OFFSET
1,3
COMMENTS
From Antti Karttunen, May 12 2014: (Start)
Bisections are A064216 (the terms at odd indices) and A064989 itself (the terms at even indices), i.e., a(2n) = a(n) for all n.
(End)
From Antti Karttunen, Dec 18-21 2014: (Start)
When n represents an unordered integer partition via the indices of primes present in its prime factorization (for n >= 2, n corresponds to the partition given as the n-th row of A112798) this operation subtracts one from each part. If n is of the form 2^k (a partition having just k 1's as its parts) the result is an empty partition (which is encoded by 1, having an "empty" factorization).
For all odd numbers n >= 3, a(n) tells which number is located immediately above n in square array A246278. Cf. also A246277.
(End)
Alternatively, if numbers are represented as the multiset of indices of prime factors with multiplicity, this operation subtracts 1 from each element and discards the 0's. - M. F. Hasler, Dec 29 2014
LINKS
Harry J. Smith (first 1000 terms) & Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
From Antti Karttunen, Dec 18 2014: (Start)
If n = product A000040(k)^e(k) then a(n) = product A008578(k)^e(k) [where A000040(n) gives the n-th prime, and A008578(n) gives 1 for 1 and otherwise the (n-1)-th prime].
a(1) = 1; for n > 1, a(n) = A008578(A055396(n)) * a(A032742(n)). [Above formula represented as a recurrence. Cf. A252461.]
a(1) = 1; for n > 1, a(n) = A008578(A061395(n)) * a(A052126(n)). [Compare to the formula of A252462.]
This prime-shift operation is used in the definitions of many other sequences, thus it can be expressed in many alternative ways:
a(n) = A200746(n) / n.
a(n) = A122111(A122111(n)/A105560(n)) = A122111(A052126(A122111(n))). [In A112798-partition context: conjugate, remove the largest part (the largest prime factor), and conjugate again.]
a(n) = A249818(A250470(A249817(n))). [A250470 is an analogous operation for "going one step up" in the square array A083221 (A083140).]
(End)
Product_{k=1..n} a(k) = n! / A307035(n). - Vaclav Kotesovec, Mar 21 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) = 0.220703928... , where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Nov 18 2022
EXAMPLE
a(20) = a(2^2*5) = a(2^2)*a(5) = prevprime(5) = 3.
MAPLE
q:= proc(p) prevprime(p) end proc: q(2):= 1:
[seq(mul(q(f[1])^f[2], f = ifactors(n)[2]), n = 1 .. 1000)]; # Robert Israel, Dec 21 2014
MATHEMATICA
Table[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n, {n, 81}] (* Michael De Vlieger, Jan 04 2016 *)
PROG
(Haskell)
a064989 1 = 1
a064989 n = product $ map (a008578 . a049084) $ a027746_row n
-- Reinhard Zumkeller, Apr 09 2012
(MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
(require 'factor)
(define (A064989 n) (if (= 1 n) n (apply * (map (lambda (k) (if (zero? k) 1 (A000040 k))) (map -1+ (map A049084 (factor n)))))))
;; Antti Karttunen, May 12 2014
(definec (A064989 n) (if (= 1 n) n (* (A008578 (A055396 n)) (A064989 (A032742 n))))) ;; One based on given recurrence and utilizing memoizing definec-macro.
(definec (A064989 n) (cond ((= 1 n) n) ((even? n) (A064989 (/ n 2))) (else (A163511 (/ (- (A243071 n) 1) 2))))) ;; Corresponds to one of the alternative formulas, but is very unpractical way to compute this sequence. - Antti Karttunen, Dec 18 2014
(PARI) { for (n=1, 1000, f=factor(n)~; a=1; j=1; if (n>1 && f[1, 1]==2, j=2); for (i=j, length(f), a*=precprime(f[1, i] - 1)^f[2, i]); write("b064989.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
(PARI) a(n) = {my(f = factor(n)); for (i=1, #f~, if ((p=f[i, 1]) % 2, f[i, 1] = precprime(p-1), f[i, 1] = 1); ); factorback(f); } \\ Michel Marcus, Dec 18 2014
(PARI) A064989(n)=factorback(Mat(apply(t->[max(precprime(t[1]-1), 1), t[2]], Vec(factor(n)~))~)) \\ M. F. Hasler, Dec 29 2014
(Python)
from sympy import factorint, prevprime
from operator import mul
from functools import reduce
def a(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
(Python)
from math import prod
from sympy import prevprime, factorint
def A064989(n): return prod(prevprime(p)**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()) # Chai Wah Wu, Jan 05 2023
CROSSREFS
Cf. A000040, A008578, A027746, A032742, A049084, A052126, A055396, A061395, A112798, A249817, A249818.
Other sequences whose definition involve or are some other way related with this sequence: A105560, A108951, A118306, A122111, A156552, A163511, A200746, A241909, A243070, A243071, A243072, A243073, A244319, A245605, A245607, A246165, A246266, A246268, A246277, A246278, A246361, A246362, A246371, A246372, A246373, A246374, A246376, A246380, A246675, A246682, A249745, A250470.
KEYWORD
AUTHOR
Vladeta Jovovic, Oct 30 2001
STATUS
approved