[go: up one dir, main page]

login
Search: a069727 -id:a069727
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of unrooted planar 2-constellations with n digons. Also number of n-edge unrooted planar Eulerian maps with bicolored faces.
+10
10
1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, 293447817, 1868710728, 12068905911, 78913940784, 521709872895, 3483289035186, 23464708686960, 159346213738020, 1090073011199451, 7507285094455566, 52021636161126702
OFFSET
1,2
COMMENTS
a(n) is also the number of unrooted planar hypermaps with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13 2006
LINKS
M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From N. J. A. Sloane, Dec 19 2009]
A. Mednykh and R. Nedela, Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 2.
Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
EXAMPLE
The 3 Eulerian maps with 2 edges are the digon and two figure eight graphs ("8") in which both loops are colored, resp., black or white.
MAPLE
A090371 := proc(n)
local s, d;
if n=0 then
1 ;
else
s := -2^n*binomial(2*n, n);
for d in numtheory[divisors](n) do
s := s+ numtheory[phi](n/d)*2^d*binomial(2*d, d)
od;
3/(2*n)*(2^n*binomial(2*n, n)/((n+1)*(n+2))+s/2);
fi;
end proc:
MATHEMATICA
h0[n_] := 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)); a[n_] := (h0[n] + DivisorSum[n, If[#>1, EulerPhi[#]*Binomial[n/#+2, 2]*h0[n/#], 0]&])/n; Array[a, 30] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
PROG
(PARI) h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
a(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n; \\ Michel Marcus, Dec 11 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Dec 01 2003
EXTENSIONS
More terms from Michel Marcus, Dec 11 2014
STATUS
approved
Number of nonisomorphic unrooted unicursal planar maps with n edges (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
+10
7
1, 2, 9, 38, 214, 1253, 7925, 51620, 346307, 2365886, 16421359, 115384738, 819276830, 5868540399, 42357643916, 307753571520, 2249048959624, 16520782751969, 121915128678131, 903391034923548, 6719098772562182
OFFSET
1,2
LINKS
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
FORMULA
There is an easy formula.
a(n) ~ 8^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 28 2019
MATHEMATICA
a[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(#-2) Binomial[2 #, #], 0]&] + If[OddQ[n], 2^((n-3)/2) Binomial[n-1, (n-1)/2], 2^((n-6)/2) Binomial[n, n/2]]; Array[a, 21] (* Jean-François Alcover, Sep 18 2016 *)
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved
Number of unrooted Eulerian n-edge maps in the plane (planar with a distinguished outside face).
+10
3
1, 1, 3, 8, 32, 136, 722, 3924, 22954, 138316, 860364, 5472444, 35503288, 234070648, 1564945158, 10589356592, 72412611194, 499788291616, 3478059566250, 24383023246284, 172074483068320, 1221654305104920, 8720583728414354, 62560709120463028, 450854177292364660
OFFSET
0,3
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
For n > 0, a(n) = (1/(2n))*(2^n*binomial(2n, n)/(n+1) + Sum_{0<k<n, k|n} phi(n/k)*2^k*binomial(2k, k)) where phi is the Euler function A000010.
MATHEMATICA
a[n_] := (1/(2n)) (2^n Binomial[2n, n]/(n+1) + Sum[Boole[0<k<n] EulerPhi[ n/k] 2^k Binomial[2k, k], {k, Divisors[n]}]);
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
PROG
(PARI) a(n)={if(n==0, 1, sumdiv(n, d, if(d<n, 1, 1/(n+1)) * eulerphi(n/d) * 2^d * binomial(2*d, d))/(2*n))} \\ Andrew Howroyd, Mar 29 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
EXTENSIONS
a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 29 2021
STATUS
approved
Number of unrooted bipartite n-edge maps in the plane (planar with a distinguished outside face).
+10
3
1, 1, 2, 5, 18, 72, 368, 1982, 11514, 69270, 430384, 2736894, 17752884, 117039548, 782480424, 5294705752, 36206357114, 249894328848, 1739030128872, 12191512867814, 86037243899240, 610827161152012, 4360291880624504, 31280354620428378, 225427088761560916, 1631398499577667252
OFFSET
0,3
COMMENTS
Bipartite planar maps are dual to Eulerian planar maps.
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
For n > 0, a(n) = (1/(2n))*[2^(n-1)*binomial(2n, n)/(n+1) + Sum_{0<k<n, k|n} phi(n/k)*d(n/k)*2^(k-1)*binomial(2k, k)] + q(n) where phi is the Euler function A000010, d(n)=2, q(n)=0 if n is even and d(n)=1, q(n)=2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd.
MATHEMATICA
a[n_] := (1/(2 n)) (2^(n - 1) Binomial[2 n, n]/(n+1) + Sum[Boole[0 < k < n] EulerPhi[n/k] d[n/k] 2^(k-1) Binomial[2k, k], {k, Divisors[n]}]) + q[n];
d[n_] := If[EvenQ[n], 2, 1];
q[n_] := If[EvenQ[n], 0, 2^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)];
Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
PROG
(PARI) a(n)={if(n==0, 1, sumdiv(n, d, if(d<n, 1, 1/(n+1)) * eulerphi(n/d) * (2-n/d%2) * 2^(d-1) * binomial(2*d, d))/(2*n) + if(n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1)))} \\ Andrew Howroyd, Mar 29 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
EXTENSIONS
More terms from Jean-François Alcover, Aug 30 2019
a(0)=1 prepended by Andrew Howroyd, Mar 29 2021
STATUS
approved
Number of nonisomorphic unrooted unicursal planar maps with n edges and two vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
+10
2
1, 1, 3, 11, 62, 342, 2152, 13768, 91800, 622616, 4301792, 30100448, 213019072, 1521473984, 10954616064, 79420280064, 579300888960, 4248201302400, 31302536066560, 231638727063040
OFFSET
1,3
COMMENTS
There is an easy formula.
LINKS
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
MATHEMATICA
a[1] = a[2] = 1;
a[n_] := With[{m = Floor[(n+1)/2]}, 1/n 2^(n-3) Binomial[2n-2, n-1] + 2^(m-3) Binomial[2m-2, m-1]];
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved
Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.
+10
1
1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
OFFSET
1,3
LINKS
FORMULA
a(n) = 2*A069727(n) - A090371(n).
a(2k+1) = 2^k*Catalan(k) = A052701(k+1).
MATHEMATICA
A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1);
d[n_] := 4 - Mod[n, 2];
h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2));
A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n;
a[n_] := 2 A069727[n] - A090371[n];
Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
PROG
(PARI) h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n;
d(n) = if (n%2, 3, 4);
q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2));
a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n));
a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Dec 01 2003
EXTENSIONS
More terms from Michel Marcus, Dec 11 2014
STATUS
approved
Number of nonisomorphic unrooted unicursal planar maps with n edges.
+10
0
1, 2, 4, 13, 50, 248, 1407, 8600, 55154, 365292, 2473956, 17053468, 119191992, 842688120, 6015275094, 43292026736, 313788095994, 2288506113056, 16781638172458, 123656774440396, 915123392599456
OFFSET
0,2
COMMENTS
Unicursal (in a broad sense) means that no more than two vertices are of odd valency (that is, maps possessing an Eulerian path).
LINKS
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
FORMULA
a(n) = A069727(n) + A069724(n).
MATHEMATICA
A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
A069727[n_] := (1/(2 n))*(3*2^(n - 1)*Binomial[2 n, n]/((n + 1)*(n + 2)) + Sum[EulerPhi[n/k]*d[n/k]*2^(k - 2)*Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
q[n_?EvenQ] := 2^((n - 4)/2)*Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2)*Binomial[(n - 1), (n - 1)/2]/(n + 1);
d[n_] := 4 - Mod[n, 2];
a[n_] := A069727[n] + A069724[n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved

Search completed in 0.007 seconds