[go: up one dir, main page]

login
A103939
Number of unrooted Eulerian n-edge maps in the plane (planar with a distinguished outside face).
3
1, 1, 3, 8, 32, 136, 722, 3924, 22954, 138316, 860364, 5472444, 35503288, 234070648, 1564945158, 10589356592, 72412611194, 499788291616, 3478059566250, 24383023246284, 172074483068320, 1221654305104920, 8720583728414354, 62560709120463028, 450854177292364660
OFFSET
0,3
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
For n > 0, a(n) = (1/(2n))*(2^n*binomial(2n, n)/(n+1) + Sum_{0<k<n, k|n} phi(n/k)*2^k*binomial(2k, k)) where phi is the Euler function A000010.
MATHEMATICA
a[n_] := (1/(2n)) (2^n Binomial[2n, n]/(n+1) + Sum[Boole[0<k<n] EulerPhi[ n/k] 2^k Binomial[2k, k], {k, Divisors[n]}]);
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
PROG
(PARI) a(n)={if(n==0, 1, sumdiv(n, d, if(d<n, 1, 1/(n+1)) * eulerphi(n/d) * 2^d * binomial(2*d, d))/(2*n))} \\ Andrew Howroyd, Mar 29 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
EXTENSIONS
a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 29 2021
STATUS
approved