[go: up one dir, main page]

login
Search: a094958 -id:a094958
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers of the form 2^n or 3*2^n.
+10
110
1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304
OFFSET
1,2
COMMENTS
This entry is a list, and so has offset 1. WARNING: However, in this entry several comments, formulas and programs seem to refer to the original version of this sequence which had offset 0. - M. F. Hasler, Oct 06 2014
Number of necklaces with n-1 beads and two colors that are the same when turned over and hence have reflection symmetry. [edited by Herbert Kociemba, Nov 24 2016]
The subset {a(1),...,a(2k)} contains all proper divisors of 3*2^k. - Ralf Stephan, Jun 02 2003
Let k = any nonnegative integer and j = 0 or 1. Then n+1 = 2k + 3j and a(n) = 2^k*3^j. - Andras Erszegi (erszegi.andras(AT)chello.hu), Jul 30 2005
Smallest number having no fewer prime factors than any predecessor, a(0)=1; A110654(n) = A001222(a(n)); complement of A116451. - Reinhard Zumkeller, Feb 16 2006
A093873(a(n)) = 1. - Reinhard Zumkeller, Oct 13 2006
a(n) = a(n-1) + a(n-2) - gcd(a(n-1), a(n-2)), n >= 3, a(1)=2, a(2)=3. - Ctibor O. Zizka, Jun 06 2009
Where records occur in A048985: A193652(n) = A048985(a(n)) and A193652(n) < A048985(m) for m < a(n). - Reinhard Zumkeller, Aug 08 2011
A002348(a(n)) = A000079(n-3) for n > 2. - Reinhard Zumkeller, Mar 18 2012
Without initial 1, third row in array A228405. - Richard R. Forberg, Sep 06 2013
Also positions of records in A048673. A246360 gives the record values. - Antti Karttunen, Sep 23 2014
Known in numerical mathematics as "Bulirsch sequence", used in various extrapolation methods for step size control. - Peter Luschny, Oct 30 2019
For n > 1, squares of the terms can be expressed as the sum of two powers of two: 2^x + 2^y. - Karl-Heinz Hofmann, Sep 08 2022
LINKS
Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, The Binary Two-Up Sequence, arXiv:2209.04108 [math.CO], Sep 11 2022.
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From N. J. A. Sloane, Nov 26 2012
FORMULA
a(n) = 2*A000029(n) - A000031(n).
For n > 2, a(n) = 2*a(n - 2); for n > 3, a(n) = a(n - 1)*a(n - 2)/a(n - 3). G.f.: (1 + x)^2/(1 - 2*x^2). - Henry Bottomley, Jul 15 2001, corrected May 04 2007
a(0)=1, a(1)=1 and a(n) = a(n-2) * ( floor(a(n-1)/a(n-2)) + 1 ). - Benoit Cloitre, Aug 13 2002
(3/4 + sqrt(1/2))*sqrt(2)^n + (3/4 - sqrt(1/2))*(-sqrt(2))^n. a(0)=1, a(2n) = a(n-1)*a(n), a(2n+1) = a(n) + 2^floor((n-1)/2). - Ralf Stephan, Apr 16 2003 [Seems to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014]
Binomial transform is A048739. - Paul Barry, Apr 23 2004
E.g.f.: (cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2.
a(1) = 1; a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007
u(2)=1, v(2)=1, u(n)=2*v(n-1), v(n)=u(n-1), a(n)=u(n)+v(n). - Jaume Oliver Lafont, May 21 2008
For n => 3, a(n) = sqrt(2*a(n-1)^2 + (-2)^(n-3)). - Richard R. Forberg, Aug 20 2013
a(n) = A064216(A246360(n)). - Antti Karttunen, Sep 23 2014
a(n) = sqrt((17 - (-1)^n)*2^(n-4)) for n >= 2. - Anton Zakharov, Jul 24 2016
Sum_{n>=1} 1/a(n) = 8/3. - Amiram Eldar, Nov 12 2020
a(n) = 2^(n/2) if n is even. a(n) = 3 * 2^((n-3)/2) if n is odd and for n>1. - Karl-Heinz Hofmann, Sep 08 2022
MAPLE
1, seq(op([2^i, 3*2^(i-1)]), i=1..100); # Robert Israel, Sep 23 2014
MATHEMATICA
CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *)
LinearRecurrence[{0, 2}, {1, 2, 3}, 50] (* Harvey P. Dale, Jul 04 2017 *)
PROG
(PARI) a(n)=if(n%2, 3/2, 2)<<((n-1)\2)\1
(Haskell)
a029744 n = a029744_list !! (n-1)
a029744_list = 1 : iterate
(\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2
-- Reinhard Zumkeller, Mar 18 2012
(Scheme) (define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014
(Python)
def A029744(n):
if n == 1: return 1
elif n % 2 == 0: return 2**(n//2)
else: return 3 * 2**((n-3)//2) # Karl-Heinz Hofmann, Sep 08 2022
CROSSREFS
Cf. A056493, A038754, A063759. Union of A000079 and A007283.
First differences are in A016116(n-1).
Row sums of the triangle in sequence A119963. - John P. McSorley, Aug 31 2010
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent. There may be minor differences from (s(n)) at the start, and a shift of indices. A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A060482 (s(n)-3); A136252 (s(n)-3); A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A354785 (3*s(n)), A061776 (3*s(n)-6); A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
KEYWORD
nonn,easy
EXTENSIONS
Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000
STATUS
approved
Numbers of the form 2^i*5^j with i, j >= 0.
+10
105
1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800
OFFSET
1,2
COMMENTS
These are the natural numbers whose reciprocals are terminating decimals. - David Wasserman, Feb 26 2002
A132726(a(n), k) = 0 for k <= a(n); A051626(a(n)) = 0; A132740(a(n)) = 1; A132741(a(n)) = a(n). - Reinhard Zumkeller, Aug 27 2007
Where record values greater than 1 occur in A165706: A165707(n) = A165706(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also numbers that are divisible by neither 10k - 7, 10k - 3, 10k - 1 nor 10k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
A204455(5*a(n)) = 5, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
Since p = 2 and q = 5 are coprime, sum_{n >= 1} 1/a(n) = sum_{i >= 0} sum_{j >= 0} 1/p^i * 1/q^j = sum_{i >= 0} 1/p^i q/(q - 1) = p*q/((p-1)*(q-1)) = 2*5/(1*4) = 2.5. - Franklin T. Adams-Watters, Jul 07 2014
Conjecture: Each positive integer n not among 1, 4 and 12 can be written as a sum of finitely many numbers of the form 2^a*5^b + 1 (a,b >= 0) with no one dividing another. This has been verified for n <= 3700. - Zhi-Wei Sun, Apr 18 2023
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 73.
LINKS
Eric Weisstein's World of Mathematics, Regular Number
Eric Weisstein's World of Mathematics, Decimal Expansion
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(10*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
a(n) ~ exp(sqrt(2*log(2)*log(5)*n)) / sqrt(10). - Vaclav Kotesovec, Sep 22 2020
MAPLE
isA003592 := proc(n)
if n = 1 then
true;
else
return (numtheory[factorset](n) minus {2, 5} = {} );
end if;
end proc:
A003592 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA003592(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 16 2012
MATHEMATICA
twoFiveableQ[n_] := PowerMod[10, n, n] == 0; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Jan 12 2012 *)
twoFiveableQ[n_] := Union[ MemberQ[{1, 3, 7, 9}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 10]] == {False}; twoFiveableQ[1] = True; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Oct 26 2010 *)
maxExpo = 14; Sort@ Flatten@ Table[2^i * 5^j, {i, 0, maxExpo}, {j, 0, Log[5, 2^(maxExpo - i)]}] (* Or *)
Union@ Flatten@ NestList[{2#, 4#, 5#} &, 1, 7] (* Robert G. Wilson v, Apr 16 2011 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim+.5)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Sage)
def isA003592(n) :
return not any(d != 2 and d != 5 for d in prime_divisors(n))
@CachedFunction
def A003592(n) :
if n == 1 : return 1
k = A003592(n-1) + 1
while not isA003592(k) : k += 1
return k
[A003592(n) for n in (1..48)] # Peter Luschny, Jul 20 2012
(Magma) [n: n in [1..10000] | PrimeDivisors(n) subset [2, 5]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003592 n = a003592_list !! (n-1)
a003592_list = f $ singleton 1 where
f s = y : f (insert (2 * y) $ insert (5 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(Python)
# A003592.py
from heapq import heappush, heappop
def A003592():
pq = [1]
seen = set(pq)
while True:
value = heappop(pq)
yield value
seen.remove(value)
for x in 2*value, 5*value:
if x not in seen:
heappush(pq, x)
seen.add(x)
sequence = A003592()
A003592_list = [next(sequence) for _ in range(100)]
(GAP) Filtered([1..10000], n->PowerMod(10, n, n)=0); # Muniru A Asiru, Mar 19 2019
CROSSREFS
Complement of A085837. Cf. A094958, A022333 (list of j), A022332 (list of i).
KEYWORD
nonn,easy
EXTENSIONS
Incomplete Python program removed by David Radcliffe, Jun 27 2016
STATUS
approved
Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).
+10
11
3, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
OFFSET
1,1
COMMENTS
All numbers not equal to some 2^k or 5*2^k [Fraser and Gordon]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006
REFERENCES
T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.
LINKS
O. Fraser and B. Gordon, On representing a square as the sum of three squares, Amer. Math. Monthly, 76 (1969), 922-923.
FORMULA
a(n) = n + 2*log_2(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A169580(n) = a(n)^2. - R. J. Mathar, Aug 15 2023
MATHEMATICA
z=100; lst={}; Do[a2=a^2; Do[b2=b^2; Do[c2=c^2; e2=a2+b2+c2; e=Sqrt[e2]; If[IntegerQ[e]&&e<=z, AppendTo[lst, e]], {c, b, 1, -1}], {b, a, 1, -1}], {a, 1, z}]; Union@lst (* Vladimir Joseph Stephan Orlovsky, May 19 2010 *)
PROG
(PARI) is(n)=if(n%5, n, n/5)==2^valuation(n, 2) \\ Charles R Greathouse IV, Mar 12 2013
CROSSREFS
Complement of A094958. Cf. A169580, A000378, A000419, A000408.
For primitive solutions see A005818.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Ralph Peterson (ralphp(AT)library.nrl.navy.mil)
EXTENSIONS
More terms from T. D. Noe, Mar 04 2010
STATUS
approved
Number of inequivalent solutions to n^2 = a^2 + b^2 + c^2 with positive a, b, c.
+10
7
0, 0, 0, 1, 0, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 3, 0, 2, 3, 3, 0, 6, 2, 3, 1, 2, 1, 8, 1, 3, 3, 4, 0, 10, 2, 5, 3, 4, 3, 8, 0, 5, 6, 6, 2, 11, 3, 6, 1, 8, 2, 12, 1, 6, 8, 8, 1, 15, 3, 8, 3, 7, 4, 20, 0, 6, 10, 9, 2, 16, 5, 9, 3, 9, 4, 15, 3, 15, 8, 10, 0, 22, 5, 11, 6, 9, 6, 18, 2, 11, 11, 14, 3, 21, 6, 13, 1, 12, 8, 31, 2
OFFSET
0,10
COMMENTS
Note that a(n)=0 for n=0 and the n in A094958.
Also note that a(2n)=a(n), e.g., a(1000)=a(500)=a(250)=a(125)=14. - Zak Seidov, Mar 02 2012
a(n) is the number of distinct parallelepipeds each one having integer diagonal n and integer sides. - César Eliud Lozada, Oct 26 2014
LINKS
Samuel Harkness, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Zak Seidov)
MATHEMATICA
nn=100; t=Table[0, {nn}]; Do[n=Sqrt[a^2+b^2+c^2]; If[n<=nn && IntegerQ[n], t[[n]]++], {a, nn}, {b, a, nn}, {c, b, nn}]; Prepend[t, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 12 2010
STATUS
approved
a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 8.
+10
4
5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304
OFFSET
1,1
COMMENTS
Interleaving of A020714 and A000079 without initial terms 1, 2, 4.
First differences are in A162255.
Binomial transform is A135532 without initial terms -1, 3. Fourth binomial transform is A164537.
FORMULA
a(n) = (9-(-1)^n)*2^(1/4*(2*n-5+(-1)^n)).
G.f.: x*(5+8*x)/(1-2*x^2).
MATHEMATICA
LinearRecurrence[{0, 2}, {5, 8}, 60] (* Harvey P. Dale, Jul 20 2022 *)
PROG
(Magma) [ n le 2 select 2+3*n else 2*Self(n-2): n in [1..40] ];
CROSSREFS
Equals A094958 (numbers of the form 2^n or 5*2^n) without initial terms 1, 2, 4.
Cf. A020714 (5*2^n), A000079 (powers of 2), A162255, A135532, A164537.
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 21 2009
STATUS
approved
Number of solutions to n^2 = a^2 + b^2 + c^2 with positive a, b, c.
+10
4
0, 0, 0, 3, 0, 0, 3, 6, 0, 12, 0, 9, 3, 6, 6, 15, 0, 9, 12, 15, 0, 33, 9, 18, 3, 12, 6, 39, 6, 18, 15, 24, 0, 48, 9, 30, 12, 24, 15, 45, 0, 27, 33, 33, 9, 60, 18, 36, 3, 48, 12, 60, 6, 36, 39, 45, 6, 78, 18, 45, 15, 42, 24, 114, 0, 36, 48, 51, 9, 93, 30, 54, 12, 51, 24, 87, 15, 87, 45, 60, 0, 120, 27, 63, 33, 51, 33, 105, 9, 63, 60, 84, 18, 123, 36, 75, 3, 69, 48, 165, 12
OFFSET
0,4
COMMENTS
Note that a(n)=0 for n=0 and the n in A094958.
LINKS
FORMULA
a(n) = A063691(n^2). - Michel Marcus, Apr 25 2015
a(2*n) = a(n). - Robert Israel, Aug 02 2019
EXAMPLE
a(3)=3 because 3^2 = 1^2+2^2+2^2 = 2^2+1^2+2^2 = 2^2+2^2+1^2. - Robert Israel, Aug 02 2019
MAPLE
N:= 200: # for a(0)..a(N)
A:= Array(0..N):
mults:= [1, 3, 6]:
for a from 1 while 3*a^2 <= N^2 do
if a::odd then b0:= a+1; db:= 2 else b0:= a; db:= 1 fi;
for b from b0 by db while a^2 + 2*b^2 <= N^2 do
if (a+b)::odd then c0:= b + (b mod 2); dc:= 2 else c0:= b; dc:= 1 fi;
for c from c0 by dc do
v:= a^2 + b^2 + c^2;
if v > N^2 then break fi;
if issqr(v) then
w:= sqrt(v);
A[w]:= A[w]+ mults[nops({a, b, c})];
fi
od od od:
convert(A, list); # Robert Israel, Aug 02 2019
MATHEMATICA
nn=100; t=Table[0, {nn}]; Do[n=Sqrt[a^2+b^2+c^2]; If[n<=nn && IntegerQ[n], t[[n]]++], {a, nn}, {b, nn}, {c, nn}]; Prepend[t, 0]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
T. D. Noe, Nov 12 2010
STATUS
approved
Partial sums of A162255.
+10
3
3, 5, 11, 15, 27, 35, 59, 75, 123, 155, 251, 315, 507, 635, 1019, 1275, 2043, 2555, 4091, 5115, 8187, 10235, 16379, 20475, 32763, 40955, 65531, 81915, 131067, 163835, 262139, 327675, 524283, 655355, 1048571, 1310715, 2097147, 2621435, 4194299
OFFSET
1,1
COMMENTS
Apparently a(n) = A094958(n+4)-5.
FORMULA
a(n) = 2*a(n-2) + 5 for n > 2; a(1) = 3, a(2) = 5.
a(n) = (13 - 3*(-1)^n)*2^(1/4*(2*n -1 +(-1)^n))/2 - 5.
G.f.: x*(3+2*x)/(1-x-2*x^2+2*x^3).
a(1)=3, a(2)=5, a(3)=11, a(n)=a(n-1)+2*a(n-2)-2*a(n-3). - Harvey P. Dale, Aug 28 2012
MATHEMATICA
Accumulate[LinearRecurrence[{0, 2}, {3, 2}, 50]] (* or *) LinearRecurrence[ {1, 2, -2}, {3, 5, 11}, 50] (* Harvey P. Dale, Aug 28 2012 *)
PROG
(Magma) T:=[ n le 2 select 4-n else 2*Self(n-2): n in [1..39] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
(PARI) x='x+O('x^50); Vec(x*(3+2*x)/(1-x-2*x^2+2*x^3)) \\ G. C. Greubel, Sep 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 08 2009
STATUS
approved
a(n) is the least positive k such that the Hamming weight of k equals the Hamming weight of k + n.
+10
2
1, 1, 2, 1, 4, 5, 2, 1, 8, 3, 10, 6, 4, 5, 2, 1, 16, 3, 6, 5, 20, 3, 12, 10, 8, 9, 10, 6, 4, 5, 2, 1, 32, 3, 6, 5, 12, 3, 10, 9, 40, 11, 6, 5, 24, 3, 20, 18, 16, 7, 18, 17, 20, 12, 12, 10, 8, 9, 10, 6, 4, 5, 2, 1, 64, 3, 6, 5, 12, 3, 10, 9, 24, 11, 6, 5, 20, 3, 18, 17, 80, 7, 22, 14, 12, 13, 10, 9, 48
OFFSET
0,3
COMMENTS
Inspired by A292849.
The Hamming weight of a number n is given by A000120(n).
Let b(n) be the smallest t such that a(t) = n. Initial values of b(n) are 0, 2, 9, 4, 5, 11, 49, 8, 25, 10, 41, 22, 85, 83, 225, 16, 51, 47, 177, 20, ... See the logarithmic line graph of first 10^3 terms of b(n) sequence in Links section.
Apparently, n = a(n) iff n belongs to A094958. - Rémy Sigrist, Oct 02 2017
FORMULA
a(n) <= n for n >= 1.
a(2*n) = 2*a(n) for n >= 1.
a(2^m) = 2^m and a(5*2^m) = 5*2^m for m >= 0.
a(2^m - 1) = 1 for m >= 0.
a(2^m + 1) = 3 and a(2^m - 3) = 5 for m >= 3.
a(2^m + 3) = 5 for m >= 4.
a((2^m - 1)^2) = 2^m - 1 for m >= 1.
a(2^(m + 2) + 2^m - 1) = 2^m + 1 m >= 1.
a((2^m + 1)^2) = 7 for m >= 3.
EXAMPLE
a(49) = 7 since A000120(7) = A000120(7 + 49) and 7 is the least number with this property.
MAPLE
N:= 1000: # to get all terms before the first where n+a(n)>N
H:= Array(0..N, t -> convert(convert(t, base, 2), `+`)):
f:= proc(n) local k;
for k from 1 to N-n do
if H[k]=H[k+n] then return k fi
od:
0
end proc:
R:= NULL:
for n from 0 do
v:= f(n);
if v = 0 then break fi;
R:= R, v;
od:
R; # Robert Israel, Sep 27 2017
MATHEMATICA
h[n_] := First@ DigitCount[n, 2]; a[n_] := Block[{k=1}, While[h[k] != h[k + n], k++]; k]; Array[a, 90] (* Giovanni Resta, Sep 28 2017 *)
PROG
(PARI) a(n) = {my(k=1); while ((hammingweight(k)) != hammingweight(n+k), k++); k; }
CROSSREFS
KEYWORD
nonn,base,easy,look
AUTHOR
Rémy Sigrist and Altug Alkan, Sep 26 2017
STATUS
approved
Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, Sum_{k = 1..n} 10^(k-1) * a(k) can be computed without carry in decimal base.
+10
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 19, 37, 46, 55, 64, 73, 82, 91, 110, 28, 56, 74
OFFSET
1,2
COMMENTS
More informally: write the terms in decimal under each other, right-justified; the digits on each diagonal in downwards direction sum at most to 9.
The corresponding sequence for base 2 is A094958.
See also A298425 for a similar sequence.
LINKS
EXAMPLE
The first terms, alongside 10^(n-1) * a(n), are:
n a(n) 10^(n-1) * a(n)
-- ---- -------------------
1 1 1
2 2 20
3 3 300
4 4 4000
5 5 50000
6 6 600000
7 7 7000000
8 8 80000000
9 9 900000000
10 10 10000000000
11 11 110000000000
12 12 1200000000000
13 13 13000000000000
14 14 140000000000000
15 15 1500000000000000
16 16 16000000000000000
17 17 170000000000000000
18 18 1800000000000000000
19 20 20000000000000000000
20 21 210000000000000000000
The terms on the third column can be summed without carry in decimal base.
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 17 2018
STATUS
approved
Expansion of (1 + 2x + 6x^2 + x^3)/(1 - 2x^2).
+10
1
1, 2, 8, 5, 16, 10, 32, 20, 64, 40, 128, 80, 256, 160, 512, 320, 1024, 640, 2048, 1280, 4096, 2560, 8192, 5120, 16384, 10240, 32768, 20480, 65536, 40960, 131072, 81920, 262144, 163840, 524288, 327680, 1048576, 655360, 2097152, 1310720, 4194304
OFFSET
1,2
COMMENTS
Note that 4 is the only power of 2 not here. All terms are either 2^k or 5*2^k.
FORMULA
G.f.: (1 + 2x + 6x^2 + x^3)/(1 - 2x^2).
Sum_{n>=1} 1/a(n) = 43/20. - Amiram Eldar, Jan 21 2022
MATHEMATICA
LinearRecurrence[{0, 2}, {1, 2, 8, 5}, 50] (* or *) With[{nn=20}, Join[{1, 2}, Riffle[ 8*2^Range[0, nn], 5 2^Range[0, nn]]]] (* Harvey P. Dale, Sep 28 2016 *)
PROG
(PARI) a(n)=if(n<2, 1+max(-1, n), 2^(n\2)*if(n%2, 5/2, 4))
CROSSREFS
Cf. A094958 (numbers of the form 2^k or 5*2^k).
KEYWORD
nonn,easy
EXTENSIONS
Edited by T. D. Noe, Nov 12 2010
STATUS
approved

Search completed in 0.013 seconds