# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a320160 Showing 1-1 of 1 %I A320160 #9 Oct 26 2018 00:52:09 %S A320160 1,2,3,6,9,19,31,63,110,215,391,773,1451,2879,5594,11173,22041,44136, %T A320160 87631,175155,348186,694013,1378911,2743955,5452833,10853541,21610732, %U A320160 43122952,86192274,172753293,347114772,699602332,1414033078,2866580670,5826842877,11874508385 %N A320160 Number of series-reduced balanced rooted trees whose leaves form an integer partition of n. %C A320160 A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root. %C A320160 Also the number of balanced unlabeled phylogenetic rooted trees with n leaves. %H A320160 Andrew Howroyd, Table of n, a(n) for n = 1..500 %e A320160 The a(1) = 1 through a(6) = 19 rooted trees: %e A320160 1 2 3 4 5 6 %e A320160 (11) (12) (13) (14) (15) %e A320160 (111) (22) (23) (24) %e A320160 (112) (113) (33) %e A320160 (1111) (122) (114) %e A320160 ((11)(11)) (1112) (123) %e A320160 (11111) (222) %e A320160 ((11)(12)) (1113) %e A320160 ((11)(111)) (1122) %e A320160 (11112) %e A320160 (111111) %e A320160 ((11)(13)) %e A320160 ((11)(22)) %e A320160 ((12)(12)) %e A320160 ((11)(112)) %e A320160 ((12)(111)) %e A320160 ((11)(1111)) %e A320160 ((111)(111)) %e A320160 ((11)(11)(11)) %t A320160 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320160 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320160 phy2[labs_]:=If[Length[labs]==1,labs,Union@@Table[Sort/@Tuples[phy2/@ptn],{ptn,Select[mps[Sort[labs]],Length[#1]>1&]}]]; %t A320160 Table[Sum[Length[Select[phy2[ptn],SameQ@@Length/@Position[#,_Integer]&]],{ptn,IntegerPartitions[n]}],{n,8}] %o A320160 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320160 seq(n)={my(u=vector(n, n, 1), v=vector(n)); while(u, v+=u; u=EulerT(u)-u); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320160 Cf. A000081, A000311, A000669, A001678, A005804, A048816, A079500, A119262, A120803, A141268, A244925, A319312. %Y A320160 Cf. A316624, A320154, A320155, A320169, A320173, A320179. %K A320160 nonn %O A320160 1,2 %A A320160 _Gus Wiseman_, Oct 06 2018 %E A320160 Terms a(14) and beyond from _Andrew Howroyd_, Oct 25 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE