[go: up one dir, main page]

login
A069730
Number of nonisomorphic unrooted unicursal planar maps with n edges.
0
1, 2, 4, 13, 50, 248, 1407, 8600, 55154, 365292, 2473956, 17053468, 119191992, 842688120, 6015275094, 43292026736, 313788095994, 2288506113056, 16781638172458, 123656774440396, 915123392599456
OFFSET
0,2
COMMENTS
Unicursal (in a broad sense) means that no more than two vertices are of odd valency (that is, maps possessing an Eulerian path).
LINKS
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
FORMULA
a(n) = A069727(n) + A069724(n).
MATHEMATICA
A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
A069727[n_] := (1/(2 n))*(3*2^(n - 1)*Binomial[2 n, n]/((n + 1)*(n + 2)) + Sum[EulerPhi[n/k]*d[n/k]*2^(k - 2)*Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
q[n_?EvenQ] := 2^((n - 4)/2)*Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2)*Binomial[(n - 1), (n - 1)/2]/(n + 1);
d[n_] := 4 - Mod[n, 2];
a[n_] := A069727[n] + A069724[n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
Sequence in context: A341378 A058134 A246012 * A072605 A330344 A161905
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved