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ON THE ENUMERATION OF HYPERMAPS WHICH
ARE SELF-EQUIVALENT WITH RESPECT TO
REVERSING THE COLORS OF VERTICES

ABsTrRACT. A map (S,G) is a closed Riemann surface S with an
embedded graph G such that S\ G is the disjoint union of con-
nected components, called faces, each of which is homeomorphic to
an open disk. Tutte began a systematic study of maps in the 1960s,
and contemporary authors are actively developing it. We recall the
concept of a circular map introduced by the author and Mednykh
and demonstrate a relationship between bipartite maps and circular
maps through the concept of the duality of maps. We thus obtain an
enumeration formula for the number of bipartite maps with a given
number of edges. A hypermap is a map whose vertices are colored
black and white in such a way that every edge connects vertices of
different colors. Hypermaps are also known as dessins d’enfants (or
Grothendieck’s dessins).

A hypermap is self-equivalent with respect to reversing the colors
of vertices if it is equivalent to the hypermap obtained by reversing
the colors of its vertices.

The main result of this paper is an enumeration formula for the
number of unrooted hypermaps, regardless of genus, which have n
edges and are self-equivalent with respect to reversing the colors of
vertices.

§1. PRELIMINARIES

Definition 1. A map (S, G) is a closed Riemann surface S with an embed-
ded graph G such that S\ G is the disjoint union of connected components,
called faces, each of which is homeomorphic to an open disk.
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Definition 2. Two maps (S,G) and (S1,G1) are called equivalent when-
ever there ezists an orientation-preserving homeomorphism h : S — S
with h(G) = G;.

Definition 3. A map is called a bipartite map if its vertices can be colored
with two colors (black and white) in such a way that every edge connects
vertices of different colors.

Denote by Bip(n) the number of bipartite maps with n edges, up to
equivalence.

Definition 4. A hypermap is a map whose vertices are colored black and
white in such a way that every edge connects vertices of different colors.

Note that a hypermap was defined by R. Cori to be a pair of permuta-
tions ¢ and « on a finite set B, such that the group generated by ¢ and «
is transitive on B (see [1]). T. R. S. Walsh demonstrated a one-to-one cor-
respondence [10] between hypermaps and the set of (oriented) 2-coloured
bipartite maps. For convenience, we use it as a definition.

Definition 5. Two hypermaps (S,G) and (S1,G1) are called equivalent
whenever there exists an orientation-preserving homeomorphism h : S —
S1 with h(G) = G and h taking black and white vertices of (S, G) to black
and white vertices of (S1,G1), respectively.

Denote by Hyp(n) the number of hypermaps with n edges, up to equiv-
alence of hypermaps.

Definition 6. One says that a hypermap is self-equivalent with respect to
reversing the colors of vertices, if it is equivalent to the hypermap obtained
by reversing the colors of its vertices.

Denote the number of such hypermaps with n edges by Shyp(n). Ex-

amples of such hypermaps with n = 4 edges can be seen at the end of this
paper.
Remark 1. Reversing the colors has a natural interpretation in terms of
Belyi functions. Recall that a Belyi function is a non-constant meromorphic
function f : S — C unramified outside {0, 1, 00}, where S is a compact
Riemann surface. There is a connection between Belyi functions f and
hypermaps on S. The black (resp. white) vertices of the hypermap are the
preimages of 0 (resp. of 1). (For more details see, for instance, 1.8 and 2.1
in [5]). When we reverse colors, preimages of 0 become preimages of 1, and
preimages of 1 become preimages of 0.
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For a hypermap to be self-equivalent with respect to reversing the colors
of vertices it means that f and f — 1 have the same number of roots with
the same multiplicities.

The main problem of this paper is to calculate the number of hypermaps,
with a given number of edges, which are self-equivalent with respect to
reversing the colors of vertices.

Note that the vertices of a bipartite map can be properly colored black
and white in two different ways unless the map is self-equivalent with
respect to reversing the colors of vertices.

Thus we have

Shyp(n) = 2Bip(n) — Hyp(n). (1)

§2. ENUMERATION OF HYPERMAPS WITH A GIVEN NUMBER OF
EDGES, REGARDLESS OF GENUS

Let us recall [8] that each hypermap with n edges corresponds to a con-
jugacy class of subgroups of index n in the group A = (z,y,z : xyz = 1),
a free group of rank 2 acting on the hyperbolic plane H? by orientation-
preserving isometries.

The number of conjugacy classes of subgroups of index n in a free group
of rank r was calculated by Liskovets [13]. In our case r = 2 and we have
the following proposition.

Proposition 2.1. The number Hyp(n) of hypermaps with a given number
n of edges can be calculated from the formula

1
Hyp(n) = ~ > 5T (m, 0) ey (1),
ln
lmlzn
where Qi1 (1) = Y p (%) d™t is the Jordan totient function, p(n) is
d|l
the Mobius function, and s (m,0) is calculated using Hall’s recurrence
formula ([3]) for the number of subgroups of index n in a free group of

rankr =2 :

sT(n,0) = (n+1)! — Zk!s"'(n —k,0),
k=1
s1(0,0) = 1.

The sequence Hyp(n) coincides with the sequence A057005 in [11].
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§3. ENUMERATION OF BIPARTITE MAPS WITH A GIVEN NUMBER
OF EDGES, REGARDLESS OF GENUS

Following ([5, pp. 51-52]) let us recall the definition of the dual map.
We put a new vertex inside each face of the original map (the “center” of
the face). Then, for each edge of the original map, we draw a new edge
which intersects it in its midpoint, and which connects the centers of the
two faces adjacent to this original edge. If these two faces coincide, the new
edge thus obtained is a loop. (See Fig. 1). It is easy to see that the dual of
the dual of a map is the original map itself. The faces of the original map
are in bijective correspondence with the vertices of the dual map, and also
the degrees of the new vertices are equal to the degrees of the old faces.
The same may be said about the new faces and the old vertices. Clearly,
the dual map has the same number of edges as the original map.

Fig. 1. A pair of mutually dual spherical maps.

Following [12] we define a circular map as follows.

Definition 7. Define an elementary circular map (So, Go) to be a map on
the sphere S, with one edge, one vertezx, and two faces (inner and outer).

Definition 8. Define a circular map to be a map covering an elementary
circular map. In other words, (S,G) is a circular map if there exists a
branched covering f : (S,G) — (So,Go) ramified only over the centers of
the faces and the vertex of G, and such that f(G) = G,.

Let us remark that the dual of a bipartite map is a map whose faces can
be colored with two colors in such a way that every edge divides faces of
two different colors. According to Lemma 1.1 of [12] a map whose faces can
be colored properly with two colors is a circular map and conversely. Thus
the number of bipartite maps with a given number of edges coincides with
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the number of circular maps with that number of edges. This last number
is calculated in [12]. As a result we obtain the following theorem.

Theorem 3.1. The number Bip(n) of bipartite maps with a given number
n of edges can be calculated from the formula

Bip(n)= % Z <S+(m, 0)om (1) -I-Int(%)(s (%, 0)*84_ (%, 0)) @E%iil )

lin
Im=n
+ i Int (m ; H) %;im fl)—)!(pmsz‘_l(l)),
H=1

where pm (1) is the Jordan totient function, @504, (1) is the odd Jordan

totient function, which is equal to

l un
o ()= > u(g) dmtt,
d|l
5 odd

and s(m,0), and sT(m,0) are calculated using the recurrences
s(n,0) = (2n + 1)1 =Y "(2k — D! s(n — k,0),
k=1
5(0,0) =1, and

n
sT(n,0) = (n+1)! — Zk!s+(n —k,0),
k=1
s7(0,0) = 1, respectively.
The function T'(m, H) is given by the recurrence formula:
H m-1

T(m, H) = B(m, H) — 3 <”n2_1> TG, h) B(m — i, H — h),
h=0 i=1
where

o il i—j
B(i,j) = 1! —— Int ,
G = e =y ™ ( 2 )
B(0,0) =1, T(0,0) =0, and

Tt () 1 if z€Zandx >0,
nt(x) =
0 otherwise.
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Remark 2. Note that it follows from Proposition 1.1 of [12] that a planar
map is a circular map if and only if it is an Euler map, i.e., every vertex
has even valency. This property fails for Riemann surfaces of higher genus.
Hence the number Bipy(n) of planar bipartite maps with n edges coincides
with the number of planar Euler maps with n edges. This last number was
calculated in [7].

The sequences Bip(n) and Bipy(n) coincide with the sequences A234278
and A069727 in [11], respectively.

§4. ENUMERATION OF HYPERMAPS WHICH ARE SELF-EQUIVALENT
WITH RESPECT TO REVERSING THE COLORS OF VERTICES

Taking into account (1), Proposition 2.1 and Theorem 3.1, we obtain
the following theorem.

Theorem 4.1. The number Shyp(n) of hypermaps which are self-equiva-
lent with respect to reversing the colors of vertices and which have a given
number n of edges can be calculated from the formula

stsp( =1 3 (10t (5) (+(5.0) -+ (50)) 3.0

ln
Im=n

o3 e (M) G a0
H=1

where on (1), ¢23, (1), s(m,0), sT(m,0), T(m,H) and Int(z) are as in
Theorem 3.1.

Table 1 contains the numbers of hypermaps which are self-equivalent
with respect to reversing the colors of vertices, regardless of genus, up to
16 edges.

Remark 3. Note that the number Shyp,(n) of planar hypermaps which
have n edges and are self-equivalent with respect to reversing the colors
of vertices was obtained in [6]. The sequence Shyp,(n) coincides with the
sequence A090375 in [11].

§5. SOME EXAMPLES

In this section we illustrate the hypermaps with n = 4 edges which
are self-equivalent with respect to reversing the colors of vertices. From
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Shyp(n) | Shypy(n)

n
1 1 1
2 1 1
3 3 2
4 6 4
3 15 8
6 42 17
7 131 40
8 442 93
9 1551 224
10 5723 338
11| 22171 1344
12 | 89156 3352
13 | 370199 8448
14 | 1589240 21573
15| 7020127 54912
16 | 31906974 | 143037

Table 1

Table 1 it follows that there are four such hypermaps on the sphere (see
Figs. 2-5) and two on the torus (see Figs. 6, 7). Let us use the notation for
maps from the catalogue [4]. (Note that the maps in [4] are not colored.)

Fig. 2. Map 0.37.

Fig. 3. Map 0.69.
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Fig. 4. Map 0.70.

Fig. 5. Map 0.74.

Fig. 6. Map 1.40 (The torus is a rectangle with opposite
sides identified.)

Fig. 7. Map 1.41 (The torus is a rectangle with opposite
sides identified.)
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