[go: up one dir, main page]

login
Search: a277996 -id:a277996
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of distinct subexpressions of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
+0
8
1, 2, 3, 2, 4, 3, 5, 3, 3, 4, 6, 4, 4, 5, 7, 2, 5, 5, 6, 8, 3, 6, 6, 7, 4, 9, 3, 4, 7, 7, 8, 4, 5, 10, 4, 3, 5, 8, 8, 9, 5, 6, 11, 5, 4, 6, 9, 9, 5, 10, 6, 7, 12, 6, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 7, 6, 8, 11, 11, 7, 12, 8, 9, 14, 4, 8, 7, 9, 12, 12, 3, 8
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
EXAMPLE
The a(12) = 4 subexpressions of o[o[]][] are {o, o[], o[o[]], o[o[]][]}.
MATHEMATICA
nn=1000;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[Length[Union[Cases[exp[n], _, {0, Infinity}, Heads->True]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 18 2018
STATUS
approved
Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 2, 4, 10, 25, 67, 184, 519, 1489, 4342, 12812, 38207, 114934, 348397, 1063050, 3262588, 10064645, 31190985, 97061431, 303165207, 950115502, 2986817742, 9415920424, 29760442192, 94286758293, 299377379027, 952521579944, 3036380284111, 9696325863803
OFFSET
1,3
COMMENTS
A free pure symmetric identity multifunction (with empty expressions allowed) (FOI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an FOI, each of the g_i for i = 1, ..., k >= 0 is an FOI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an FOI is the number of brackets [...] plus the number of o's.
Also the number of free orderless identity Mathematica expressions with one atom and n positions.
LINKS
FORMULA
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} (-1)^(k+1)*A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} (1 + x^n)^a(n)). (End)
EXAMPLE
The a(5) = 10 FOIs:
o[o[o]]
o[o][o]
o[o[][]]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
MATHEMATICA
allIdExpr[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h], Select[Union[Sort/@Tuples[allIdExpr/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved
Number of free pure identity multifunctions with one atom and n positions.
+0
8
1, 0, 1, 0, 2, 2, 5, 10, 18, 46, 94, 212, 476, 1058, 2441, 5564, 12880, 29920, 69620, 163220, 383376, 904114, 2139592, 5074784, 12074152, 28789112, 68803148, 164779064, 395373108, 950416330, 2288438591, 5518864858, 13329183894, 32237132814, 78069124640
OFFSET
1,5
COMMENTS
A free pure identity multifunction (PIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a PIM, each of the g_i for i = 1, ..., k > 0 is a PIM, and for i != j we have g_i != g_j. The number of positions in a PIM is the number of brackets [...] plus the number of o's.
LINKS
EXAMPLE
The a(8) = 10 PIMs:
o[o[o[o],o]]
o[o[o,o[o]]]
o[o[o[o]],o]
o[o[o][o],o]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o[o],o]
o[o][o,o[o]]
o[o[o],o][o]
o[o,o[o]][o]
MATHEMATICA
allIdPMF[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMF[h], Select[Tuples[allIdPMF/@p], UnsameQ@@#&]}], {p, Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdPMF[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved
Number of free pure symmetric identity multifunctions with one atom and n positions.
+0
8
1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811
OFFSET
1,5
COMMENTS
A free pure symmetric identity multifunction (SIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a SIM, each of the g_i for i = 1, ..., k > 0 is a SIM, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in a SIM is the number of brackets [...] plus the number of o's.
LINKS
EXAMPLE
The a(8) = 5 SIMs:
o[o[o,o[o]]]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o,o[o]]
o[o,o[o]][o]
MATHEMATICA
allIdPMFOL[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-2}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h], Select[Union[Sort/@Tuples[allIdPMFOL/@p]], UnsameQ@@#&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allIdPMFOL[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved
Number of free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 2, 4, 11, 29, 83, 251, 767, 2403, 7652, 24758, 80875, 266803, 887330, 2972108, 10016981, 33942461, 115572864, 395226810, 1356840007, 4674552089, 16156355357, 56003840659, 194651585875, 678220460687, 2368505647624, 8288873657180, 29064904732911
OFFSET
1,3
COMMENTS
A free pure identity multifunction (with empty expressions allowed) (IME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an IME, each of the g_i for i = 1, ..., k >= 0 is an IME, and for i != j we have g_i != g_j. The number of positions in an IME is the number of brackets [...] plus the number of o's.
Also the number of identity Mathematica expressions with one atom and n positions.
LINKS
EXAMPLE
The a(5) = 11 IMEs:
o[o[o]]
o[o][o]
o[o[][]]
o[o[],o]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
MATHEMATICA
allIdExpr[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h], Select[Tuples[allIdExpr/@p], UnsameQ@@#&]}], {p, Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved
Number of series-reduced free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 1, 1, 2, 4, 8, 16, 33, 70, 152, 333, 735, 1635, 3668, 8285, 18823, 42970, 98535, 226870, 524290, 1215641, 2827203, 6593432, 15416197, 36129894, 84860282, 199719932, 470930802, 1112388190, 2631903295, 6236669381, 14800078408, 35169529363, 83680908692
OFFSET
1,5
COMMENTS
A series-reduced free pure symmetric identity multifunction (with empty expressions allowed) (SROI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an SROI, k is an integer greater than or equal to 0 but not equal to 1, each of the g_i for i = 1, ..., k is an SROI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an SROI is the number of brackets [...] plus the number of o's.
Also the number of series-reduced orderless identity Mathematica expressions with one atom and n positions.
LINKS
EXAMPLE
The a(7) = 8 SROIs:
o[o,o[][][]]
o[o[],o[][]]
o[][o,o[][]]
o[][][o,o[]]
o[o,o[][]][]
o[][o,o[]][]
o[o,o[]][][]
o[][][][][][]
MATHEMATICA
allIdExprSR[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h], Select[Union[Sort/@Tuples[allIdExprSR/@p]], UnsameQ@@#&]}], {p, If[g==0, {{}}, Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]], {n, 12}]
PROG
(PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved
Number of series-reduced free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
+0
8
1, 1, 1, 1, 3, 7, 15, 37, 91, 231, 593, 1557, 4111, 10941, 29295, 79087, 215015, 587463, 1611985, 4441473, 12284513, 34095797, 94931525, 265061363, 742029431, 2082310665, 5856540305, 16505796865, 46608877763, 131850193107, 373612733107, 1060339387939, 3013758348317
OFFSET
1,5
COMMENTS
A series-reduced series-reduced free pure identity multifunction (with empty expressions allowed) (SRIM) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an SRIM, k is an integer greater than or equal to 0 but not equal to 1, each of the g_i for i = 1, ..., k >= 0 is an SRIM, and for i != j we have g_i != g_j. The number of positions in an SRIM is the number of brackets [...] plus the number of o's.
Also the number of series-reduced identity Mathematica expressions with one atom and n positions.
LINKS
EXAMPLE
The a(6) = 7 SRIMs:
o[o[][],o]
o[o,o[][]]
o[][o[],o]
o[][o,o[]]
o[o[],o][]
o[o,o[]][]
o[][][][][]
MATHEMATICA
allIdExprSR[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h], Select[Tuples[allIdExprSR/@p], UnsameQ@@#&]}], {p, If[g==0, {{}}, Join@@Permutations/@Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]], {n, 12}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*(subst(serlaplace(y^0*polcoef(p, k)), y, 1)-v[k]))); v} \\ Andrew Howroyd, Sep 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 09 2018
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved
Number of free pure symmetric multifunctions with leaves a multiset whose multiplicities are the integer partition with Heinz number n.
+0
7
0, 1, 1, 2, 3, 8, 10, 15, 50, 35, 37, 96, 144, 160, 299, 184, 589, 840, 2483, 578, 1729, 750, 10746, 1627, 2246, 3578, 9357, 3367, 47420, 6397, 212668, 3155, 9818, 17280, 15666, 18250, 966324, 84232, 54990, 12471, 4439540, 45015
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
EXAMPLE
The a(6) = 8 free pure symmetric multifunctions:
1[1[2]]
1[2[1]]
2[1[1]]
1[1][2]
1[2][1]
2[1][1]
1[1,2]
2[1,1]
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[exprUsing[got[Reverse[primeMS[n]]]]], {n, 40}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved
Number of free pure symmetric multifunctions whose leaves are the integer partition with Heinz number n.
+0
7
0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 2, 10, 1, 8, 1, 8, 2, 2, 1, 35, 1, 2, 3, 8, 1, 15, 1, 37, 2, 2, 2, 50, 1, 2, 2, 35, 1, 15, 1, 8, 8, 2, 1, 160, 1, 8, 2, 8, 1, 35, 2, 35, 2, 2, 1, 96, 1, 2, 8, 144, 2, 15, 1, 8, 2, 15, 1, 299, 1, 2, 8, 8, 2, 15, 1, 160
OFFSET
1,6
COMMENTS
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
EXAMPLE
The a(12) = 8 free pure symmetric multifunctions are 1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1].
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[exprUsing[primeMS[n]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved
Number of inequivalent colorings of free pure symmetric multifunctions (with empty expressions allowed) with n positions.
+0
6
1, 1, 3, 11, 43, 187, 872, 4375, 23258, 130485, 767348, 4710715, 30070205, 198983975, 1361361925, 9607908808, 69812787049, 521377973359, 3996036977270, 31389624598631, 252408597286705, 2075472033455894, 17434190966525003, 149476993511444023, 1307022313790487959
OFFSET
0,3
COMMENTS
A free pure symmetric multifunction (with empty expressions allowed) f in EOME is either (case 1) a positive integer, or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where k >= 0, h is in EOME, each of the g_i for i = 1, ..., k is in EOME, and for i < j we have g_i <= g_j under a canonical total ordering of EOME, such as the Mathematica ordering of expressions.
Also the number of inequivalent colorings of orderless Mathematica expressions with n positions.
EXAMPLE
Inequivalent representatives of the a(3) = 11 colorings:
1[1,1] 1[2,2] 1[1,2] 1[2,3]
1[1[]] 1[2[]]
1[][1] 1[][2]
1[1][] 1[2][]
1[][][]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + x*p*sExp(p)); p}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 30 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 17 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 30 2020
STATUS
approved

Search completed in 0.021 seconds