[go: up one dir, main page]

login
A178869
a(n) = 9*a(n-1) - 10*a(n-2); a(0)=0, a(1)=1.
5
0, 1, 9, 71, 549, 4231, 32589, 250991, 1933029, 14887351, 114655869, 883029311, 6800705109, 52376052871, 403377424749, 3106636294031, 23925952398789, 184267208648791, 1419145353851229, 10929636098173151, 84175271345046069
OFFSET
0,3
COMMENTS
Alternating row sums of triangle A206819. Large Schroeder numbers in decimal expansion of ratio a(n)/a(n+1). [A-number corrected by Philippe Deléham, Feb 26 2013]
FORMULA
G.f.: -x/(-10*x^2+9*x-1).
a(n) = 9a(n-1)-10a(n-2), a(0)=0, a(1)=1. [Harvey P. Dale, May 06 2011]
a(n+1) = Sum_{k, 0<=k<=n}A206819(n,k)*(-1)^k. - Philippe Deléham, Feb 26 2013
MATHEMATICA
Join[{a=0, b=1}, Table[c=9*b-10*a+2; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *)
LinearRecurrence[{9, -10}, {0, 1}, 50] (* or *) CoefficientList[Series[ -x/(-10x^2+9x-1), {x, 0, 50}], x] (* Harvey P. Dale, May 06 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, Jun 20 2010
STATUS
approved