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1. WTMOBUCTION AND SUMMARY 

In [3] it has been shown that powers of the generating function c(x) of Catalan numbers 
{QaeNo= ft ^ 2> 5> 14> 4 2 , •••}, w h e r e No : = {°, I2> •••} (m- 1 4 5 9 a n d A000108 of [8] and refer-
ences of [3]) can be expressed in terms of a linear combination of 1 and c(x) with coefficients 
replaced by certain scaled Chebyshev polynomials of the second kind. In this paper, derivatives of 
c(x) are studied in a similar manner. The starting point Is the following expression for the first 
derivative: 

This equation Is equivalent to the simple recurrence relation valid for Cn: 

(« + 2)Cw+1-2(2« + l)Q = 0, /i = -1,0,1,..., with d = -1 /2 . (2) 

Equation (1) can, of course, also be found from the explicit form c(x) = (1 - Vl -4x) / (2x). The 
result for the rfi1 derivative is of the form 

with certain polynomials an_t(x) of degree n-\ and hn(x) of degree n. These polynomials are 
found to be 

hn{x) = J (~l)mB(n, m)xn-m 

m=Q 

with 

«fc"»=(?X-)/fr} (4) 
which defines a triangle of numbers for «,m eN, n>m>0, where N: = {1,2,3,...}. The first 
terms are depicted in Table 1 with B(n9 m) = 0 for n < m. Another representation for the polyno-
mials bn(x) is also found, i.e., 

b„(x) = -2ftCk_lxk(4x-irk. (5) 
k=Q 

Equating both forms ofbn(x) leads to a formula involving convolutions of Catalan numbers with 
powers of an arbitrary constant X:=(4x-l)/x. This formula Is given In (31). Equation (5) 
reveals the generating function of the polynomials b„(x) because It Is a convolution of two func-
tional sequences. The result Is 
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TABLE 1. B(n, m) Central Binomial Triangle 

7VV 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
2 
6 
20 
70 
252 
924 
3432 
12870 
48620 
184756 

1 

0 
1 
6 
30 
140 
630 
2772 
12012 
51480 
218790 
923780 

2 

0 
0 
1 
10 
70 
420 
2310 
12012 
60060 
291720 
1385670 

3 

0 
0 
0 
1 
14 
126 
924 
6006 
36036 
204204 
1108536 

4 

0 
0 
0 
0 
1 
18 
198 
1716 
12870 
87516 
554268 

5 

0 
0 
0 
0 
0 
1 
22 
286 
2860 
24310 
184756 

6 

0 
0 
0 
0 
0 
0 
1 
26 
390 
4420 
41990 

7 

0 
0 
0 
0 
0 
0 
0 
1 
30 
510 

6460 

8 

0 
0 
0 
0 
0 
0 
0 
0 
1 
34 
646 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
38 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

(6) 

The other family of polynomials is 

an{x) = J {-l)kA(n +1, * + l)xn~k 

k=0 

with the triangular array A(n9m) defined for m = 0 by A(n,0) = C„, and for W,/WGN with n> 
m>0by the numbers 

^^^(--i^-fflA2?-?); (7) 

The first terms of this triangular array of numbers are shown in Table 2 with A{n, m) = 0 for 
n<m. Both results (4) and (7) are solutions to recurrence relations which hold for bn(x) and 
an{x) and their respective coefficients B(n, m) and A(n, m). 

Another representation for the polynomials a„(x) is found to be 

a»W = ICitx*(4x-l)-*> 
k=0 

which shows that the generating function of these polynomials is 

(8) 

(9) 

Comparing (5) with (8) yields the following relation between these two types of polynomials 
b„(x) = (4x-l)"-2xan_l(x), n e N0, with a_,(x) ̂  0, (10) 

and between the coefficients 
B(n,m) = ^"-m-2A(n,m + \). (11) 
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TABLE 2„ A(n, m) Catalan Triangle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

I 
0 

1 
I 
2 
5 

I 14 
1 42 

132 
429 
1430 
4862 
16796 

1 

0 
1 
5 
22 
93 
386 
1586 
6476 
26333 
106762 
431910 

2 

0 
0 
1 
9 
58 
325 
1686 
8330 
39796 
185517 
848830 

3 

0 
0 
0 
1 
13 
110 
765 
4746 
27314 
149052 
781725 

4 

0 
0 
0 
0 
1 
17 
178 
1477 
10654 
69930 
428772 

5 

0 
0 
0 
0 
0 
1 
21 
262 
2525 
20754 
152946 

6 

0 
0 
0 
0 
0 
0 
1 
25 
362 
3973 
36646 

7 

0 
0 
0 
0 
0 
0 
0 
1 
29 
478 
5885 

8 

0 
0 
0 
0 
0 
0 
0 
0 
1 
33 
610 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
37 

10 

0 
o 
0 
0 
0 
0 
0 
0 
0 
0 
1 

The triangle of numbers A(n,m) is related to a rectangular array of integers A(n,m) with 
A(0, m) = l, A(n9 0) = -Cn for » G N , and for n > m > 1 by 

A(n, m) = -A(n- m, m) + 2^n~m)+l fcj], (12) 

or with (7) for m e N? n e N0, by 

Part of the array A(n9 m) is shown in Table 3, where it is called C4(w? m). 

TABLE 3e C4(«, m) Catalan Array 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
-1 
-2 
-5 
-14 
-42 
-132 
-429 

-1430 
-4862 

-16796 

1 

1 
3 
10 
35 
126 
462 
1716 
6435 
24310 
92378 
352716 

2 

1 
7 
38 
187 
874 
3958 

• 17548 
76627 
330818 
1415650 
6015316 

3 

1 
11 
82 
515 
2934 

15694 
80324 
397923 
1922510 
9105690 
42438076 

4 

1 
15 
142 
1083 
7266 

44758 
259356 
1435347 
7663898 
39761282 
201483204 

5 

1 
19 
218 
1955 
15086 
105102 
679764 
4154403 
24281510 
136887322 
749032492 

6 

1 
23 
310 
3195 
27866 
216566 
1546028 
10338515 
65635570 
399429602 
2346750900 
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It turns out that the m* column of the triangle of numbers A(n, m) for m = 0,1,... is deter-
mined by the generating function 

The /71th column of the triangle of numbers B(n, m) for m = 0,1,... is generated by 

1 
Vlr4xU-4xJ ' 

This fact identifies the infinite dimensional matrices A and B as examples of Riordan matrices in 
the terminology of [7]. The matrix A associated with A(n, m) is an example of a Riordan array. 

Because differentiation of c(x) = Z*=0 Ckxk leads to 

where C(0, k) = Ck, one finds, together with (3), the following identities for n e N, p e{0,1,..., 
/ i - l } , 

o»>: ti-tfc, ( A H W ) ' I{A .){2W1>/(»)-/(2t7-1
1) 

= A(n,n-p)/\2" 
(15) 

and for « e N , k G N 0 , 

™ PAWiMi"^%'----c("-i^) (,6) 
The remainder of this paper provides proofs for the above statements. 

2. DERIVATIVES 

The starting point is equation (1) which can either be verified from the explicit form of the 
generating function c(x) or by converting the recursion relation (2) for Catalan numbers into an 
equation for their generating function. A computation of 

1 dn+lc(x) 1 d(\ dnc{x) 
(TI + 1)! dxn+l n + ldx{n\ dxn 

with (3) taken as granted and equation (1), produces the following mixed relations between the 
quantities an{x) and hn(x) and their first derivatives, valid for « G N 0 , 

(it + lK(x) = * l - 4 x ^ (17) 

(n + l)bn+l{x) = x{\-4x)b'n(x)^^^ (18) 

with inputs a__x{x) = 0 and bQ(x) = 1. 
From (18), it is clear by induction that bn(x) is a polynomial of degree n. Again by induction, 

the same statement holds for an(x) in (17). Therefore, we write, for n e N0, 
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a„(x) = £(-l)ka(n,k)x"-k, (19) 
&=0 

n 

»»W = l H k % * ) ^ , (20) 

with the triangular arrays of numbers a(w, k) and B(n9 k) with row number n and column number 
k < n. The triangular array a(n9 k) will later be enlarged to another one which will then be called 
A(n9k). 

We first solve bn(x) in (18) by inserting (20) and deriving the recursion relation for the coef-
ficients B(n9 m) after comparing coefficients of x"+1, x°, and xn~k for k = 0,1,..., n -1. 

xn+l: (n + l)B(n +1,0) = 2(2w +l)5(w, 0), (21) 

x°: fi(/i +1, /i +1) = 5(#i, w), (22) 

xn~k: (TI + l)5(w +1, Jfc +1) = (* + l)5(/i, Jfc) + 2(2(w + *) + 3)B(n9 k +1). (23) 

With the input B(09 0) = 1, one deduces from (21) for the leading coefficient ofbn(x) 

*<».̂ "^=fH»> (24) 
and from (22) 

B(n9n)^l9 i .e.A(0) = (-!)"• (25) 

The double factorial (2w -1)!!: = 1 • 3 • 5 • • • • • (2w -1) appeared in (24). 
In order to solve (23), we conjecture from Table 1 that, for n9 m e N, 

2?(w, wi) = 45(w - 1 , m)+JB(W - 1 , m -1), (26) 

with input B(n, 0) = (2^) from (24). 
If we use this conjecture in (23), written with w-» / i - l , A ->/w-l , we are led to consider 

the simple recursion 
B(n,m) = *±^B(n,m-l). (27) 

The solution of this recursion is, for n,me N0, 

D , s_ 1 wl (2n\_ m\n\ (2n\_(2n\(n\ l(2m\ ~ax 
5(^W)-2"(2w-l)ll(»-»i)ll»J"(2iif)!(ii-Jii)lUJ-l»JW/lwJ- ( } 

With the Pochhammer symbol (a)w := T(«+a) / P(a), this result can also be written as 

B(n, m) = ((2m +1) / 2 ) ^ 4 ^ / (n - m)!. 

This result satisfies (21), i.e., (24), as well as (22), i.e., (25). It is also the solution to (23) pro-
vided we prove the conjecture (26) using B(n, m) in (28). This can be done by inserting 

D / v (2n)\m\ 
B M = (2m)J.(n-my. 

in (26). Thus, we have proved the following proposition. 
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Proposition 1: We have 

*„(*) = t i-l)kB(n, k)x"~k, where B(n, k) = ( ? ) ( * ) / ( ? } 

This triangle of numbers as shown in Table 1 appears as A046521 in the database [8], 
One can derive another explicit representation for the polynomials bn(x) by using (27) in (20): 

( l -4x)6; (x)+2(2i i - l ) f t l l (x )+2^y = 0. (29) 

This leads, together with (18), to the following inhomogeneous recursion relation for bn(x): 

bn+l(x) = {4x-l)bn(x)-2Cnx"+\ bQ(x)^l (30) 

Equation (29) can also be solved as first-order linear and inhomogeneous differential equation 
forbn(x). 

Proposition 2: We have 

*-(*) = -2ZCt_1x*(4x-ir*, 

where the Ck
fs are the Catalan numbers for k e N0 and C_x = -1 /2. 

Proof: Iteration of (30). D 

Proposition 3: The generating function gb(x; z) := lL™^bn{x)xn for {bn(x)} is given by (6). 

Proof: The alternative form ofbn(x) given by equation (5) is a convolution of the functional 
sequences {-2Ck_lxk}neN and {(4x - l)n}neN , with generating functions 1 ~-2xzc(xz) = ^1 - Axz 
and l / ( l + (l-4x)z), respectively. Therefore, gb(x;z) is the product of these two generating 
functions. • 

Comparing this alternative form (5) for bn(x) with the one given by (20), together with (28), 
proves the following identity in n and X\~ (4x- l)/x. The term k - 0 in the sum (5) has been 
written separately. 

Corollary 1 (convolution of Catalan sequence and the sequence of powers of A): For n e N 
and X ̂  oo ? 

ViW^^lf^^-^ZH^-A)*^)/^)]. (31) 

Therefore, the generating function for the sequence sn{X) is 

g(Mx):=ttsH(A)*' = c(x)/(l-Ax). 

From the generating function, the recurrence relation is found to be $n(X) = Xsn_l{X) + Cn, 
s_x{X) = 0. The connection with the polynomial bn(x) is 

*M) = \&n+l - H - *TX+i(} i (4 - A))). 
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The case X = 0 (x = 1/4) is also covered by this formula. It produces from sn(0) = Cn the 
following identity. 

Example 1: Case X = 0 (x = 1 / 4), 

tx-trfty/et)-^. (32) 
This identity occurs in one of the exercises 2.7, 2, page 32 of [4]. 

We note that from (5) one has -2hn+l(l 14) = Cn 1An. The large n behavior of this sequence is 
known to be (see [2], Exercise 9.60): 

CJAn l l 

If one puts Ax-1 = x, i.e., x = 1/3, in (5), one can identify the partial sum sn(l) of Catalan num-
bers: 

*„0):= S Q =|(l~3"+1*„+1(l/3)). (33) 
k=0 L 

This sequence {1,2,4,9,23,65,197,626,2056,...} appears as A014137 in the web encyclopedia 
[8]. If one puts X -1 in Corollary 1, one also finds the following example. 

Example 2: 

2Vl(i)=i+^l^l;)^). (34) 

Another interesting example is the case X = A (x = QO). Here one finds a simple result for the 
convolution of Catalan's sequence with powers of 4. 

Example 3: X = 4 (x = QO), 

2 V I ( 4 ) = 4 " - ( ^ ) . (35) 

This- sequence {1,5,22,93,386,1586,6476,...} appears in the book [8] as Nr. 3920 and as 
A000346 in the web encyclopedia [8], It will show up again in this work as A(n +1,1), the 
second column in the A(n, m) triangle (see Table 2). 

The sequence for X = -1 (x = 1 / 5) is also nonnegative, as can be seen by writing 

% ( - ^ Q + I ( Q / - Q M ) for*eN 
1=2 

and k 
% + l ( ~ l ) - Z-rf (^2/+l ~ ^2/)> 

i=\ 
and using 

AC W -C W -Q. 1 = 3 ^ Q _ 1 > 0 . 

This is the sequence {1,0,2,3,11,31,101,328,1102,3760,...} which appears now as A032357 in 
the web encyclopedia [8]. 
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Recursion (26) for B(n, m) can be transformed into an equation for the generating function 
for the sequence appearing in the m^ column of the B(n, m) triangle 

GB(m;x):=f^B(n,m)xn, (36) 
n=m 

with input 

the generating function for the central binomial numbers. So (26) implies, for /WGN0, 

GJm; x) = {~^— T , l . (37) 

For x-j^GB(rn; x), see (53). Therefore, we have proved the following proposition. 

Proposition 4 (column sequences of the B(n, m) triangle): The sequence {B(n, m)}™=m, defined 
for fixed /MGN 0 and n E N0 by (28), is the convolution of the central binomial sequence 

and the m^ convolution of the (shifted) power sequence {0,1,41,42,...}. 

Note 1: The infinite dimensional matrix B with elements B(n, m) given for n > m > 0 by (28) and 
B(n, m) = 0 for n< m is an example of a Riordan matrix [7]. With the notation of this reference, 

" ( ; 
l 

V -N/T^4X'1-4X, 

Note 2:(Sheffer-type identities from Riordan matrices): Triangular Riordan matrices 

M = (M,A>,>o =(£(*),/(*)), 
MUj = 0 for j >i , in the notation of [7], lead to polynomials that satisfy Sheffer-type identities 
(see [5] and its references, and also [1]), 

n n 
Sn(x+y) = 2 X O 0 i U ( x ) = ZPk(y)S„_k(x), (38) 

k=Q jfc=0 

n n 

Pn(*+y) = I Pk(y)Pn-k(x) = I PkV)P»-k(y), (39) 
k=Q k=0 

where the polynomials Sn(x) and Pn(x) are defined by 

W = I W M ^ . " e N o > Pn(*) = T , P ^ , » e N , P o W - 1 , (40) 
m=Q m- m=l m' 

with P„ m '. = [zn](fm{z)X n>m>\. Here #(x) defines the first column of M: Mn 0 = [x"]g(x). 

If one uses sn(x):=n\Sn(x) and Jpn(x):=fi!i^(x), one obtains the Sheffer identities (also 
called binomial identities) treated in [5]. Then sn(x) is Sheffer for (l / g(f(t)), f(t)), and pn(x) is 
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associated to f{t)—or Sheffer for (1, f{t))—in the terminology of [5]. Here / ( f ) stands for the 
inverse of/(f) as a function. 

Let us give the relation between gb(x; z) and GB(m; x). 

Proposition 5: We have 

gbtez)=Z(-irGBfcxzi±] . (41) 

Proof: One inserts the value of hn(x) given in (20) into the definition (6) of gb(x; z) and 
rewrites the Cauchy sum as two infinite sums which are then interchanged. Finally, the definition 
of GB(m; x) in (36) is used. • 

One can check (41) by using the explicit form of GB(m; xz) given in (36) and comparing with 
(6). 

In a similar vein, we can solve an(x) in (17) with bn(x) given by (20) and (28). The coeffi-
cients a(n9 k), defined by (19), have to satisfy, after comparing coefficients of xn, x°, and xn~k 

for k = l ,2, . . . ,w-l and n G N 0 : 
xn\ a(«,0) = 4a(«-l,0) + Q, (42) 

x°: (n + l)a(n9 n) = 1 + na(n -1, n -1), (43) 

xn~k\ (/i + l)a(/i,k) = ka(n-l9k-l) + 4(n + l + k)a(n-l9k) + B{n9k). (44) 

In (42) we have used (24), i.e., B(n,0) = (n + l)Cn; in (43) we have used (25), i.e., B(n,n) = 1. 
From (42) one finds, with input a(0,0) = 1, 

0foO) = £ Q 4 - * , (45) 

and from. (43), 
a(n, n) = 1 or an(0) = (-1)*. (46) 

Note that a(n9 0) = $n(4) of (31) with solution (35). It is convenient to define a(n -1, -1 ) : = Cn9 

« G N 0 . Then the sequence {^(11,0)}^ is, with a(-l , 0):=0, the convolution of the sequence 
.{a(k, -1)}*! and the shifted power sequence {0,1,41,42,...}. Before solving (44), with B(n9 k) 
from (28) inserted, we add to the triangular array of numbers a(n9 m) the m = -1 column and an 
extra row for n = - 1 , and define a new enlarged triangular array for n9mGfi0 as 

A(n9 m): = a(n -l9m-l) (47) 

with A(n9 0) = a(n -1, -1) = C„ and A(09 m) = a(-l , m ~ 1) = S%m. An inspection of the A(n9 m) 
triangular array, partly depicted in Table 2, leads to the conjecture 

A(n9 m) = 4A(n -l9m) + A(n-l9m-1), (48) 

with A(n9 0) = C„ and A(n9m) = 0 for n < m. This recursion relation can be used to extend the 
array A(n9 m) to negative integer values of m. This conjecture is correct for A(n + l9T) = a(n9 0) 
found in (45), as well as for A(n + l9n + l) = a{n9n) = 1 known from (46). The generating func-
tion for the sequence appearing in the #1* column, 
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GA(m;x):=J^A(n,m)x", (49) 
n—m 

satisfies, due to (48), GA(m; x) = -^GA(m-l; x), remembering that A{m-\m) = Q and that 
GA(0; x) = c(x). Therefore, 

G ^ ( / W ; X ) = ( I ^ T C ( X ) - (5o) 

Note 3: The infinite dimensional matrix A with elements A(n9 m) given for n > m > 0 by (48) and 
A(n, m) = 0 for n < m is another example of a Riordan matrix, written in the notation of [7] as 
(c(x),x/(l-4x)). 

Because of (37) and Vl-4xc(x) = 2-c(x), these generating functions of the conjectured 
A(n, m) column sequences obey 

GA(nr,x) = (2-c(x))GB(m;x). (51) 

If we use the conjecture (48) in (44), which is written with (47) in the form 
(w + l)i4(/i + l,/if + l) = »ii4(/i,/ii) + 4(/i + wi + l)i4(/i,wi + l) + 5(7i,wi) 

for n eN0, we{l, 2, . . . ,w-l}, we have 

mA(n +1, m +1) - (n + l)A(n9 m) + B(n9 m) = 0. (52) 

This recursion relation can be written with the help of the generating functions (36) and (49) as 

x— + l\GA(m;x)~GA{m + \ x) = GB(m; x), (53) 

or with (50) (i.e., the conjecture) as 

'*£ +1 ~ T^4x)GA(m>X) = GM>Xl (54) 

Together with (51), this means 

x-£-((2-c(x))GB(m,x)) = {T*Z-ty2-«®+\ GB(m;x). (55) 

If we can prove this equation with GB(x) given by (37), we have shown that (44) is equivalent to 
the conjecture (48). In order to prove (55), we first compute from (37) for m e N0, 

d 
dx :GB(m,x)^2+fjGB(m + l;x) = ^^-GB(m;x). (56) 

With this result, (55) reduces to 

^xC(x) + ( 2 - c ( x ) ) | 5 g - l)GBfa x) = 0, (57) 

and with (1), the factor in front of GB(m; x) vanishes identically for x * 1 / 4. Therefore, we have 
proved the following two propositions concerning the column sequences of the A{n9 m) triangular 
array and the triangular A(n, m) array, respectively. 

308 [AUG. 



ON POLYNOMIALS RELATED TO DERIVATIVES OF THE GENERATING FUNCTION OF CATALAN NUMBERS 

Proposition 6: The triangular array of numbers A(n, m)9 defined for n,meM0 by equation (48), 
A(n90) = Cn9 A(n9m) = 0 for n<m has as its nfl* column sequence {A(n9m)}^=m the convo-
lution of the Catalan sequence and the w* convolution of the shifted power sequence {0,1,41, 
42,...}. 

Proof: Use (50) with (49). D 

Proposition 7: The triangular array A{n9m) of Proposition 6 coincides with the one defined by 
(47) and (42), (43) and (44) with B(n9 m) given by (28). 

Proof: On one hand, a{n9 Q) = A(n + l9 1) and a(n9 n) = A(n +1, n +1) = 1 of (42) and (43), 
i.e., (45) and (46), respectively, satisfy (48). On the other hand, (44) is rewritten with the aid of 
(47) as (52), and (52) has been proved by (53)-(57). D 

Alternatively, one can use the now proven conjecture (48), together with (47), in (44) and 
derive for n e N0, m e N0, 

4ma(n - 1 , m) = (n +1 - m)a(n - 1 , m -1) - B(n9 m). (58) 

This is written in terms of the polynomials an_x(x) of (19) and bn(x) of (20) as 

x(l-4x)a>n_l(x) + (l-4x + 4nx)an_l(x)- W x " + bn(x) = 0. (59) 

With this result, (17) becomes an inhomogeneous recursion relation for an(x): 

an(x) = (4x - I K ^ x ) + Cnx\ a0(x) - 1. (60) 

Moreover, (59) can also be considered as an inhomogeneous linear differential equation for 
<*n-i(x) with g*ven *«(x)- To find the solution this way is, however, a bit tedious. Let us give an 
alternative form for an(x) in the following proposition. 

Proposition 8: The solution of the recursion relation (60) is given by (8). 
Proof: Iteration of (60). • 
Next, we give a corollary. 

Corollary 2: The generating function ga(x; z) := T^=odn(x)zn is given by (9). 

Proof: Equation (8) above shows that an(x) is a convolution of the functional sequences 
{Ckxk}neN and {(4x-l)^}^eN with generating functions c(xz) and 1/(1 +(l-4x)z). Therefore, 
ga(x; z) is the product of these generating functions. D 

We now have a relation between ga(x; z) and GA(m; x). 

Proposition 9: 
8°(X'>Z) = l i t^)mGA(»r, xz)(±J. (61) 

Proof: Analogous to the proof of Proposition 5. D 

One can check (61) by putting in the explicit form (50) of GA(m; x) and compare with (9). 
Let us state the relation between bn{x) and aw_j(x) as Proposition 10. 
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Proposition 10: For n e N0 and a_x{x) = 0, the relation between bn(x) and a^x) is given by 
(10). 

Proof: The alternative expressions (5) and (8) for these two families of polynomials are 
used. One splits off the k = 0 term in (5) with C_x = -1/2 from the sum and shifts the summation 
variable. D 

Corollary 3: The coefficients of the triangular arrays A(n, m) and B(n, m) are related as given by 
en). 

Proof: The relation (10) between the polynomials is, with the help of (19) and (20), written 
for the coefficients a(n - 1 , w), or by (47) for A(n,m +1) and B(n, m). • 

It remains to compute the explicit expression for the coefficients a(n, k) of an(x) defined by 
(19). Because of (47), it suffices to determine A(n, m). 

Corollary 4: The triangular array numbers A(n, m) are given explicitly by formula (7). 

Proof: The formula (4) written for B(n, m -1) is used in relation (11). • 

Note 4: This formula for A(n, m) satisfies indeed the recursion relation (48) with the given input. 
The first term, 

A A n-m+l f 

2* 

satisfies it because of the binomial identity 

{m~l) = {m-l) + {m-2)' 
For the second term of A(n, m) in (7) one has to prove 

or after division by (2^P), 

2n-\( n \_ Jn-\\ (n-\\lm-3 
n \m-\)-\m-\) + \m-2) m-\ > 

which reduces to the trivial identity In -1 = 2(« - m+1) + 2/w - 3. Both terms together, i.e., (7), 
satisfy the input A(n, n) s 1. 

Note 5: A («, m) was found originally after iteration in the form (with «>/w>0and(- l ) ! ! := l ) 

AQi,m)-2-4 ^ _ j j {2m_3)u
 Cn-m- (62) 

A(n, 0) = Cn. It is easy to establish the equivalence with (7). 

In the original derivation of the formula (7) for A(n,m), it turned out to be convenient to 
introduce a rectangular array of integers A(n, m) for n,/»eN0 as follows: ^4(0, m) = 1, A(n, 0) : = 
-Cn for weN, and for m e N and n eN0, A(n,m) is defined by (12) or, equivalently, by (13). 
The A(n, m) recursion (48) translates (with the help of the Pascal-triangle identity) into 
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A(n9 m) = 4A(n -\m) + A(n, m -1). (63) 

This leads, after iteration and use of A(09 m) = 1 from (12) with A(n9 n) = 1, to 

A(n9m) = 4nJ]A(k9m-l)/4k. (64) 
k=Q 

Thus, the following proposition describes column sequences of the A(n9 m) = C4(n, m) array. 

Proposition 11: The nfi1 column sequence of the A(n,m) array, {A(n9m)}neNQ9 is the convolu-
tion of the sequence {A(n, 0)}W6No = {1, - 1 , - 2 , -5 , . . .} , generated by 2-c(x), and the w* con-
volution of the power sequence {4k}keNo. 

Proof: Iteration of (64) with the A(n90) input. D 

Corollary 5: The ordinary generating function of the m^ column sequence of the A(nym) array 
(13) is given by 

00 ( i \m 

GAfax):=ZM",m)x* = (2-c(x))\j^) (65) 
for melH0. 

Proof: Use Proposition 11 written for generating functions. • 

Because of the convolution of the (negative) Catalan sequence with powers of 4, we shall call 
this A(n9 m) array also C4(n9 m). A part of it is shown in Table 3 above. The second column 
sequence is given by 

i(«,l) = C4(»,l) = [2"w
+1] 

and appears as nr. 2848 in the book [8], or as A001700 in the web encyclopedia [8]. The 
sequence of the third column {A(n, 2) = C4(n9 2)}neNo = {1,7,38,187,...} is, from (64) and (62) 
with (12), determined by 

4n X (2\+1) Uk = (2#t + 3)(2#i + 1)Q - 22n+\ 

and is listed as A000531 in the web encyclopedia [8]. There the fourth column sequence is now 
listed as A029887. 

Note 6: The infinite dimensional lower triangular matrix A related to the array A(n,m) = C4(n9m) 
by A(n9m):= A(n-m9m + T) for n>m>0 and A(n9m):=0 for n<m is again an example of a 
Riordan matrix [7]. In the notation of [7], A = (c(x) I Vl-4x, X I Vl-4x) . 

Finally, we derive identities by using, for n G N0, equation (14) for the left-hand side of (3) 
and the results for a^_x(x) and bn(x) for the right-hand side. Because there are no negative 
powers of x on the left-hand side of (3), such powers have to vanish on the right-hand side. This 
leads to the first family of identities. Because 

(1-4JC)-" = X ^ 4 * J C * , 
k=o k-
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with Pochhammer's symbol defined after (28), this means that xp](an_l(x) + bn(x)c(x))y the 
coefficient proportional to xp, has to vanish for p = 0,1,..., n-1, n e N. This requirement reads 

(-ir^M^-i^-i-^+Zc-ir'^^-^c^-o. (66) 
The sum is restricted to k < p (<n) because no number Q with negative index is found in c(x). 
Inserting the known coefficients produces (15). 

Proposition 12: For « G N and p e {0,1,..., n-1} identity (Dl), given by (15), holds. 

Proof: With (47), (66) becomes 

t(-dp-kCp-kB(n,n-k) = A(n,n-pl (67) 

which is (Dl) of (15) if the summation index k is changed into p-k, and the symmetry of the 
binomial coefficients is used. D 

Example4: Take /? = « - l e N 0 : 

I^(/+.)2rfi-V(-)-,-^')/(-> (68) 

With this identity we have found a sum representation for the convolution of the Catalan sequence 
and powers of 4: 

^ ^ . - T C ^ U M B - O ^ , ) ^ 
k=Q " V / fc=o 

[cf. (35) with (31)]. 
The second family of identities, (D2) of (16), results from comparing powers xk with i e N 0 

on both sides of (3) after expansion of (l-4x)"w as given above in the text before (66). Only the 
second term hn(x)c(x) contributes because an_x(x) lxn has only negative powers of x. Thus, with 
definition (14), one finds, for k e N0 and / i eN, 

k /„\ AI n (!t);4' 

1=0 l • j=0 
(69) 

which is, after interchange of the summations and insertion of B(n,n-j) from (4), the desired 
identity (D2) if also the summation index j is changed to n - q. 

Thus, we have shown 

Proposition 13: For k e N0 and n e N, identity (D2) of (16) with C(/i, A) defined by (14) holds 
true. 

Example 5: Take k = 0, n efi. Then we have 

Z(- iy("t ! ) s 1 ' <7°) 
which is elementary. 
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