[go: up one dir, main page]

login
A190967
a(n) = 4*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
4
0, 1, 4, 7, -8, -95, -308, -377, 1264, 8449, 22420, 13639, -147224, -711647, -1521572, 318535, 14968288, 57006337, 93310756, -139814009, -1399052840, -4337885279, -4760065556, 20000705287, 122843411152, 311367297025, 139878487732, -2242791722297
OFFSET
0,3
LINKS
Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
FORMULA
G.f.: x/(1-4*x+9*x^2). - Philippe Deléham, Oct 12 2011
a(n) = (3*i)^(n-1)*Fibonacci(n, -4*i/3), where i=sqrt(-1) and F(n,x) is the Fibonacci polynomial. - G. C. Greubel, Dec 07 2019
a(n) = (3^n*sin(n*arccos(2/3)))/sqrt(5) = 3^(n-1)*chebyshevU(n-1, 2/3). - Federico Provvedi, Feb 23 2022
MAPLE
seq(coeff(series(x/(1-4*x+9*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 07 2019
MATHEMATICA
LinearRecurrence[{4, -9}, {0, 1}, 50]
Table[FullSimplify[(3*I)^(n-1)*Fibonacci[n, -4*I/3]], {n, 0, 30}] (* G. C. Greubel, Dec 07 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x/(1-4*x+9*x^2))) \\ G. C. Greubel, Dec 07 2019
(Magma) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 07 2019
(Sage)
def A190967_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/(1-4*x+9*x^2) ).list()
A190967_list(30) # G. C. Greubel, Dec 07 2019
(GAP) a:=[0, 1];; for n in [3..30] do a[n]:=4*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, Dec 07 2019
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A160629 A093105 A141669 * A004787 A210617 A191762
KEYWORD
sign,easy
AUTHOR
STATUS
approved