OFFSET
1,2
COMMENTS
Second binomial transform of A109115.
Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(7) = 6.6457513110....
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..100
Index entries for linear recurrences with constant coefficients, signature (8,-9).
FORMULA
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 8*a(n-1) - 9*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x + 9*x^2). (End)
a(n) = b such that (3^(n-1)/2)*Integral_{x=0..Pi/2} (sin(n*x))/(4/3-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
E.g.f.: (1/sqrt(7))*exp(4*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 07 2016
MATHEMATICA
Table[Simplify[((4+Sqrt[7])^n -(4-Sqrt[7])^n)/(2*Sqrt[7])], {n, 30}] (* or *) LinearRecurrence[{8, -9}, {1, 8}, 30] (* G. C. Greubel, Sep 07 2016 *)
Rest@ CoefficientList[Series[x/(1 -8x +9x^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 08 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-7); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
(Magma) I:=[1, 8]; [n le 2 select I[n] else 8*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 08 2016
(Sage) [lucas_number1(n, 8, 9) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
(PARI) my(x='x+O('x^30)); Vec( x/(1-8*x+9*x^2) ) \\ G. C. Greubel, May 21 2019
(GAP) a:=[1, 8];; for n in [3..30] do a[n]:=8*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, May 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
STATUS
approved