[go: up one dir, main page]

login
A048816
Number of rooted trees with n nodes with every leaf at the same height.
40
1, 1, 2, 3, 5, 7, 12, 17, 28, 42, 68, 103, 168, 260, 420, 665, 1075, 1716, 2787, 4489, 7304, 11849, 19333, 31504, 51561, 84347, 138378, 227096, 373445, 614441, 1012583, 1669774, 2756951, 4555183, 7533988, 12469301, 20655523, 34238310, 56795325, 94270949
OFFSET
1,3
COMMENTS
The trees are unordered (see A000081). For balanced ordered rooted trees see A079500. - Joerg Arndt, Jul 20 2014
The trees are unlabeled. For labeled version see A238372. - Alois P. Heinz, Dec 29 2014
EXAMPLE
See Arndt link.
From Gus Wiseman, Oct 08 2018: (Start)
The a(1) = 1 through a(7) = 12 balanced rooted trees with n nodes:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
((o)) ((oo)) ((ooo)) ((oooo)) ((ooooo))
(((o))) (((oo))) (((ooo))) (((oooo)))
((o)(o)) ((o)(oo)) ((o)(ooo))
((((o)))) ((((oo)))) ((oo)(oo))
(((o)(o))) ((((ooo))))
(((((o))))) (((o)(oo)))
((o)(o)(o))
(((((oo)))))
((((o)(o))))
(((o))((o)))
((((((o))))))
(End)
MATHEMATICA
T[n_, k_] := T[n, k] = If[n==1, 1, If[k==0, 0, Sum[Sum[If[d<k, 0, T[d, k-1] * d], {d, Divisors[j]}]*T[n-j, k], {j, 1, n-1}]/(n-1)]]; a[n_] := Sum[ T[n, k], {k, 0, n-1}]; Array[a, 40] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Apr 15 1999
STATUS
approved