[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a111959 -id:a111959
Displaying 1-4 of 4 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A046521 Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down. +10
39
1, 2, 1, 6, 6, 1, 20, 30, 10, 1, 70, 140, 70, 14, 1, 252, 630, 420, 126, 18, 1, 924, 2772, 2310, 924, 198, 22, 1, 3432, 12012, 12012, 6006, 1716, 286, 26, 1, 12870, 51480, 60060, 36036, 12870, 2860, 390, 30, 1, 48620, 218790, 291720, 204204, 87516, 24310 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Or, a triangle related to A000984 (central binomial) and A000302 (powers of 4).
This is an example of a Riordan matrix. See the Shapiro et al. reference quoted under A053121 and Notes 1 and 2 of the Wolfdieter Lang reference, p. 306.
As a number triangle, this is the Riordan array (1/sqrt(1-4x),x/(1-4x)). - Paul Barry, May 30 2005
The A- and Z- sequences for this Riordan matrix are (see the Wolfdieter Lang link under A006232 for the D. G. Rogers, D. Merlini et al. and R. Sprugnoli references on Riordan A- and Z-sequences with a summary): A-sequence [1,4,0,0,0,...] and Z-sequence 4+2*A000108(n)*(-1)^(n+1)=[2, 2, -4, 10, -28, 84, -264, 858, -2860, 9724, -33592, 117572, -416024, 1485800, -5348880, 19389690, -70715340, 259289580, -955277400, 3534526380], n >= 0. The o.g.f. for the Z-sequence is 4-2*c(-x) with the Catalan number o.g.f. c(x). - Wolfdieter Lang, Jun 01 2007
As a triangle, T(2n,n) is A001448. Row sums are A046748. Diagonal sums are A176280. - Paul Barry, Apr 14 2010
From Wolfdieter Lang, Aug 10 2017: (Start)
The row polynomials R(n, x) of Riordan triangles R = (G(x), F(x)), with F(x)= x*Fhat(x), belong to the class of Boas-Buck polynomials (see the reference). Hence they satisfy the Boas-Buck identity (we use the notation of Rainville, Theorem 50, p. 141):
(E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} (alpha(k)*1 + beta(k)*E_x)*R(n-1.k, x), for n >= 0, where E_x = x*d/dx (Euler operator). The Boas-Buck sequences are given by alpha(k) := [x^k] ((d/dx)log(G(x))) and beta(k) := [x^k] (d/dx)log(Fhat(x)).
This entails a recurrence for the sequence of column m of the Riordan triangle T, n > m >= 0: T(n, m) = (1/(n-m))*Sum_{k=m..n-1} (alpha(n-1-k) + m*beta(n-1-k))*T(k, m), with input T(m,m).
For the present case the Boas-Buck identity for the row polynomials is (E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} 2^(2*k+1)*(1 + 2*E_x)*R(n-1-k, x), for n >= 0. For the ensuing recurrence for the columns m of the triangle T see the formula and example section. (End)
From Peter Bala, Mar 04 2018: (Start)
The following two remarks are particular cases of more general results for Riordan arrays of the form (f(x), x/(1 - k*x)).
1) Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,4*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(4*x)/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(x) * the e.g.f. for the polynomial R(n,4*x). For example, when n = 3 we have exp(x)*(20 + 30*(4*x) + 10*(4*x)^2/2! + (4*x)^3/3!) = 20 + 140*x + 420*x^2/2! + 924*x^3/3! + 1716*x^4/4! + ....
2) Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. P(n,x) is the n-th degree Taylor polynomial of (1 + 4*x)^(n-1/2) about 0. For example, for n = 4 we have (1 + 4*x)^(7/2) = 70*x^4 + 140*x^3 + 70*x^2 + 14*x + 1 + O(x^5).
Let C(x) = (1 - sqrt(1 - 4*x))/(2*x) denote the o.g.f. of the Catalan numbers A000108. The derivatives of C(x) are determined by the identity (-1)^n * x^n/n! * (d/dx)^n(C(x)) = 1/(2*x)*( 1 - P(n,-x)/(1 - 4*x)^(n-1/2) ), n = 0,1,2,.... See Lang 2002. Cf. A283150 and A283151. (End)
REFERENCES
Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
LINKS
Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
Wolfdieter Lang, First 10 rows.
Wolfdieter Lang, On polynomials related to derivatives of the generating function of Catalan numbers, Fib. Quart. 40,4 (2002) 299-313; T(n,m) is called B(n,m) there.
H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
FORMULA
T(n, m) = binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0.
G.f. for column m: ((x/(1-4*x))^m)/sqrt(1-4*x).
Recurrence from the A-sequence given above: a(n,m) = a(n-1,m-1) + 4*a(n-1,m), for n >= m >= 1.
Recurrence from the Z-sequence given above: a(n,0) = Sum_{j=0..n-1} Z(j)*a(n-1,j), n >= 1; a(0,0)=1.
As a number triangle, T(n,k) = C(2*n,n)*C(n,k)/C(2*k,k) = C(n-1/2,n-k)*4^(n-k). - Paul Barry, Apr 14 2010
From Peter Bala, Apr 11 2012: (Start):
One of three infinite families of integral factorial ratio sequences of height 1 (see Bober, Theorem 1.2). The other two are A007318 and A068555.
The triangular array equals exp(S), where the infinitesimal generator S has [2,6,10,14,18,...] on the main subdiagonal and zeros elsewhere.
Recurrence equation for the square array: T(n+1,k) = (k+1)/(4*n+2)*T(n,k+1). (End)
T(n,k) = 4^(n-k)*A006882(2*n - 1)/(A006882(2*n - 2*k)*A006882(2*k - 1)) = 4^(n-k)*(2*n - 1)!!/((2*n - 2*k)!*(2*k - 1)!!). - Peter Bala, Nov 07 2016
Boas-Buck recurrence for column m, m > n >= 0: T(n, m) = (2*(2*m+1)/(n-m))*Sum_{k=m..n-1} 4^(n-1-k)*T(k, m), with input T(n, n) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Aug 13 2021: (Start)
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} (-1)^(n-k)*T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 4*b, c = 1 and d = 1/2.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = 1/sqrt(1 - 4*b*x) * F(x/(1 - 4*b*x)) iff F(x) = 1/sqrt(1 + 4*b*x) * G(x/(1 + 4*b*x)).
The m-th power of this array has entries m^(n-k)*T(n,k). (End)
EXAMPLE
Array begins:
1, 2, 6, 20, 70, ...
1, 6, 30, 140, 630, ...
1, 10, 70, 420, 2310, ...
1, 14, 126, 924, 6006, ...
Recurrence from A-sequence: 140 = a(4,1) = 20 + 4*30.
Recurrence from Z-sequence: 252 = a(5,0) = 2*70 + 2*140 - 4*70 + 10*14 - 28*1.
From Paul Barry, Apr 14 2010: (Start)
As a number triangle, T(n, m) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 6 6 1
3: 20 30 10 1
4: 70 140 70 14 1
5: 252 630 420 126 18 1
6: 924 2772 2310 924 198 22 1
7: 3432 12012 12012 6006 1716 286 26 1
8: 12870 51480 60060 36036 12870 2860 390 30 1
9: 48620 218790 291720 204204 87516 24310 4420 510 34 1
10: 184756 923780 1385670 1108536 554268 184756 41990 6460 646 38 1
... [Reformatted and extended by Wolfdieter Lang, Aug 10 2017]
Production matrix begins
2, 1,
2, 4, 1,
-4, 0, 4, 1,
10, 0, 0, 4, 1,
-28, 0, 0, 0, 4, 1,
84, 0, 0, 0, 0, 4, 1,
-264, 0, 0, 0, 0, 0, 4, 1,
858, 0, 0, 0, 0, 0, 0, 4, 1,
-2860, 0, 0, 0, 0, 0, 0, 0, 4, 1 (End)
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (2*(2*2+1)/2) * Sum_{k=2..3} 4^(3-k)*T(k, 2) = 5*(4*1 + 1*10) = 70. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Feb 15 2018: (Start)
With C(x) = (1 - sqrt( 1 - 4*x))/(2*x),
-x^3/3! * (d/dx)^3(C(x)) = 1/(2*x)*( 1 - (1 - 10*x + 30*x^2 - 20*x^3)/(1 - 4*x)^(5/2) ).
x^4/4! * (d/dx)^4(C(x)) = 1/(2*x)*( 1 - (1 - 14*x + 70*x^2 - 140*x^3 + 70*x^4 )/(1 - 4*x)^(7/2) ). (End)
MATHEMATICA
t[i_, j_] := If[i < 0 || j < 0, 0, (2*i + 2*j)!*i!/(2*i)!/(i + j)!/j!]; Flatten[Reverse /@ Table[t[n, k - n] , {k, 0, 9}, {n, k, 0, -1}]][[1 ;; 51]] (* Jean-François Alcover, Jun 01 2011, after PARI prog. *)
PROG
(PARI) T(i, j)=if(i<0 || j<0, 0, (2*i+2*j)!*i!/(2*i)!/(i+j)!/j!)
(GAP) Flat(List([0..9], n->List([0..n], m->Binomial(2*n, n)*Binomial(n, m)/Binomial(2*m, m)))); # Muniru A Asiru, Jul 19 2018
(Magma) [Binomial(n+1, k+1)*Catalan(n)/Catalan(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 28 2024
(SageMath)
def A046521(n, k): return binomial(n+1, k+1)*catalan_number(n)/catalan_number(k)
flatten([[A046521(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 28 2024
CROSSREFS
Columns include: A000984 (m=0), A002457 (m=1), A002802 (m=2), A020918 (m=3), A020920 (m=4), A020922 (m=5), A020924 (m=6), A020926 (m=7), A020928 (m=8), A020930 (m=9), A020932 (m=10).
Row sums: A046748.
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved
A012150 Expansion of e.g.f. exp(tan(arcsin(x))). +10
5
1, 1, 1, 4, 13, 76, 421, 3256, 25369, 245008, 2449801, 28441216, 346065061, 4700478784, 67243537453, 1047088053376, 17192488230961, 302112622479616, 5593309059948049, 109527844826856448, 2255588021494237501 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
From Vladimir Kruchinin, Feb 17 2011: (Start)
a(n) = n!*Sum_{k=1..n} A111959(n-1,k-1)*2^(k-n)/k!.
a(n) = n!*Sum_{k=1..n} (1+(-1)^(n-k))*C((n-2)/2,(n-k)/2)/(2*k!), n>0.
E.g.f.: exp(x/sqrt(1-x^2)). (End)
E.g.f.: S(x) = exp(x/sqrt(1-x^2)) = 1 + 2*(x/sqrt(1-x^2))/(G(0) - x/sqrt(1-x^2)), G(k) = 8*k + 2 + (x^2)/((1-x^2)*(8*k+6) + x^2/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2011
a(n) = (3*n^2 - 12*n + 13)*a(n-2) - 3*(n-4)*(n-3)^2*(n-2)*a(n-4) + (n-6)*(n-5)*(n-4)^2*(n-3)*(n-2)*a(n-6). - Vaclav Kotesovec, Nov 08 2013
a(n) ~ n^(n-1/3) * exp(3/2*n^(1/3)-n) / sqrt(3) * (1 - 19/(36*n^(1/3)) + 553/(2592*n^(2/3))). - Vaclav Kotesovec, Nov 08 2013
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n/2-1,k)/(n-2*k)!. - Seiichi Manyama, Jun 08 2024
EXAMPLE
exp(tan(arcsin(x))) = 1+x+1/2!*x^2+4/3!*x^3+13/4!*x^4+76/5!*x^5...
MAPLE
A012150 := proc(n) if n = 0 then 1; else add( (1+(-1)^(n-k)) *binomial((n-2)/2, (n-k)/2)/(2*k!), k=1..n) ; %*n! ; end if; end proc: # R. J. Mathar, Mar 20 2011
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[Tan[ArcSin[x]]], {x, 0, 20}], x] (* Or *)
f[n_] := n! Sum[(1 + (-1)^(n - k)) Binomial[(n - 2)/2, (n - k)/2]/2/k!, {k, n}]; f[0] = 1; Array[f, 21, 0] (* Robert G. Wilson v, Feb 19 2011 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(tan(asin(x))))) \\ Michel Marcus, Oct 30 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Name edited by Michel Marcus, Oct 30 2022
STATUS
approved
A111960 Renewal array for central trinomial numbers A002426. +10
4
1, 1, 1, 3, 2, 1, 7, 7, 3, 1, 19, 20, 12, 4, 1, 51, 61, 40, 18, 5, 1, 141, 182, 135, 68, 25, 6, 1, 393, 547, 441, 251, 105, 33, 7, 1, 1107, 1640, 1428, 888, 420, 152, 42, 8, 1, 3139, 4921, 4572, 3076, 1596, 654, 210, 52, 9, 1, 8953, 14762, 14535, 10456, 5880, 2652, 966, 280, 63, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Also the convolution triangle of A002426. - Peter Luschny, Oct 06 2022
LINKS
FORMULA
Factors as (1/(1-x), x/(1-x))*(1/sqrt(1-4x^2), x/sqrt(1-4x^2)).
From Paul Barry, May 12 2009: (Start)
Equals ((1-x^2)/(1+x+x^2),x/(1+x+x^2))^{-1}*(1,x/(1-x^2))=A094531*(1,x/(1-x^2)).
Riordan array (1/sqrt(1-2x-3x^2), x/sqrt(1-2x-3x^2));
T(n,k) = Sum_{j=0..n} C(n,j)*C((j-1)/2,(j-k)/2)*2^(j-k)*(1+(-1)^(j-k))/2.
G.f.: 1/(1-xy-x-2x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). (End)
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
3, 2, 1;
7, 7, 3, 1;
19, 20, 12, 4, 1;
51, 61, 40, 18, 5, 1;
...
From Paul Barry, May 12 2009: (Start)
Production matrix is
1, 1,
2, 1, 1,
0, 2, 1, 1,
-2, 0, 2, 1, 1,
0, -2, 0, 2, 1, 1,
4, 0, -2, 0, 2, 1, 1. (End)
MAPLE
# Uses function PMatrix from A357368. Adds a row and column above and to the left.
PMatrix(10, n -> A002426(n - 1)); # Peter Luschny, Oct 06 2022
CROSSREFS
Row sums are A111961.
Diagonal sums are A111962.
Inverse is A111963.
Factors as A007318*A111959.
Column k=0 gives A002426.
Cf. A026325.
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, Aug 23 2005
STATUS
approved
A277604 Array of coefficients T(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = sqrt(1 + 2*x*A(k,x) + (4*k+1)*x^2*(A(k,x))^2), k >= 0. +10
0
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 1, 7, 9, 13, 1, 1, 1, 9, 13, 37, 25, 1, 1, 1, 11, 17, 73, 81, 61, 1, 1, 1, 13, 21, 121, 169, 301, 125, 1, 1, 1, 15, 25, 181, 289, 841, 729, 295, 1, 1, 1, 17, 29, 253, 441, 1801, 2197, 2549, 625, 1, 1, 1, 19, 33, 337, 625, 3301, 4913, 10123, 6561, 1447, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
For k = 0 see A000012, for k = 1 see A098615, and for k = 2 see A200376.
It will be interesting using the formulae for k < 0 (attention: signed terms!). Especially for k = -1 see A157674.
If G is the g.f. of central binomial coefficients (see A000984) and B(k,x) = G(k*x^2), then B(k,x) = A(k,x)/(1+x*A(k,x)) and A(k,x) = B(k,x) / (1-x*B(k,x)) for k >= 0. - Werner Schulte, Aug 07 2017
LINKS
FORMULA
A(k,x) = (x + sqrt(1 - 4*k*x^2))/(1 - (4*k+1)*x^2) for k >= 0.
T(k,0) = 1 and T(k,2*n+2) = (4*k+1)^(n+1)-2*(Sum_{i=0..n} A000108(i)*k^(i+1)* (4*k+1)^(n-i)), and T(k,2*n+1) = (4*k+1)^n for k >= 0 and n >= 0.
A(k,x) = 1/(1 - x - 2*k*x^2*C(k*x^2)), k >= 0, where C is the g.f. of A000108.
Conjecture: If B(k,n) satisfy B(k,0) = B(k,1) = 1 and B(k,n+2) = B(k,n+1) + k*B(k,n) for k >= 0 and n >= 0 (generalized Fibonacci numbers, see A015441) and G(k,x) = Sum_{n>=0} A000108(n)*B(k,n)*x^n for k >= 0, then you will have (1): A(k,x*G(k,x)) = G(k,x) and (2): G(k,x/A(k,x)) = A(k,x) for k >= 0. Especially for k = 1 see A098615 and for k = 2 see A200376.
Conjecture: T(k,2*n) = Sum_{i=0..n} A046521(n,i)*k^(n-i) for k, n >= 0. - Werner Schulte, Aug 02 2017
Recurrence: T(k,2*n+2) = (4*k+1)*T(k,2*n)-2*k^(n+1)*A000108(n) with initial value T(k,0) = 1 for k >= 0 and n >= 0. - Werner Schulte, Aug 09 2017
T(k,n) = Sum_{i=0..n} A111959(n,i)*k^((n-i)/2) for k >= 0 and n >= 0. - Werner Schulte, Aug 09 2017
EXAMPLE
The terms define the array T(k,n) for k >= 0 and n >= 0, i.e.,
k\n 0 1 2 3 4 5 6 7 8 9 . . .
0: 1 1 1 1 1 1 1 1 1 1 . . .
1: 1 1 3 5 13 25 61 125 295 625 . . .
2: 1 1 5 9 37 81 301 729 2549 6561 . . .
3: 1 1 7 13 73 169 841 2197 10123 28561 . . .
4: 1 1 9 17 121 289 1801 4913 28057 83521 . . .
5: 1 1 11 21 181 441 3301 9261 63071 194481 . . .
6: 1 1 13 25 253 625 5461 15625 123565 390625 . . .
7: 1 1 15 29 337 841 8401 24389 219619 707281 . . .
8: 1 1 17 33 433 1089 12241 35937 362993 1185921 . . .
9: 1 1 19 37 541 1369 17101 50653 567127 1874161 . . .
etc.
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Oct 29 2016
STATUS
approved
page 1

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 15:03 EDT 2024. Contains 375517 sequences. (Running on oeis4.)