[go: up one dir, main page]

login
A025038
Number of partitions of { 1, 2, ..., 6n } into sets of size 6.
3
1, 1, 462, 2858856, 96197645544, 11423951396577720, 3708580189773818399040, 2779202577056119960603777920, 4263127221846887596248598498826880, 12233832241625685631640659383106015132800, 61247286460823449786646954166350590676638060800
OFFSET
0,3
LINKS
Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 17.
FORMULA
a(n) = (6n)!/(n!(6!)^n). - Christian G. Bower, Sep 15 1998
MATHEMATICA
Table[Pochhammer[n + 1, 5*n]/6!^n, {n, 0, 15}] (* Paolo Xausa, Aug 08 2024 *)
PROG
(Sage) [rising_factorial(n+1, 5*n)/720^n for n in (0..15)] # Peter Luschny, Jun 26 2012
CROSSREFS
Column k=6 of A060540.
Sequence in context: A295432 A213406 A294853 * A028684 A212928 A102997
KEYWORD
nonn
EXTENSIONS
a(0) and a(10) from Andrew Howroyd, Feb 26 2018
STATUS
approved