[go: up one dir, main page]

login
Search: a244925 -id:a244925
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of rooted trees with n nodes with every leaf at the same height.
+10
40
1, 1, 2, 3, 5, 7, 12, 17, 28, 42, 68, 103, 168, 260, 420, 665, 1075, 1716, 2787, 4489, 7304, 11849, 19333, 31504, 51561, 84347, 138378, 227096, 373445, 614441, 1012583, 1669774, 2756951, 4555183, 7533988, 12469301, 20655523, 34238310, 56795325, 94270949
OFFSET
1,3
COMMENTS
The trees are unordered (see A000081). For balanced ordered rooted trees see A079500. - Joerg Arndt, Jul 20 2014
The trees are unlabeled. For labeled version see A238372. - Alois P. Heinz, Dec 29 2014
EXAMPLE
See Arndt link.
From Gus Wiseman, Oct 08 2018: (Start)
The a(1) = 1 through a(7) = 12 balanced rooted trees with n nodes:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
((o)) ((oo)) ((ooo)) ((oooo)) ((ooooo))
(((o))) (((oo))) (((ooo))) (((oooo)))
((o)(o)) ((o)(oo)) ((o)(ooo))
((((o)))) ((((oo)))) ((oo)(oo))
(((o)(o))) ((((ooo))))
(((((o))))) (((o)(oo)))
((o)(o)(o))
(((((oo)))))
((((o)(o))))
(((o))((o)))
((((((o))))))
(End)
MATHEMATICA
T[n_, k_] := T[n, k] = If[n==1, 1, If[k==0, 0, Sum[Sum[If[d<k, 0, T[d, k-1] * d], {d, Divisors[j]}]*T[n-j, k], {j, 1, n-1}]/(n-1)]]; a[n_] := Sum[ T[n, k], {k, 0, n-1}]; Array[a, 40] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Christian G. Bower, Apr 15 1999
STATUS
approved
Number of series-reduced balanced rooted trees whose leaves form an integer partition of n.
+10
20
1, 2, 3, 6, 9, 19, 31, 63, 110, 215, 391, 773, 1451, 2879, 5594, 11173, 22041, 44136, 87631, 175155, 348186, 694013, 1378911, 2743955, 5452833, 10853541, 21610732, 43122952, 86192274, 172753293, 347114772, 699602332, 1414033078, 2866580670, 5826842877, 11874508385
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced unlabeled phylogenetic rooted trees with n leaves.
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 19 rooted trees:
1 2 3 4 5 6
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (113) (33)
(1111) (122) (114)
((11)(11)) (1112) (123)
(11111) (222)
((11)(12)) (1113)
((11)(111)) (1122)
(11112)
(111111)
((11)(13))
((11)(22))
((12)(12))
((11)(112))
((12)(111))
((11)(1111))
((111)(111))
((11)(11)(11))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
phy2[labs_]:=If[Length[labs]==1, labs, Union@@Table[Sort/@Tuples[phy2/@ptn], {ptn, Select[mps[Sort[labs]], Length[#1]>1&]}]];
Table[Sum[Length[Select[phy2[ptn], SameQ@@Length/@Position[#, _Integer]&]], {ptn, IntegerPartitions[n]}], {n, 8}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=vector(n, n, 1), v=vector(n)); while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 06 2018
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Oct 25 2018
STATUS
approved
Number of series-reduced balanced trees with n leaves.
+10
17
1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 37, 47, 80, 111, 183, 256, 413, 591, 940, 1373, 2159, 3214, 5067, 7649, 12054, 18488, 29203, 45237, 71566, 111658, 176710, 276870, 437820, 687354, 1085577, 1705080, 2688285, 4221333, 6644088, 10425748
OFFSET
1,4
COMMENTS
In other words, rooted trees with all leaves at the same level and no node having exactly one child; the order of children is not significant.
LINKS
FORMULA
Let s_0(n) = 1 if n = 1, 0 otherwise; s_{k+1}(n) = EULER(s_k)(n) - s_k(n), where EULER is the Euler transform. Then a_n = sum_k s_k(n). (s_k(n) is the number of such trees of height k.) Note that s_k(n) = 0 for n < 2^k.
EXAMPLE
From Gus Wiseman, Oct 07 2018: (Start)
The a(10) = 16 series-reduced balanced rooted trees:
(oooooooooo)
((ooooo)(ooooo))
((oooo)(oooooo))
((ooo)(ooooooo))
((oo)(oooooooo))
((ooo)(ooo)(oooo))
((oo)(oooo)(oooo))
((oo)(ooo)(ooooo))
((oo)(oo)(oooooo))
((oo)(oo)(ooo)(ooo))
((oo)(oo)(oo)(oooo))
((oo)(oo)(oo)(oo)(oo))
(((oo)(ooo))((oo)(ooo)))
(((oo)(oo))((ooo)(ooo)))
(((oo)(oo))((oo)(oooo)))
(((oo)(oo))((oo)(oo)(oo)))
(End)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=vector(n), v=vector(n)); u[1]=1; while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
STATUS
approved
Number of series-reduced balanced rooted trees whose leaves form a set partition of {1,...,n}.
+10
17
1, 2, 5, 18, 92, 588, 4328, 35920, 338437, 3654751, 45105744, 625582147, 9539374171, 157031052142, 2757275781918, 51293875591794, 1007329489077804, 20840741773898303, 453654220906310222, 10380640686263467204, 249559854371799622350, 6301679967177242849680
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced phylogenetic rooted trees on n distinct labels.
LINKS
EXAMPLE
The a(1) = 1 through a(4) = 18 rooted trees:
(1) (12) (123) (1234)
((1)(2)) ((1)(23)) ((1)(234))
((2)(13)) ((12)(34))
((3)(12)) ((13)(24))
((1)(2)(3)) ((14)(23))
((2)(134))
((3)(124))
((4)(123))
((1)(2)(34))
((1)(3)(24))
((1)(4)(23))
((2)(3)(14))
((2)(4)(13))
((3)(4)(12))
((1)(2)(3)(4))
(((1)(2))((3)(4)))
(((1)(3))((2)(4)))
(((1)(4))((2)(3)))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]], {mtn, Select[sps[m], Length[#]>1&]}], m];
Table[Length[Select[gug[Range[n]], SameQ@@Length/@Position[#, _Integer]&]], {n, 9}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n, k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v}
seq(n)={my(M=Mat(vectorv(n, k, b(n, k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i, k]))} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 06 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Oct 26 2018
STATUS
approved
Number of rooted trees with n nodes with every leaf at height 3.
+10
11
1, 1, 2, 3, 5, 7, 12, 18, 27, 42, 64, 96, 146, 219, 327, 491, 730, 1084, 1608, 2376, 3500, 5154, 7563, 11076, 16193, 23625, 34395, 50005, 72550, 105089, 151984, 219448, 316362, 455434, 654661, 939736, 1347137, 1928593, 2757449, 3937675
OFFSET
4,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 4..10000 (terms 4..1000 from Alois P. Heinz)
N. J. A. Sloane, Transforms
FORMULA
Euler transform of A002865 (with a(0)=0) shifted right.
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 1, 1, If[k == 0, 0, Sum[Sum[If[d < k, 0, T[d, k - 1]*d], {d, Divisors[j]}]*T[n - j, k], {j, 1, n - 1}]/(n - 1)]];
a[n_] := T[n, 3];
Table[a[n], {n, 4, 50}] (* Jean-François Alcover, May 11 2019, after Alois P. Heinz in A244925 *)
CROSSREFS
Column k=3 of A244925.
KEYWORD
nonn
AUTHOR
Christian G. Bower, Apr 15 1999
STATUS
approved
The Matula-Goebel number of rooted trees having all leaves at the same level.
+10
9
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 49, 53, 57, 59, 63, 64, 67, 73, 81, 83, 85, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 159, 171, 189, 227, 241, 243, 256, 269, 277, 289, 307, 311, 331, 335, 343, 361, 365, 367, 371, 391, 393, 399, 419, 425, 431, 439, 441, 477
OFFSET
1,2
COMMENTS
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
The sequence is infinite.
REFERENCES
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
FORMULA
In A184154 one constructs for each n the generating polynomial P(n,x) of the leaves of the rooted tree with Matula-Goebel number n, according to their levels. The Maple program finds those n (between 1 and 500) for which P(n,x) is a monomial.
EXAMPLE
7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having all leaves at level 2.
2^m is in the sequence for each positive integer m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
From Gus Wiseman, Mar 30 2018: (Start)
Sequence of trees begins:
01 o
02 (o)
03 ((o))
04 (oo)
05 (((o)))
07 ((oo))
08 (ooo)
09 ((o)(o))
11 ((((o))))
16 (oooo)
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
31 (((((o)))))
(End)
MAPLE
with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: A := {}: for n to 500 do if degree(numer(subs(x = 1/x, P(n)))) = 0 then A := `union`(A, {n}) else end if end do: A;
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
dep[n_]:=If[n===1, 0, 1+Max@@dep/@primeMS[n]];
rnkQ[n_]:=And[SameQ@@dep/@primeMS[n], And@@rnkQ/@primeMS[n]];
Select[Range[2000], rnkQ] (* Gus Wiseman, Mar 30 2018 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 07 2011
STATUS
approved
Regular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k.
+10
9
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 0, 0, 0, 0, 1, 11, 4, 0, 0, 0, 0, 0, 0, 0, 1, 13, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 23, 0, 0, 0
OFFSET
1,18
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
EXAMPLE
Triangle begins:
1
0 1
0 1 0
0 1 1 0
0 1 1 0 0
0 1 3 0 0 0
0 1 3 0 0 0 0
0 1 6 1 0 0 0 0
0 1 7 1 0 0 0 0 0
0 1 11 4 0 0 0 0 0 0
0 1 13 6 0 0 0 0 0 0 0
0 1 20 16 0 0 0 0 0 0 0 0
0 1 23 23 0 0 0 0 0 0 0 0 0
0 1 33 46 0 0 0 0 0 0 0 0 0 0
The T(10,3) = 4 rooted trees:
(((oo)(oo))((oo)(oooo)))
(((oo)(oo))((ooo)(ooo)))
(((oo)(ooo))((oo)(ooo)))
(((oo)(oo))((oo)(oo)(oo)))
MATHEMATICA
qurt[n_]:=If[n==1, {{}}, Join@@Table[Union[Sort/@Tuples[qurt/@ptn]], {ptn, Select[IntegerPartitions[n], Length[#]>1&]}]];
Table[Length[Select[qurt[n], SameQ[##, k]&@@Length/@Position[#, {}]&]], {n, 14}, {k, 0, n-1}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); vector(n, n, Vecrev(v[n], n))}
{ my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020
CROSSREFS
Row sums are A120803. Third column is A083751. An irregular version is A320221.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Oct 07 2018
STATUS
approved
Number of series-reduced balanced rooted trees with n labeled leaves.
+10
8
1, 1, 1, 4, 11, 41, 162, 1030, 7205, 55522, 442443, 3810852, 35272030, 351697516, 3735838550, 42719792640, 529195988635, 7128835815387, 103651381499810, 1610812109555323, 26489497655582729, 457497408108551450, 8248899117402701046, 154624472715479106919
OFFSET
1,4
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
LINKS
FORMULA
E.g.f. A(x) satisfies A(x) = x + A(exp(x)-x-1). - Ira M. Gessel, Nov 17 2021
EXAMPLE
The a(1) = 1 through a(5) = 11 rooted trees:
1 (12) (123) (1234) (12345)
((12)(34)) ((12)(345))
((13)(24)) ((13)(245))
((14)(23)) ((14)(235))
((15)(234))
((23)(145))
((24)(135))
((25)(134))
((34)(125))
((35)(124))
((45)(123))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
phy2[labs_]:=If[Length[labs]==1, labs, Union@@Table[Sort/@Tuples[phy2/@ptn], {ptn, Select[sps[Sort[labs]], Length[#1]>1&]}]];
Table[Length[Select[phy2[Range[n]], SameQ@@Length/@Position[#, _Integer]&]], {n, 7}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n, k)={my(u=vector(n), v=vector(n)); u[1]=k; while(u, v+=u; u=EulerT(u)-u); v}
seq(n)={my(M=Mat(vectorv(n, k, b(n, k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i, k]))} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 06 2018
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Oct 26 2018
STATUS
approved
Number of inequivalent colorings of series-reduced balanced rooted trees with n leaves.
+10
8
1, 2, 3, 12, 23, 84, 204, 830, 2940, 13397, 58794, 283132, 1377302, 7087164, 37654377, 209943842, 1226495407, 7579549767, 49541194089, 341964495985, 2476907459261, 18703210872343, 146284738788714, 1179199861398539, 9760466433602510, 82758834102114911, 717807201648148643
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
EXAMPLE
Inequivalent representatives of the a(1) = 1 through a(5) = 23 colorings:
1 (11) (111) (1111) (11111)
(12) (112) (1112) (11112)
(123) (1122) (11122)
(1123) (11123)
(1234) (11223)
((11)(11)) (11234)
((11)(12)) (12345)
((11)(22)) ((11)(111))
((11)(23)) ((11)(112))
((12)(12)) ((11)(122))
((12)(13)) ((11)(123))
((12)(34)) ((11)(223))
((11)(234))
((12)(111))
((12)(112))
((12)(113))
((12)(123))
((12)(134))
((12)(345))
((13)(122))
((22)(111))
((23)(111))
((23)(114))
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(p=x*sv(1) + O(x*x^n), q=0); while(p, q+=p; p=sEulerT(p)-1-p); q}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 07 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 11 2020
STATUS
approved
Number of rooted trees with n nodes with every leaf at height 4.
+10
4
1, 1, 2, 3, 6, 8, 15, 23, 39, 61, 102, 161, 265, 420, 682, 1087, 1753, 2790, 4476, 7120, 11376, 18075, 28785, 45666, 72530, 114882, 182040, 287878, 455231, 718755, 1134491, 1788461, 2818140, 4436000, 6978932, 10969695, 17232572, 27049320
OFFSET
5,3
FORMULA
Euler transform of A048808 shifted right.
CROSSREFS
Column k=4 of A244925.
KEYWORD
nonn
AUTHOR
Christian G. Bower, Apr 15 1999
STATUS
approved

Search completed in 0.011 seconds