[go: up one dir, main page]

login
Search: a060543 -id:a060543
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle, read by rows, such that row n equals the inverse binomial transform of row n of table A060543, where A060543(n,k) = C(n+n*k+k, n*k+k).
+20
4
1, 1, 2, 1, 9, 9, 1, 34, 96, 64, 1, 125, 750, 1250, 625, 1, 461, 5265, 16470, 19440, 7776, 1, 1715, 35329, 184877, 386561, 352947, 117649, 1, 6434, 232288, 1913408, 6307840, 9863168, 7340032, 2097152, 1, 24309, 1513656, 18921924, 92365758, 220016574
OFFSET
0,3
COMMENTS
Row sums form A108292. Main diagonal is A000169(n) = (n+1)^n. Triangle with rows reversed is A108291.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (1+n*x)*(2+n*x)*...*(n-1+n*x)/(n-1)! in the basis made of the binomial(x+i,i). - F. Chapoton, Nov 01 2022
EXAMPLE
BINOMIAL[1, 9, 9] = {1, 10, 28, 55, 91, 136, 190, 253, ...}.
BINOMIAL[1, 34, 96, 64] = {1, 35, 165, 455, 969, 1771, 2925, ...}.
BINOMIAL[1, 125, 750, 1250, 625] = {1, 126, 1001, 3876, 10626, ...}.
Triangle begins:
1;
1, 2;
1, 9, 9;
1, 34, 96, 64;
1, 125, 750, 1250, 625;
1, 461, 5265, 16470, 19440, 7776;
1, 1715, 35329, 184877, 386561, 352947, 117649;
1, 6434, 232288, 1913408, 6307840, 9863168, 7340032, 2097152; ...
PROG
(PARI) {T(n, k)=local(X=x+x*O(x^k)); polcoeff(sum(j=0, n, binomial(n+n*j+j, n*j+j)*(x/(1+X))^j)/(1+X), k)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 31 2005
STATUS
approved
Main diagonal of table A060543; a(n) = C((n+1)^2-1, n*(n+1)).
+20
2
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
OFFSET
0,2
FORMULA
a(n) = A060545(n+1). - R. J. Mathar, Aug 24 2008
PROG
(PARI) a(n)=binomial((n+1)^2-1, n*(n+1))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2005
STATUS
approved
Antidiagonal sums of table A060543.
+20
2
1, 2, 5, 17, 72, 357, 2022, 12900, 91448, 711180, 6004981, 54619489, 531854438, 5515551251, 60642234815, 704106298738, 8603658260904, 110306422692488, 1479905106340895, 20727595895871297, 302423908621734606
OFFSET
0,2
FORMULA
a(n)=Sum_{k=0..n} C(n+(n-k)*k, (n-k)*k+k).
PROG
(PARI) a(n)=sum(k=0, n, binomial(n+(n-k)*k, (n-k)*k+k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2005
STATUS
approved
Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.
+10
57
1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
OFFSET
1,2
COMMENTS
Triangular numbers not == 0 (mod 3). - Amarnath Murthy, Nov 13 2005
Shallow diagonal of triangular spiral in A051682. - Paul Barry, Mar 15 2003
Equals the triangular numbers convolved with [1, 7, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
a(n) is congruent to 1 (mod 9) for all n. The sequence of digital roots of the a(n) is A000012(n). The sequence of units' digits of the a(n) is period 20: repeat [1, 0, 8, 5, 1, 6, 0, 3, 5, 6, 6, 5, 3, 0, 6, 1, 5, 8, 0, 1]. - Ant King, Jun 18 2012
Divide each side of any triangle ABC with area (ABC) into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_(2n) on side a, and similarly for sides b and c. If the hexagon with area (Hex(n)) delimited by AA_n, AA_(n+1), BB_n, BB_(n+1), CC_n and CC_(n+1) cevians, we have a(n+1) = (ABC)/(Hex(n)) for n >= 1, (see link with java applet). - Ignacio Larrosa Cañestro, Jan 02 2015; edited by Wolfdieter Lang, Jan 30 2015
For the case n = 1 see the link for Marion's Theorem (actually Marion Walter's Theorem, see the Cugo et al, reference). Also, the generalization considered here has been called there (Ryan) Morgan's Theorem. - Wolfdieter Lang, Jan 30 2015
Pollock states that every number is the sum of at most 11 terms of this sequence, but note that "1, 10, 28, 35, &c." has a typo (35 should be 55). - Michel Marcus, Nov 04 2017
a(n) is also the number of (nontrivial) paths as well as the Wiener sum index of the (n-1)-alkane graph. - Eric W. Weisstein, Jul 15 2021
LINKS
FORMULA
a(n) = C(3*n, 3)/n = (3*n-1)*(3*n-2)/2 = A001504(n-1)/2.
a(n) = a(n-1) + 9*(n-1) = A060543(n, 3) = A006566(n)/n.
a(n) = A025035(n)/A025035(n-1) = A027468(n-1) + 1 = A000217(3*n-2).
a(1-n) = a(n).
From Paul Barry, Mar 15 2003: (Start)
a(n) = C(n-1, 0) + 9*C(n-1, 1) + 9*C(n-1, 2); binomial transform of (1, 9, 9, 0, 0, 0, ...).
a(n) = 9*A000217(n-1) + 1.
G.f.: x*(1 + 7*x + x^2)/(1-x)^3. (End)
Narayana transform (A001263) of [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n-1) = Pochhammer(4,3*n)/(Pochhammer(2,n)*Pochhammer(n+1,2*n)).
a(n-1) = 1/Hypergeometric([-3*n,3*n+3,1],[3/2,2],3/4). - Peter Luschny, Jan 09 2012
From Ant King, Jun 18 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = A000217(n) + 7*A000217(n-1) + A000217(n-2).
Sum_{n>=1} 1/a(n) = 2*Pi/(3*sqrt(3)) = A248897.
(End)
a(n) = (2*n-1)^2 + (n-1)*n/2. - Ivan N. Ianakiev, Nov 18 2015
a(n) = A101321(9,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 9*x^2)*exp(x)/2 - 1. - G. C. Greubel, Mar 02 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 11*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/(2*e) - 1. (End)
a(n) = A000567(n) + A005449(n-1) (see illustration in links). - John Elias, Nov 10 2020
a(n) = P(2*n,4)*P(3*n,3)/24 for n>=2, where P(s,k) = ((s - 2)*k^2 - (s - 4)*k)/2 is the k-th s-gonal number. - Lechoslaw Ratajczak, Jul 18 2021
MAPLE
H := n -> simplify(1/hypergeom([-3*n, 3*n+3, 1], [3/2, 2], 3/4)); A060544 := n -> H(n-1); seq(A060544(i), i=1..19); # Peter Luschny, Jan 09 2012
MATHEMATICA
Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
PROG
(PARI) a(n)=(3*n-1)*(3*n-2)/2
(PARI) for (n=1, 100, write("b060544.txt", n, " ", (3*n - 1)*(3*n - 2)/2); ) \\ Harry J. Smith, Jul 06 2009
(Magma) [(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
(GAP) List([1..50], n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
(Sage) [(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Henry Bottomley, Apr 02 2001
EXTENSIONS
Additional description from Terrel Trotter, Jr., Apr 06 2002
Formulas by Paul Berry corrected for offset 1 by Wolfdieter Lang, Jan 30 2015
STATUS
approved
Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.
+10
29
1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
OFFSET
1,5
COMMENTS
The Copeland link gives the associations of this entry with the operator calculus of Appell Sheffer polynomials, the combinatorics of simple set partitions encoded in the Faa di Bruno formula for composition of analytic functions (formal Taylor series), the Pascal matrix, and the geometry of the n-dimensional simplices (hypertriangles, or hypertetrahedra). These, in turn, are related to simple instances of the application of the exponential formula / principle / schema giving the number of not-necessarily-connected objects composed from an ensemble of connected objects. - Tom Copeland, Jun 09 2021
LINKS
Seiichi Manyama, Antidiagonals n = 1..50, flattened (first 20 antidiagonals from Harry J. Smith)
Nattawut Phetmak and Jittat Fakcharoenphol, Uniformly Generating Derangements with Fixed Number of Cycles in Polynomial Time, Thai J. Math. (2023) Vol. 21, No. 4, 899-915. See pp. 901, 914.
FORMULA
T(n,k) = (n*k)!/(k!^n*n!) = T(n-1,k)*A060543(n,k) = A060538(n,k)/k!.
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 10, 35, 126, 462, ...
1, 15, 280, 5775, 126126, 2858856, ...
1, 105, 15400, 2627625, 488864376, 96197645544, ...
1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
...
MATHEMATICA
T[n_, k_] := (n*k)!/(k!^n*n!);
Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
PROG
(PARI) { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009
CROSSREFS
Main diagonal is A057599.
Related to A057599, see also A096126 and A246048.
Cf. A060358, A361948 (includes row/col 0).
Cf. A000217, A000292, A000332, A000389, A000579, A000580, A007318, A036040, A099174, A133314, A132440, A135278 (associations in Copeland link).
KEYWORD
nonn,tabl,easy
AUTHOR
Henry Bottomley, Apr 02 2001
EXTENSIONS
Definition reworded by M. F. Hasler, Aug 23 2014
STATUS
approved
a(n) = binomial(n^2, n)/n.
+10
9
1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
OFFSET
1,2
LINKS
FORMULA
a(n) = A060543(n, n) = A014062(n)/n.
a(n+1) = C(A005563(n), n) for n >= 0. - Fred Daniel Kline, Sep 27 2016
From Peter Bala, Oct 22 2023: (Start)
a(p^r) == 1 (mod p^(3+r)) for all positive integers r and all primes p >= 5 (apply Meštrović, Remark 17, p. 12).
Conjecture: a(2*p^r) == 4*p^r - 1 (mod p^(3+r)) for all positive integers r and all primes p >= 5. (End)
MAPLE
A060545:=n->binomial(n^2, n)/n: seq(A060545(n), n=1..20); # Wesley Ivan Hurt, Sep 28 2016
MATHEMATICA
Table[Binomial[n^2, n]/n, {n, 15}] (* Michael De Vlieger, Sep 28 2016 *)
PROG
(PARI) a(n) = binomial(n^2, n)/n; \\ Harry J. Smith, Jul 06 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Apr 02 2001
EXTENSIONS
More terms from Fred Daniel Kline, Sep 28 2016
STATUS
approved
Triangle read by rows, T(n, k) = [x^k] (1-x)^(n+1)*Sum_{j=0..n} binomial(n + n*j + j, n*j + j)*x^j.
+10
9
1, 1, 1, 1, 7, 1, 1, 31, 31, 1, 1, 121, 381, 121, 1, 1, 456, 3431, 3431, 456, 1, 1, 1709, 26769, 60691, 26769, 1709, 1, 1, 6427, 193705, 848443, 848443, 193705, 6427, 1, 1, 24301, 1343521, 10350421, 19610233, 10350421, 1343521, 24301, 1
OFFSET
0,5
COMMENTS
G.f. of row n divided by (1-x)^(n+1) equals g.f. of row n of table A060543.
Matrix product of this triangle with Pascal's triangle (A007318) equals A108291.
Seeing each row as a polynomial, all roots seem to be negative reals. - F. Chapoton, Nov 01 2022
From Thomas Anton, Jan 05 2023: (Start)
Consider the set [m] := {1, 2, 3, ..., m} ordered cyclically, and then mapped into itself via f. Let us consider a in [m] as the (a-1)th m-th root of unity e^(2*Pi*i*(a-1)/m). Then f may be extended to a continuous map f':S^1 -> S^1 as follows:
For a immediately before b in the cyclic order, map the interval between a and b to S^1 so that a point in it moving clockwise at constant speed has a value moving clockwise at constant speed, and the map travels the shortest distance possible given this condition.
T(n, k) gives the number of f for m = n-1 such that f(1) = 1 and f' has degree k. This is trivially one n-th of the number of f with degree k when f(1) is arbitrary.
Equivalent to having degree k is that there are k values a immediately before b in the cyclic order such that f(a) > f(b) (in the standard order of N).
If we change things so that a immediately before b satisfies f(a) = f(b) corresponds to a full rotation (this is equivalent to using the condition f(a) >= f(b) in the last paragraph), then T(n, k) is the number of f with degree k+1.
T(n, k) is the (k+1)*(n-1)th (n-1)-nomial coefficient of power n - 1.
(End)
LINKS
M. Bayer, B. Goeckner, S. J. Hong, T. McAllister, M. Olsen, C. Pinckney, J. Vega and M. Yip, Lattice polytopes from Schur and symmetric Grothendieck polynomials, Electronic Journal of Combinatorics, Volume 28, Issue 2 (2021). See Proposition 53 and Table 1.
Tanay Wakhare, Iterated Entropy Derivatives and Binary Entropy Inequalities, arXiv:2312.14743 [cs.IT], 2023.
Raphael Yuster, Almost k-union closed set systems, arXiv:2302.12276 [math.CO], 2023, p. 8.
FORMULA
T(n, 1) = A048775(n) = binomial(2*n + 1, n + 1) - (n + 1).
Sum_{k=0..n} T(n, k) = A000169(n) = (n + 1)^n.
Sum_{k=0..n} T(n, k)*2^k = A108292(n).
From Thomas Anton, Jan 05 2023: (Start)
T(n, k) = Sum_{i=0..k} (-1)^i*binomial(n + 1, i)*binomial(n+(n+1)*(k-i), n).
T(n, k) = T(n, n-k).
(End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 7, 1;
1, 31, 31, 1;
1, 121, 381, 121, 1;
1, 456, 3431, 3431, 456, 1;
1, 1709, 26769, 60691, 26769, 1709, 1;
1, 6427, 193705, 848443, 848443, 193705, 6427, 1;
...
G.f. of row 3: (1 + 31*x + 31*x^2 + x^3) = (1-x)^4*(1 + 35*x + 165*x^2 + 455*x^3 + ... + C(4*j+3,4*j)*x^j + ...).
MAPLE
p := n -> (1-x)^(n+1)*add(binomial(n + n*j + j, n*j + j)*x^j, j = 0..n):
seq(print(seq(coeff(p(n), x, k), k = 0..n)), n = 0..8); # Peter Luschny, Nov 02 2022
MATHEMATICA
T[n_, k_] := Coefficient[(1 - x)^(n + 1)*
Sum[Binomial[n + n*j + j, n*j + j]*x^j, {j, 0, n}], x, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 23 2021 *)
PROG
(PARI) T(n, k)=polcoeff((1-x)^(n+1)*sum(j=0, n, binomial(n+n*j+j, n*j+j)*x^j), k)
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 29 2005 and May 31 2005
STATUS
approved
Row sums of triangle A108290.
+10
3
1, 3, 19, 195, 2751, 49413, 1079079, 27760323, 822299383, 27565191753, 1031671508495, 42643092165765, 1929325374428791, 94835735736471369, 5032700868665421519, 286770182910733076163, 17463186681730290301671
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A108267(n, k)*2^k.
PROG
(PARI) a(n)=local(X=x+x*O(x^n)); sum(k=0, n, polcoeff(sum(j=0, n, binomial(n+n*j+j, n*j+j)*(x/(1+X))^j)/(1+X), k))
(PARI) a(n)=sum(k=0, n, 2^k*polcoeff( (1-x)^(n+1)*sum(j=0, n, binomial(n+n*j+j, n*j+j)*x^j), k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2005
STATUS
approved
Triangle, read by rows, resulting from the matrix product of triangle A108267 with Pascal's triangle (A007318).
+10
2
1, 2, 1, 9, 9, 1, 64, 96, 34, 1, 625, 1250, 750, 125, 1, 7776, 19440, 16470, 5265, 461, 1, 117649, 352947, 386561, 184877, 35329, 1715, 1, 2097152, 7340032, 9863168, 6307840, 1913408, 232288, 6434, 1, 43046721, 172186884, 274223556, 220016574
OFFSET
0,2
COMMENTS
Row sums form A108292. Column 0 is A000169(n) = (n+1)^n. Triangle with rows reversed is A108290.
EXAMPLE
Triangle begins:
1;
2,1;
9,9,1;
64,96,34,1;
625,1250,750,125,1;
7776,19440,16470,5265,461,1;
117649,352947,386561,184877,35329,1715,1;
2097152,7340032,9863168,6307840,1913408,232288,6434,1; ...
PROG
(PARI) {T(n, k)=local(X=x+x*O(x^(n-k))); polcoeff(sum(j=0, n, binomial(n+n*j+j, n*j+j)*(x/(1+X))^j)/(1+X), n-k)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 31 2005
STATUS
approved
Triangle T(n,m) read by rows: The number of m-Schroeder paths of order n with 2 diagonal steps.
+10
2
1, 6, 21, 30, 180, 546, 140, 1430, 6120, 17710, 630, 10920, 65835, 245700, 695640, 2772, 81396, 690690, 3322704, 11515140, 32212719, 12012, 596904, 7125300, 44170896, 187336380, 619851960, 1721286532, 51480, 4326300, 72624816
OFFSET
2,2
COMMENTS
The case with 1 diagonal step is A060543.
REFERENCES
Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53 Theorem 2.1.
FORMULA
T(n,m) = trinomial(m*n+n-2; m*n-2,n-2,2)/(m*n-1) .
EXAMPLE
This is the left-lower portion of the array which starts in row n=2, columns m>=1 as:
1, 2, 3, 4, 5, 6,..
6, 21, 45, 78, 120, 171, 231,.. # A081266
30, 180, 546, 1224, 2310, 3900, 6090, 8976,.. # bisection A055112
140, 1430, 6120, 17710, 40950, 81840, 147630, 246820, 389160,.. # 5-section A034827
630, 10920, 65835, 245700, 695640, 1645020, 3426885, 6497400, ...
2772, 81396, 690690, 3322704, 11515140, 32212719, 77481495, ...
12012, 596904, 7125300, 44170896, 187336380, 619851960, ...
KEYWORD
easy,nonn,tabl
AUTHOR
R. J. Mathar, Nov 08 2010
STATUS
approved

Search completed in 0.010 seconds