[1][1]
1[1,2]
2[1,1]
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[exprUsing[got[Reverse[primeMS[n]]]]], {n, 40}]
Number of free pure symmetric multifunctions whose leaves are the integer partition with Heinz number n.
+0
7
0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 2, 10, 1, 8, 1, 8, 2, 2, 1, 35, 1, 2, 3, 8, 1, 15, 1, 37, 2, 2, 2, 50, 1, 2, 2, 35, 1, 15, 1, 8, 8, 2, 1, 160, 1, 8, 2, 8, 1, 35, 2, 35, 2, 2, 1, 96, 1, 2, 8, 144, 2, 15, 1, 8, 2, 15, 1, 299, 1, 2, 8, 8, 2, 15, 1, 160
COMMENTS
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
EXAMPLE
The a(12) = 8 free pure symmetric multifunctions are 1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1].
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[exprUsing[primeMS[n]]], {n, 100}]
Number of inequivalent colorings of free pure symmetric multifunctions (with empty expressions allowed) with n positions.
+0
6
1, 1, 3, 11, 43, 187, 872, 4375, 23258, 130485, 767348, 4710715, 30070205, 198983975, 1361361925, 9607908808, 69812787049, 521377973359, 3996036977270, 31389624598631, 252408597286705, 2075472033455894, 17434190966525003, 149476993511444023, 1307022313790487959
COMMENTS
A free pure symmetric multifunction (with empty expressions allowed) f in EOME is either (case 1) a positive integer, or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where k >= 0, h is in EOME, each of the g_i for i = 1, ..., k is in EOME, and for i < j we have g_i <= g_j under a canonical total ordering of EOME, such as the Mathematica ordering of expressions.
Also the number of inequivalent colorings of orderless Mathematica expressions with n positions.
EXAMPLE
Inequivalent representatives of the a(3) = 11 colorings:
1[1,1] 1[2,2] 1[1,2] 1[2,3]
1[1[]] 1[2[]]
1[][1] 1[][2]
1[1][] 1[2][]
1[][][]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + x*p*sExp(p)); p}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 30 2020
CROSSREFS
Cf. A000612, A007716, A052893, A053492, A277996, A279944, A280000, A317652, A317655, A317656, A317676.
Search completed in 0.021 seconds
|