[go: up one dir, main page]

login
A246348
a(1)=1, a(p_n) = 1 + a(n), a(c_n) = 1 + a(n), where p_n = n-th prime = A000040(n), c_n = n-th composite number = A002808(n); Also binary width of terms of A135141.
8
1, 2, 3, 2, 4, 3, 3, 4, 3, 5, 5, 4, 4, 4, 5, 4, 4, 6, 5, 6, 5, 5, 4, 5, 6, 5, 5, 7, 6, 6, 6, 7, 6, 6, 5, 6, 5, 7, 6, 6, 5, 8, 5, 7, 7, 7, 6, 8, 7, 7, 6, 7, 5, 6, 8, 7, 7, 6, 5, 9, 7, 6, 8, 8, 8, 7, 6, 9, 8, 8, 7, 7, 6, 8, 6, 7, 9, 8, 6, 8, 7, 6, 5, 10, 8, 7, 9, 9, 6, 9, 8, 7, 10
OFFSET
1,2
COMMENTS
If n = 1, the result is 1, otherwise, if n is prime, compute the result for that prime's index (A000720 or A049084) and add one, and if n is composite, compute the result for that composite's index (A065855) and add one.
a(n) tells how many calls (including the toplevel call) are required to compute A135141(n) or A246377(n) with a simple (nonmemoized) recursive algorithm as employed for example by Robert G. Wilson v's Mathematica-program of Feb 16 2008 in A135141 or Antti Karttunen's Scheme-proram in A246377.
LINKS
FORMULA
a(1) = 1, and for n >= 1, if A010051(n)=1 [that is, when n is prime], a(n) = 1 + a(A000720(n)), otherwise a(n) = 1 + a(A065855(n)). [A000720(n) and A065855(n) tell the number of primes, and respectively, composites <= n].
a(n) = A246369(n) + A246370(n).
a(n) = A070939(A135141(n)) = 1 + floor(log_2(A135141(n))). [Sequence gives also the binary width of terms of A135141].
a(n) = A070939(A246377(n)). [Also for 0/1-swapped version of that sequence].
PROG
(PARI)
\\ Compute the b-files for both the positions of records (A246346) and their values (A246347) and also for A246348 (somewhat naively):
default(primelimit, (2^31)+(2^30));
A070939 = n->#binary(n)+!n \\ From M. F. Hasler
A135141(n) = if(1==n, 1, if(isprime(n), 2*A135141(primepi(n)), 1+(2*A135141(n-primepi(n)-1))));
prevmax = -1; i = 0; for(n=1, 123456, if((k=A135141(n)) > prevmax, prevmax = k; i++; write("b246346.txt", i, " ", n); write("b246347.txt", i, " ", k)); write("b246348.txt", n, " ", A246348(n)));
(Scheme, two versions, second being a direct recurrence employing memoizing definec-macro from Antti Karttunen's IntSeq-library)
(define (A246348 n) (A070939 (A135141 n)))
(definec (A246348 n) (cond ((= 1 n) 1) ((= 1 (A010051 n)) (+ 1 (A246348 (A000720 n)))) (else (+ 1 (A246348 (A065855 n))))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 27 2014
STATUS
approved