[go: up one dir, main page]

login
Search: a190976 -id:a190976
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
+10
37
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
OFFSET
0,3
COMMENTS
For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022
FORMULA
G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022
MATHEMATICA
LinearRecurrence[{2, -10}, {0, 1}, 50]
PROG
(Magma) I:=[0, 1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
(PARI) a(n)=([0, 1; -10, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016
(SageMath) [lucas_number1(n, 2, 10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
KEYWORD
sign,easy
AUTHOR
STATUS
approved
Numbers of n-length words on alphabet {0,1,...,6} with no subwords ii, where i is from {0,1,2}.
+10
5
1, 7, 46, 304, 2008, 13264, 87616, 578752, 3822976, 25252864, 166809088, 1101865984, 7278432256, 48078057472, 317582073856, 2097804673024, 13857156333568, 91534156693504, 604633565495296, 3993938019745792, 26382162380455936, 174268726361718784
OFFSET
0,2
FORMULA
G.f.: (1 + x)/(1 - 6*x - 4*x^2).
a(n) = 6*a(n-1) + 4*a(n-2) with n>1, a(0) = 1, a(1) = 7.
a(n) = ((3-r)^n*(-4+r) + (3+r)^n*(4+r)) / (2*r), where r=sqrt(13). - Colin Barker, Jan 22 2017
a(n) = A135032(n-1)+A135032(n). - R. J. Mathar, Apr 07 2022
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 7, a[n] == 6 a[n - 1] + 4 a[n - 2]}, a[n], {n, 0, 25}]
LinearRecurrence[{6, 4}, {1, 7}, 30] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(Magma) [n le 1 select 7^n else 6*Self(n)+4*Self(n-1): n in [0..25]]; // Bruno Berselli, Feb 03 2015
(PARI) Vec((1 + x)/(1 - 6*x - 4*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
CROSSREFS
Cf. A055099, A126473, A126501, A126528, A135032, A190976 (shifted bin. trans).
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 02 2015
STATUS
approved
Number of blue nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and 1 green node.
+10
1
7, 51, 387, 2943, 22383, 170235, 1294731, 9847143, 74892951, 569602179, 4332138579, 32948302095, 250590001023, 1905875101899, 14495230812123, 110244221191287, 838468077093927, 6377011953177555, 48500691394138659, 368874495293576607, 2805493888166196879, 21337327619448845211
OFFSET
0,1
COMMENTS
The series of green nodes in n-th power W exponentiation for all n<6 n blue 1 green, 2 edge per node graphs already corresponds with an existing OEIS sequence (empirical). For example the number of blue nodes in n-th power W exponentiation of a square containing 3 blue nodes and 1 green node corresponds to A163063.
FORMULA
g(n) = g(n-1) + 2*a(n-1), a(n) = 2*g(n-1) + 7*a(n-1) with g(0) = 1 and b(0) = 7, where g(n) = A332211(n).
From Colin Barker, Mar 03 2020: (Start)
G.f.: (1 + 43*x - 18*x^2) / (1 - 8*x + 3*x^2).
a(n) = 8*a(n-1) - 3*a(n-2) for n > 1.
(End)
From Stefano Spezia, Mar 03 2020: (Start)
a(n) = ((4 - sqrt(13))^n*(-23 + 7*sqrt(13)) + (4 + sqrt(13))^n*(23 + 7*sqrt(13)))/(2*sqrt(13)).
E.g.f.: exp(4*x)*(91*cosh(sqrt(13)*x) + 23*sqrt(13)*sinh(sqrt(13)*x))/13.
(End)
a(n) = 7*A190976(n+1) -5*A190976(n). - R. J. Mathar, Apr 30 2020
EXAMPLE
For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 7 to get 357 add 30 to get 387.
For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 7 to get 774 add 234 to get 2943.
PROG
(Python)
g=1
b=7
sg=0
sb=0
bl=[]
gl=[]
for int in range(1, 20):
sg=g*1+b*2
sb=b*7+g*2
g=sg
b=sb
gl.append(g)
bl.append(b)
print(bl)
(PARI) Vec((1 + 43*x - 18*x^2) / (1 - 8*x + 3*x^2) + O(x^40)) \\ Colin Barker, Mar 03 2020
CROSSREFS
Cf. A331211.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Search completed in 0.010 seconds